AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Chebyshev Semi-Iterative Methods Dianne P. O'Leary ©2006, 2007

Notes on Chebyshev Semi-Iterative Methods

In this set of notes we consider a non-stationary iteration for solving a linear system of equations.

The idea is built upon (any) SIM

$$\mathbf{x}^{(k+1)} = \mathbf{G}\mathbf{x}^{(k)} + \mathbf{d},$$

that converges to a fixed point \mathbf{x}^* .

Note: The notation for the constant vector in this set of notes is d instead of c, because Chebyshev polynomials are almost always written using the letter c.

The Main Idea

• Suppose that we have a basic stationary iterative method

$$\mathbf{x}^{(k+1)} = \mathbf{G}\mathbf{x}^{(k)} + \mathbf{d},$$

that converges to a fixed point $\mathbf{x}^{\ast}.$

• Consider the accelerated sequence

$$\bar{\mathbf{x}}^{(k)} = \sum_{j=0}^{k} \nu_j(k) \, \mathbf{x}^{(j)}$$

where the $\nu_i(k)$ are scalar parameters to be determined.

• The demand that \mathbf{x}^* remain a fixed point of the iteration adds the constraint

$$\sum_{j=0}^{k} \nu_j(k) = 1$$

• We want to determine the parameters $\nu_j(k)$ to accelerate convergence.

Measuring convergence

$$\bar{\mathbf{e}}^{(k)} = \bar{\mathbf{x}}^{(k)} - \mathbf{x}^*, \ \mathbf{e}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x}^*.$$

and let

$$p_k(z) = \sum_{j=0}^k \nu_j(k) \, z^j$$

be a polynomial of degree k. Our constraint on the coefficients $\nu_j(k)$ means that $p_k(1)=1.$

(Notice that the superscripts on \mathbf{x} and \mathbf{e} denote iteration numbers, while those on \mathbf{z} denote exponentiation.)

Now,

$$\bar{\mathbf{e}}^{(k)} = \sum_{j=0}^{k} \nu_j(k) \mathbf{x}^{(j)} - \mathbf{x}^*$$
$$= \sum_{j=0}^{k} \nu_j(k) (\mathbf{x}^{(j)} - \mathbf{x}^*)$$
$$= \sum_{j=0}^{k} \nu_j(k) \mathbf{G}^j \mathbf{e}^{(0)}$$
$$= p_k(\mathbf{G}) \mathbf{e}^{(0)}$$

Therefore, our problem becomes this:

Given some information about the eigenvalues of G, find coefficients of p_k , with $p_k(1) = 1$, so that $p_k(\mathbf{G})\mathbf{e}^{(0)}$ is small for every choice of $\mathbf{e}^{(0)}$.

Digression: The Chebyshev Polynomials

The Chebyshev polynomials are defined by

$$\begin{array}{rcl} c_0(z) &=& 1, \\ c_1(z) &=& z, \\ c_{m+1}(z) &=& 2zc_m(z)-c_{m-1}(z), \ m\geq 1 \,. \end{array}$$

Properties

1. For -1 < z < 1, $c_m(z) = \cos m\theta$, where $\cos \theta = z$.

Proof: True for m = 0, 1. Recall that $\cos(m+1)\theta = 2\cos\theta\cos m\theta - \cos(m-1)\theta$ for $m \ge 1$ and use the definitions above. \Box

- 2. $\max_{1 \le z \le 1} |c_m(z)| = 1$ for all $m \ge 0$, because of the properties of \cos .
- 3. Again, because of the properties of \cos , $|c_m(z)|$ has m + 1 maximas in [-1, 1] for m > 0. These occur when $\cos m\theta = \pm 1$, or equivalently for $\theta_k = \pi k/m$ or $z_k = \cos \pi k/m$, $k = 0, 1, \ldots, m$.
- 4. The m + 1 maximas and minimums of $c_m(z)$ alternate in sign and thus by continuity we have a root between each pair. This gives m roots, and since c_m is a polynomial of degree m, this is all of them.
- 5. Given two numbers s, t, with $s \notin [-1, 1]$, let $\gamma = t/c_m(s)$. Then γc_m is the polynomial that solves the problem

$$\min_{p_m(s)=t} \max_{-1 \le z \le 1} |p_m(z)|$$

over all polynomials of degree m.

