Notes on Chebyshev Semi-Iterative Methods

In this set of notes we consider a non-stationary iteration for solving a linear system of equations.

The idea is built upon (any) SIM

\[x^{(k+1)} = Gx^{(k)} + d, \]

that converges to a fixed point \(x^* \).

Note: The notation for the constant vector in this set of notes is \(d \) instead of \(c \), because Chebyshev polynomials are almost always written using the letter \(c \).

The Main Idea

- Suppose that we have a basic stationary iterative method

\[x^{(k+1)} = Gx^{(k)} + d, \]

that converges to a fixed point \(x^* \).

- Consider the accelerated sequence

\[x^{(k)} = \sum_{j=0}^{k} \nu_j(k) x^{(j)} \]

where the \(\nu_j(k) \) are scalar parameters to be determined.

- The demand that \(x^* \) remain a fixed point of the iteration adds the constraint

\[\sum_{j=0}^{k} \nu_j(k) = 1. \]

- We want to determine the parameters \(\nu_j(k) \) to accelerate convergence.

Measuring convergence
Let
\[\bar{e}^{(k)} = \bar{x}^{(k)} - x^*, \quad e^{(k)} = x^{(k)} - x^*. \]
and let
\[p_k(z) = \sum_{j=0}^{k} \nu_j(k) z^j \]
be a polynomial of degree \(k \). Our constraint on the coefficients \(\nu_j(k) \) means that
\(p_k(1) = 1 \).

(Notice that the superscripts on \(x \) and \(e \) denote iteration numbers, while those on \(z \) denote exponentiation.)

Now,
\[e^{(k)} = \sum_{j=0}^{k} \nu_j(k)x^{(j)} - x^* \]
\[= \sum_{j=0}^{k} \nu_j(k)(x^{(j)} - x^*) \]
\[= \sum_{j=0}^{k} \nu_j(k)G^j e^{(0)} \]
\[= p_k(G)e^{(0)} \]

Therefore, our problem becomes this:

Given some information about the eigenvalues of \(G \), find coefficients of \(p_k \), with \(p_k(1) = 1 \), so that \(p_k(G)e^{(0)} \) is small for every choice of \(e^{(0)} \).

Digression: The Chebyshev Polynomials

The **Chebyshev polynomials** are defined by

\[c_0(z) = 1, \]
\[c_1(z) = z, \]
\[c_{m+1}(z) = 2zc_m(z) - c_{m-1}(z), \quad m \geq 1. \]

Properties

2
1. For $-1 < z < 1$, $c_m(z) = \cos m\theta$, where $\cos \theta = z$.

Proof: True for $m = 0, 1$.

Recall that $\cos(m+1)\theta = 2\cos \theta \cos m\theta - \cos(m-1)\theta$ for $m \geq 1$ and use the definitions above. □

2. $\max_{-1 \leq z \leq 1} |c_m(z)| = 1$ for all $m \geq 0$, because of the properties of \cos.

3. Again, because of the properties of \cos, $|c_m(z)|$ has $m + 1$ maxima in $[-1, 1]$ for $m > 0$. These occur when $\cos m\theta = \pm 1$, or equivalently for $\theta_k = \pi k/m$ or $z_k = \cos \pi k/m$, $k = 0, 1, \ldots, m$.

4. The $m + 1$ maxima and minima of $c_m(z)$ alternate in sign and thus by continuity we have a root between each pair. This gives m roots, and since c_m is a polynomial of degree m, this is all of them.

5. Given two numbers s, t, with $s \not\in [-1, 1]$, let $\gamma = t/c_m(s)$. Then γc_m is the polynomial that solves the problem

$$\min_{p_m(s)=t} \max_{-1 \leq z \leq 1} |p_m(z)|$$

over all polynomials of degree m.

Proof:

(a) Note that γc_m has the correct degree and equals t at s.

(b) Assume that $p^* \not= \gamma c_m$ solves the problem with a smaller maximum value. Let $r = \gamma c_m - p^*$. Then r is also a polynomial of degree at most m, and the $m + 1$ values $r(z_k), k = 0, \ldots, m$ alternate in sign. Therefore, r has m roots in $[-1, 1]$. But it also has a root at s since $r(s) = 0$. Therefore r must be the zero polynomial, a contradiction.

(c) Uniqueness follows from a similar argument. □

Semi-Iteration

We give several solutions to the problem

Given some information about the eigenvalues of G, find coefficients of p_k, with $p_k(1) = 1$, so that $p_k(G)e^{(0)}$ is small for every choice of $e^{(0)}$.

