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Notes on Chebyshev Semi-Iterative Methods
In this set of notes we consider a non-stationary iteration for solving a linear
system of equations.
The idea is built upon (any) SIM
x*F+) = Gx™ 1 q,

that converges to a fixed point x*.

Note: The notation for the constant vector in this set of notes is d instead of c,
because Chebyshev polynomials are almost always written using the letter c.

The Main Idea

e Suppose that we have a basic stationary iterative method
xFH) = Gx™ 1 4,
that converges to a fixed point x*.

e Consider the accelerated sequence
k
—(k 1
%(k) — Zyj(k) O]
j=0
where the v;(k) are scalar parameters to be determined.

e The demand that x* remain a fixed point of the iteration adds the
constraint

e We want to determine the parameters v;(k) to accelerate convergence.

Measuring convergence



Let

and let

Jj=0

be a polynomial of degree k. Our constraint on the coefficients v;(k) means that
pk(l) =1.

(Notice that the superscripts on x and e denote iteration numbers, while those
on z denote exponentiation.)
Now,
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Therefore, our problem becomes this:

Given some information about the eigenvalues of G, find coefficients

of p, with pp(1) = 1, so that pi(G)el® is small for every choice of
(0)

e

Digression: The Chebyshev Polynomials

The Chebyshev polynomials are defined by

co(z) = 1,
alz) = 2z
cm+1(2) = 2zem(2) —em—1(2), m>1.
Properties



1. For —1 < z < 1, ¢ju(2) = cosm@, where cosf = z.

Proof: True for m =0, 1.
Recall that cos(m + 1)0 = 2 cos 6 cosmb — cos(m — 1)6 for m > 1 and use
the definitions above. [

2. max_i1<,<1|cm(2)] =1 for all m > 0, because of the properties of cos.

3. Again, because of the properties of cos, |¢,,(2)| has m + 1 maximas in
[—1,1] for m > 0. These occur when cos mf = £1, or equivalently for
Or = wk/m or z, = cosmk/m, k=0,1,...,m.

4. The m 4+ 1 maximas and minimums of ¢,,(z) alternate in sign and thus by
continuity we have a root between each pair. This gives m roots, and since
Cm is a polynomial of degree m, this is all of them.

5. Given two numbers s,t, with s & [—1,1], let v =t/cp(s). Then ey, is
the polynomial that solves the problem

min ma; z
Jin - max [pm (2)]

over all polynomials of degree m.
Proof:

(a) Note that ye¢,, has the correct degree and equals ¢ at s.

(b) Assume that p* # ~yc,, solves the problem with a smaller maximum
value. Let r = ~v¢,, — p*. Then r is also a polynomial of degree at
most m, and the m + 1 values r(zx), k = 0,...,m alternate in sign.
Therefore, 7 has m roots in [—1,1]. But it also has a root at s since
r(s) = 0. Therefore r must be the zero polynomial, a contradiction.

(c) Uniqueness follows from a similar argument. O

Semi-Iteration
We give several solutions to the problem

Given some information about the eigenvalues of G, find coefficients

of pr, with pr(1) =1, so that p;(G)e(®) is small for every choice of
(0)

e

Case 1

(impractical, but we'll see later that conjugate gradients accomplishes this in a
different way)



Let G have eigenvalues A1, ..., \,,. Then its characteristic equation is
pi(A) = det(G — A\I) =0 and p}(G) = 0.

Therefore, we could take n steps of any iterative method, take p,, = p}, and have

Case 2

Suppose G is symmetric and —1 < a < A(G) <b < 1. Then

Pk (G)el ||
Pk (G)]]2 |||

= A O)1,,.
gr%gglpk( ) 1e™ ]2
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One polynomial that makes this last expression small is the one that solves

i A
Jin | max, Ip(N)]

over all polynomials of degree at most m. The solution is a scaled and shifted
Chebyshev polynomial:
Ch (2A;£bja)>

Ck (2_1,(51_(1)) .

Pr(A) =

Case 3

Suppose G is symmetric and —1 < —b < A\(G) < b < 1. (This is a special case
of 2.) Then the solution polynomial is

Next we derive the iteration: we find a formula for x(%).

We have
ckr1(2) = 2zer(z) — cp—1(2),
ek — pk(G)e(O),
ck(A/b) = cx(1/b)pr(N).
Therefore,

(/)i (N) = er (/D)) — e (1/0)pc1(N).



Multiply this by e(®) and evaluate the polynomials at G, giving

2
i (1/0)64 D) = ZGep(1/6)6) — 1 (1/0)8 D).

Now we use the definition e¥) = x(*) — x*, getting

e (U/D)ED —x) = ZHID G ) e 1) (0D ),

and therefore

2ci (1
cr1(1/0)x D %/b)cr,—((k) — 1 (1/b)x*D
2¢.(1/b
+lcr1(1/b) — %G + cp—1(1/b)]x™.
Now, since cj+1(1/b) — 200 ¢y 1 (1/b) = 0, the red piece of this expression
becomes
2¢,(1/b 25, (1/b 9,.(1/b
[ck41(1/b) — %G + -1 (1/b))x* = %(I —G)x* = k(b/ )d,
so
(k1) 2ep(1/b)(Gx™ + d) — ¢p—1 (1/b)xF—1)
YD)
= wp (GxP 4+ d —x*D)y 4 xk=D
where 200 (1/0) W)
Ck Ck—1
w =" =14 —— 7
ST bega (1/0) cern(1/)
for k > 1, with wy = 1.
Notes:

1. The x(*) sequence need not be computed at all!

2. Two previous iterates must be saved, and the correct starting condition is
%) arbitrary and (-1 = 0.

3. We have the relations

ck(1/b) cx(1/b)’

A)| =
_max [pe(M)] = _max,

cx(A/b) ‘ 1

and further algebra gives
1 _ 2w — 1)k/2
e (1/0) = 1+ (wp — 1)k

where

2
W = ————
1+ +/1—p%(G)
where p denotes the spectral radius. This gives a bound on the rate of
convergence.



Case 4

Suppose G is nonsymmetric.

We have just constructed an iteration using a min-max problem over an interval
known to contain the eigenvalues.

In the nonsymmetric case, the min-max problem is over an ellipse. The solution
was constructed by Tom Manteuffel, Numerische Mathematik 31 (1978) 183-208.