Proof:

- (a) Note that γc_m has the correct degree and equals t at s.
- (b) Assume that $p^* \neq \gamma c_m$ solves the problem with a smaller maximum value. Let $r = \gamma c_m p^*$. Then r is also a polynomial of degree at most m, and the m + 1 values $r(z_k)$, $k = 0, \ldots, m$ alternate in sign. Therefore, r has m roots in [-1, 1]. But it also has a root at s since r(s) = 0. Therefore r must be the zero polynomial, a contradiction.
- (c) Uniqueness follows from a similar argument. \Box

Semi-Iteration

We give several solutions to the problem

Given some information about the eigenvalues of \mathbf{G} , find coefficients of p_k , with $p_k(1) = 1$, so that $p_k(\mathbf{G})\mathbf{e}^{(0)}$ is small for every choice of $\mathbf{e}^{(0)}$.

Case 1

(impractical, but we'll see later that conjugate gradients accomplishes this in a different way)

Let G have eigenvalues $\lambda_1, \ldots, \lambda_n$. Then its characteristic equation is $p_n^*(\lambda) = \det(\mathbf{G} - \lambda \mathbf{I}) = 0$ and $p_n^*(\mathbf{G}) = \mathbf{0}$.

Therefore, we could take n steps of any iterative method, take $p_n=p_n^\ast,$ and have

$$\bar{\mathbf{e}}^n = p_n^*(\mathbf{G})\mathbf{e}^0 = \mathbf{0}.$$

Case 2

Suppose G is symmetric and $-1 < a \le \lambda(G) \le b < 1$. Then

$$\begin{aligned} ||\mathbf{\bar{e}}^{k}||_{2} &= ||p_{k}(\mathbf{G})\mathbf{e}^{(0)}||_{2} \\ &\leq ||p_{k}(\mathbf{G})||_{2} ||\mathbf{e}^{(0)}||_{2} \\ &= \max_{\lambda(\mathbf{G})} |p_{k}(\lambda)| ||\mathbf{e}^{(0)}||_{2}. \end{aligned}$$

One polynomial that makes this last expression small is the one that solves

$$\min_{p(1)=1} \max_{a \le \lambda \le b} |p(\lambda)|$$

over all polynomials of degree at most m. The solution is a scaled and shifted Chebyshev polynomial:

$$p_k(\lambda) = \frac{c_k\left(\frac{2\lambda - (b+a)}{b-a}\right)}{c_k\left(\frac{2-(b+a)}{b-a}\right)}.$$

Case	3
------	---

Suppose G is symmetric and $-1 < -b \leq \lambda(G) \leq b < 1$. (This is a special case of 2.) Then the solution polynomial is

$$p_k(\lambda) = \frac{c_k\left(\frac{2\lambda}{2b}\right)}{c_k\left(\frac{2}{2b}\right)}$$

Next we derive the iteration: we find a formula for $\bar{\mathbf{x}}^{(k)}$.

We have

$$c_{k+1}(z) = 2zc_k(z) - c_{k-1}(z),$$

$$\bar{\mathbf{e}}^{(k)} = p_k(\mathbf{G})\mathbf{e}^{(0)},$$

$$c_k(\lambda/b) = c_k(1/b)p_k(\lambda).$$

Therefore,

$$c_{k+1}(1/b)p_{k+1}(\lambda) = \frac{2\lambda}{b}c_k(1/b)p_k(\lambda) - c_{k-1}(1/b)p_{k-1}(\lambda).$$