Case 1

(impractical, but we'll see later that conjugate gradients accomplishes this in a different way)
Let \(G \) have eigenvalues \(\lambda_1, \ldots, \lambda_n \). Then its characteristic equation is
\[
p^*_n(\lambda) = \det(G - \lambda I) = 0 \text{ and } p^*_n(G) = 0.
\]
Therefore, we could take \(n \) steps of any iterative method, take \(p_n = p^*_n \), and have
\[
\bar{e}^n = p^*_n(G)e^0 = 0.
\]

Case 2

Suppose \(G \) is symmetric and \(-1 < a \leq \lambda(G) \leq b < 1\). Then
\[
\|e^k\|_2 = \|p_k(G)e^{(0)}\|_2 \\
\leq \|p_k(G)\|_2 \|e^{(0)}\|_2 \\
= \max_{\lambda(G)} |p_k(\lambda)| \|e^{(0)}\|_2.
\]

One polynomial that makes this last expression small is the one that solves
\[
\min_{p(1)=1} \max_{a \leq \lambda \leq b} |p(\lambda)|
\]
over all polynomials of degree at most \(m \). The solution is a scaled and shifted Chebyshev polynomial:
\[
p_k(\lambda) = \frac{c_k(\frac{2\lambda-(b+a)}{b-a})}{c_k(\frac{2-(b+a)}{b-a})}.
\]

Case 3

Suppose \(G \) is symmetric and \(-1 < -b \leq \lambda(G) \leq b < 1\). (This is a special case of 2.) Then the solution polynomial is
\[
p_k(\lambda) = \frac{c_k(\frac{2\lambda}{2b})}{c_k(\frac{2}{2b})}
\]

Next we derive the iteration: we find a formula for \(x^{(k)} \).

We have
\[
\begin{align*}
c_{k+1}(z) &= 2z c_k(z) - c_{k-1}(z), \\
\bar{e}^{(k)} &= p_k(G)e^{(0)}, \\
c_k(\lambda/b) &= c_k(1/b)p_k(\lambda).
\end{align*}
\]

Therefore,
\[
c_{k+1}(1/b)p_{k+1}(\lambda) = \frac{2\lambda}{b} c_k(1/b)p_k(\lambda) - c_{k-1}(1/b)p_{k-1}(\lambda).
\]
Multiply this by $e^{(0)}$ and evaluate the polynomials at G, giving
\[c_{k+1}(1/b)e^{(k+1)} = \frac{2}{b} Gc_{k}(1/b)e^{(k)} - c_{k-1}(1/b)e^{(k-1)}. \]

Now we use the definition $\bar{e}^{(k)} = \bar{x}^{(k)} - x^*$, getting
\[c_{k+1}(1/b)(\bar{x}^{(k+1)} - x^*) = \frac{2c_{k}(1/b)}{b} G(\bar{x}^{(k)} - x^*) - c_{k-1}(1/b)(\bar{x}^{(k-1)} - x^*), \]
and therefore
\[c_{k+1}(1/b)\bar{x}^{(k+1)} = \frac{2c_{k}(1/b)}{b} G\bar{x}^{(k)} - c_{k-1}(1/b)\bar{x}^{(k-1)} \]
\[+ [c_{k+1}(1/b) - \frac{2c_{k}(1/b)}{b} G] x^*. \]

Now, since $c_{k+1}(1/b) = \frac{2c_{k}(1/b)}{b} + c_{k-1}(1/b) = 0$, the red piece of this expression becomes
\[[c_{k+1}(1/b) - \frac{2c_{k}(1/b)}{b} G + c_{k-1}(1/b)]x^* = \frac{2c_{k}(1/b)}{b} (I - G)x^* = \frac{2c_{k}(1/b)}{b} d, \]
so
\[\bar{x}^{(k+1)} = \frac{c_{k+1}(1/b)}{2c_{k}(1/b)} (G\bar{x}^{(k)} + d) - c_{k-1}(1/b)\bar{x}^{(k-1)} \]
\[= w_{k+1}(G\bar{x}^{(k)} + d - \bar{x}^{(k-1)}) + \bar{x}^{(k-1)} \]

where
\[w_{k+1} = \frac{2c_{k}(1/b)}{bc_{k+1}(1/b)} = 1 + \frac{c_{k-1}(1/b)}{c_{k+1}(1/b)} \]
for $k > 1$, with $w_1 = 1$.

Notes:

1. The $x^{(k)}$ sequence need not be computed at all!
2. Two previous iterates must be saved, and the correct starting condition is $\bar{x}^{(0)}$ arbitrary and $\bar{x}^{(-1)} = 0$.
3. We have the relations
\[\max_{-b \leq \lambda \leq b} |p_k(\lambda)| = \max_{-b \leq \lambda \leq b} \left| \frac{c_k(\lambda/b)}{c_k(1/b)} \right| = \frac{1}{c_k(1/b)}, \]
and further algebra gives
\[\frac{1}{c_k(1/b)} \leq \frac{2(w_k - 1)^{k/2}}{1 + (w_k - 1)^k} \]
where
\[w_k = \frac{2}{1 + \sqrt{1 - \rho^2(G)}} \]

where ρ denotes the spectral radius. This gives a bound on the rate of convergence.
Suppose G is nonsymmetric.

We have just constructed an iteration using a min-max problem over an interval known to contain the eigenvalues.

In the nonsymmetric case, the min-max problem is over an ellipse. The solution was constructed by Tom Manteuffel, *Numerische Mathematik* 31 (1978) 183-208.