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Notes on Chebyshev Semi-Iterative Methods

In this set of notes we consider a non-stationary iteration for solving a linear
system of equations.

The idea is built upon (any) SIM

x(k+1) = Gx(k) + d,

that converges to a fixed point x∗.

Note: The notation for the constant vector in this set of notes is d instead of c,
because Chebyshev polynomials are almost always written using the letter c.

The Main Idea

• Suppose that we have a basic stationary iterative method

x(k+1) = Gx(k) + d,

that converges to a fixed point x∗.

• Consider the accelerated sequence

x̄(k) =

k
∑

j=0

νj(k)x(j)

where the νj(k) are scalar parameters to be determined.

• The demand that x∗ remain a fixed point of the iteration adds the
constraint

k
∑

j=0

νj(k) = 1.

• We want to determine the parameters νj(k) to accelerate convergence.

Measuring convergence
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Let
ē(k) = x̄(k) − x∗, e(k) = x(k) − x∗.

and let

pk(z) =

k
∑

j=0

νj(k) zj

be a polynomial of degree k. Our constraint on the coefficients νj(k) means that
pk(1) = 1.

(Notice that the superscripts on x and e denote iteration numbers, while those
on z denote exponentiation.)

Now,

ē(k) =

k
∑

j=0

νj(k)x(j) − x∗

=
k
∑

j=0

νj(k)(x(j) − x∗)

=

k
∑

j=0

νj(k)Gje(0)

= pk(G)e(0)

Therefore, our problem becomes this:

Given some information about the eigenvalues of G, find coefficients
of pk, with pk(1) = 1, so that pk(G)e(0) is small for every choice of
e(0).

Digression: The Chebyshev Polynomials

The Chebyshev polynomials are defined by

c0(z) = 1,

c1(z) = z,

cm+1(z) = 2zcm(z) − cm−1(z), m ≥ 1 .

Properties
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1. For −1 < z < 1, cm(z) = cos mθ, where cos θ = z.

Proof: True for m = 0, 1.
Recall that cos(m + 1)θ = 2 cos θ cos mθ − cos(m− 1)θ for m ≥ 1 and use
the definitions above. ¤

2. max−1≤z≤1 |cm(z)| = 1 for all m ≥ 0, because of the properties of cos.

3. Again, because of the properties of cos, |cm(z)| has m + 1 maximas in
[−1, 1] for m > 0. These occur when cos mθ = ±1, or equivalently for
θk = πk/m or zk = cos πk/m, k = 0, 1, . . . ,m.

4. The m + 1 maximas and minimums of cm(z) alternate in sign and thus by
continuity we have a root between each pair. This gives m roots, and since
cm is a polynomial of degree m, this is all of them.

5. Given two numbers s, t, with s 6∈ [−1, 1], let γ = t/cm(s). Then γcm is
the polynomial that solves the problem

min
pm(s)=t

max
−1≤z≤1

|pm(z)|

over all polynomials of degree m.

Proof:

(a) Note that γcm has the correct degree and equals t at s.

(b) Assume that p∗ 6= γcm solves the problem with a smaller maximum
value. Let r = γcm − p∗. Then r is also a polynomial of degree at
most m, and the m + 1 values r(zk), k = 0, . . . ,m alternate in sign.
Therefore, r has m roots in [−1, 1]. But it also has a root at s since
r(s) = 0. Therefore r must be the zero polynomial, a contradiction.

(c) Uniqueness follows from a similar argument. ¤

Semi-Iteration

We give several solutions to the problem

Given some information about the eigenvalues of G, find coefficients
of pk, with pk(1) = 1, so that pk(G)e(0) is small for every choice of
e(0).

Case 1

(impractical, but we’ll see later that conjugate gradients accomplishes this in a
different way)
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Let G have eigenvalues λ1, . . . , λn. Then its characteristic equation is
p∗n(λ) = det(G − λI) = 0 and p∗n(G) = 0.