Multiply this by $e^{(0)}$ and evaluate the polynomials at G, giving

$$c_{k+1}(1/b)\bar{\mathbf{e}}^{(k+1)} = \frac{2}{b}\mathbf{G}c_k(1/b)\bar{\mathbf{e}}^{(k)} - c_{k-1}(1/b)\bar{\mathbf{e}}^{(k-1)}.$$

Now we use the definition $ar{\mathbf{e}}^{(k)} = ar{\mathbf{x}}^{(k)} - \mathbf{x}^*$, getting

$$c_{k+1}(1/b)(\bar{\mathbf{x}}^{(k+1)} - \mathbf{x}^*) = \frac{2c_k(1/b)}{b}\mathbf{G}(\bar{\mathbf{x}}^{(k)} - \mathbf{x}^*) - c_{k-1}(1/b)(\bar{\mathbf{x}}^{(k-1)} - \mathbf{x}^*),$$

and therefore

$$c_{k+1}(1/b)\bar{\mathbf{x}}^{(k+1)} = \frac{2c_k(1/b)}{b}\mathbf{G}\bar{\mathbf{x}}^{(k)} - c_{k-1}(1/b)\bar{\mathbf{x}}^{(k-1)} + [c_{k+1}(1/b) - \frac{2c_k(1/b)}{b}\mathbf{G} + c_{k-1}(1/b)]\mathbf{x}^*$$

Now, since $c_{k+1}(1/b) - \frac{2c_k(1/b)}{b} + c_{k-1}(1/b) = 0,$ the red piece of this expression becomes

$$[c_{k+1}(1/b) - \frac{2c_k(1/b)}{b}\mathbf{G} + c_{k-1}(1/b)]\mathbf{x}^* = \frac{2c_k(1/b)}{b}(\mathbf{I} - \mathbf{G})\mathbf{x}^* = \frac{2c_k(1/b)}{b}\mathbf{d},$$

so

$$\bar{\mathbf{x}}^{(k+1)} = \frac{\frac{2}{b}c_k(1/b)(\mathbf{G}\bar{\mathbf{x}}^{(k)} + \mathbf{d}) - c_{k-1}(1/b)\bar{\mathbf{x}}^{(k-1)}}{c_{k+1}(1/b)}$$
$$= w_{k+1}(\mathbf{G}\bar{\mathbf{x}}^{(k)} + \mathbf{d} - \bar{\mathbf{x}}^{(k-1)}) + \bar{\mathbf{x}}^{(k-1)}$$

where

$$w_{k+1} = \frac{2c_k(1/b)}{bc_{k+1}(1/b)} = 1 + \frac{c_{k-1}(1/b)}{c_{k+1}(1/b)}$$

for k > 1, with $w_1 = 1$.

Notes:

- 1. The $\mathbf{x}^{(k)}$ sequence need not be computed at all!
- 2. Two previous iterates must be saved, and the correct starting condition is $\bar{\mathbf{x}}^{(0)}$ arbitrary and $\bar{\mathbf{x}}^{(-1)} = \mathbf{0}$.
- 3. We have the relations

$$\max_{-b \le \lambda \le b} |p_k(\lambda)| = \max_{-b \le \lambda \le b} \left| \frac{c_k(\lambda/b)}{c_k(1/b)} \right| = \frac{1}{c_k(1/b)}$$

and further algebra gives

$$\frac{1}{c_k(1/b)} \le \frac{2(w_b - 1)^{k/2}}{1 + (w_b - 1)^k}$$

where

$$w_k = \frac{2}{1 + \sqrt{1 - \rho^2(G)}}$$

where ρ denotes the spectral radius. This gives a bound on the rate of convergence.

Case 4

Suppose ${\bf G}$ is nonsymmetric.

We have just constructed an iteration using a min-max problem over an interval known to contain the eigenvalues.

In the nonsymmetric case, the min-max problem is over an ellipse. The solution was constructed by Tom Manteuffel, *Numerische Mathematik* 31 (1978) 183-208.