Therefore, we could take n steps of any iterative method, take pn = p∗n, and have

ēn = p∗n(G)e0 = 0.

Case 2

Suppose G is symmetric and −1 < a ≤ λ(G) ≤ b < 1. Then

||ēk||2 = ||pk(G)e(0)||2

≤ ||pk(G)||2 ||e
(0)||2

= max
λ(G)

|pk(λ)| ||e(0)||2.

One polynomial that makes this last expression small is the one that solves

min
p(1)=1

max
a≤λ≤b

|p(λ)|

over all polynomials of degree at most m. The solution is a scaled and shifted
Chebyshev polynomial:

pk(λ) =
ck

(

2λ−(b+a)
b−a

)

ck

(

2−(b+a)
b−a

) .

Case 3

Suppose G is symmetric and −1 < −b ≤ λ(G) ≤ b < 1. (This is a special case
of 2.) Then the solution polynomial is

pk(λ) =
ck

(

2λ
2b

)

ck

(

2
2b

)

Next we derive the iteration: we find a formula for x̄(k).

We have

ck+1(z) = 2zck(z) − ck−1(z),

ē(k) = pk(G)e(0),

ck(λ/b) = ck(1/b)pk(λ).

Therefore,

ck+1(1/b)pk+1(λ) =
2λ

b
ck(1/b)pk(λ) − ck−1(1/b)pk−1(λ).
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Multiply this by e(0) and evaluate the polynomials at G, giving

ck+1(1/b)ē
(k+1) =

2

b
Gck(1/b)ē(k) − ck−1(1/b)ē

(k−1).

Now we use the definition ē(k) = x̄(k) − x∗, getting

ck+1(1/b)(x̄
(k+1) − x∗) =

2ck(1/b)

b
G(x̄(k) − x∗) − ck−1(1/b)(x̄

(k−1) − x∗),

and therefore

ck+1(1/b)x̄
(k+1) =

2ck(1/b)

b
Gx̄(k) − ck−1(1/b)x̄

(k−1)

+[ck+1(1/b) −
2ck(1/b)

b
G + ck−1(1/b)]x

∗.

Now, since ck+1(1/b)−
2ck(1/b)

b + ck−1(1/b) = 0, the red piece of this expression
becomes

[ck+1(1/b) −
2ck(1/b)

b
G + ck−1(1/b)]x

∗ =
2ck(1/b)

b
(I − G)x∗ =

2ck(1/b)

b
d,

so

x̄(k+1) =
2
b ck(1/b)(Gx̄(k) + d) − ck−1(1/b)x̄

(k−1)

ck+1(1/b)

= wk+1(Gx̄(k) + d − x̄(k−1)) + x̄(k−1)

where

wk+1 =
2ck(1/b)

bck+1(1/b)
= 1 +

ck−1(1/b)

ck+1(1/b)

for k > 1, with w1 = 1.

Notes:

1. The x(k) sequence need not be computed at all!

2. Two previous iterates must be saved, and the correct starting condition is
x̄(0) arbitrary and x̄(−1) = 0.

3. We have the relations

max
−b≤λ≤b

|pk(λ)| = max
−b≤λ≤b

∣

∣

∣

∣

ck(λ/b)

ck(1/b)

∣

∣

∣

∣

=
1

ck(1/b)
,

and further algebra gives

1

ck(1/b)
≤

2(wb − 1)k/2

1 + (wb − 1)k

where

wk =
2

1 +
√

1 − ρ2(G)

where ρ denotes the spectral radius. This gives a bound on the rate of
convergence.
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Case 4

Suppose G is nonsymmetric.

We have just constructed an iteration using a min-max problem over an interval
known to contain the eigenvalues.

In the nonsymmetric case, the min-max problem is over an ellipse. The solution
was constructed by Tom Manteuffel, Numerische Mathematik 31 (1978) 183-208.
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