
AMSC 600/CMSC 760
Fall 2007

Solution of Sparse Linear Systems
Multigrid, Part 1
Dianne P. O’Leary

c©2006, 2007

What is Multigrid?

• Originally, multigrid algorithms were proposed as an iterative method to
solve linear systems of equations arising from elliptic partial differential
equations.

• They have been extended to solve a wide variety of other problems, linear
and nonlinear.

In this part of the notes we study a couple of basic examples arising from elliptic
partial differential equations.

The Plan

• A Simple Example

• A Multigrid Algorithm

• The V-Cycle

• Cost of Multigrid

• Multigrid for 2-d Problems

• References

A Simple Example

Suppose we want to solve the differential equation

−uxx(x) = f(x)

on the domain x ∈ [0, 1], with u(0) = u(1) = 0.

Define a mesh xj = jh, where h = 1/(n + 1) for some integer n.

Then we can determine approximate values uj ≈ u(xj), j = 1, . . . , n using finite
difference or finite element approximations. If we choose finite differences, then
we have

−uxx(xj) ≈
−uj−1 + 2uj − uj+1

h2
.

1



We obtain a system of equations

Au = f

with
u = [u1, . . . , un]T ,

f = [f(x1), . . . , f(xn)]T ,

and

A =
1

h2















2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2















.

Applying Gauss-Seidel

Recall that in the G-S method we take an initial guess u(0) for the solution and
then update the guess by cycling through the equations, solving equation i for
the ith variable ui, so that given u(k), our next guess u(k+1) becomes

u
(k+1)
i = (fi−

i−1
∑

j=1

aiju
(k+1)
j −

n
∑

j=i+1

aiju
(k)
j )/aii, i = 1, . . . , n.

In our case, this reduces to

u
(k+1)
i = h2(fi + u

(k+1)
i−1 + u

(k)
i+1)/2, i = 1, . . . , n,

where we define u
(k)
0 = u

(k)
n+1 = 0 for all k.

It is easy to see how G-S can be very slow on a problem like this. Suppose, for
example, that we take u(0) = 0, and that f is zero except for a 1 in its last
position. Then u(1) is zero except for its last entry, u(2) is zero except for its last
two entries, and it takes n iterations to get a guess that has a nonzero first entry.
Since the true solution has nonzeros everywhere, this is not good!

The problem is that although G-S is good at fixing the solution locally, the
information is propagated much too slowly globally, across the entire solution
vector.

So if we are going to use G-S effectively, we need to couple it with a method that
has good global properties.

A Multigrid Algorithm

2



0 11/2

Figure 1: Four levels of nested grids on the interval [0, 1]. The coarsest grid,
with h = 1/2, consists of the blue points. Adding the red points gives h = 1/4.
Including the black points gives h = 1/8, and including all of the points gives
the finest grid, with h = 1/16.

We chose a value of n, probably guided by the knowledge that the error in the
finite difference approximation is proportional to h2.

There is a whole family of finite difference approximations, defined by different
choices of h, and we denote the system of equations obtained using a mesh
length h = 1/(n + 1) by

Ahuh = f h .

• A large value of h gives a coarse grid. The dimension n of the resulting
linear system of equations is very small, though, so we can solve it fast
using either a direct or an iterative method. Our computed solution uh has
the same overall shape as the true solution u but loses a lot of local detail.

• In contrast, if we use a very fine grid with a small value of h, then the
linear system of equations is very large and much more expensive to solve,
but our computed solution uh is very close to u.

In order to get the best of both worlds, we might use a coarse-grid solution as an
initial guess for the G-S iteration on a finer grid.

Interpolation

To do this, we must set values for points in the finer grid that are not in the
coarse grid. If someone gave us a solution to the system corresponding to h,

3



then we could obtain an approximate solution for the system corresponding to
h/2 by interpolating those values:

• For points in the finer mesh that are common to the coarser mesh, we just
take their values.

• For points in the finer mesh that are midpoints of two points in the coarser
mesh, we take the average of these two values.

This defines an interpolation operator Ph that takes values in a grid with
parameter h and produces values in the grid with parameter h/2.

For example, because our boundary conditions are zero,

P1/8 =





















































1/2 0 0 0 0 0 0
1 0 0 0 0 0 0

1/2 1/2 0 0 0 0 0
0 1 0 0 0 0 0
0 1/2 1/2 0 0 0 0
0 0 1 0 0 0 0
0 0 1/2 1/2 0 0 0
0 0 0 1 0 0 0
0 0 0 1/2 1/2 0 0
0 0 0 0 1 0 0
0 0 0 0 1/2 1/2 0
0 0 0 0 0 1 0
0 0 0 0 0 1/2 1/2
0 0 0 0 0 0 1
0 0 0 0 0 0 1/2





















































.

Nested iteration

The process of solving the problems on the sequence of nested grids gives us a
Nested iteration algorithm for our sample problem.

Nested Iteration
Set k = 1, h = 1/2, and ũh = 0.
while the approximation is not good enough,

Set k = k + 1, n = 2k − 1, and h = 1/(n + 1).
Form the matrix Ah and the right-hand side f h, and use the G-S iteration,
with the initial guess P2hũ2h, to compute an approximate solution ũh to
Ahuh = f h.

end

The termination tolerance for the norm of the residual f h − Ahũh on grid h
should be proportional to h2, since that matches the size of the local error.

This algorithm runs from coarse grid to finest and is useful (although rather silly
for one-dimensional problems). But there is a better way.

4



The V-Cycle

We can do better if we run from finest grid to coarsest grid and then back to
finest. This algorithm has 3 ingredients:

• An iterative method that converges quickly if most of the error is high
frequency – oscillating rapidly – which happens when the overall shape of
the solution is already identified. G-S generally works well.

• A way to transfer values from a coarse grid to a fine one – interpolation or
prolongation.

• A way to transfer values from a fine grid to a coarse one – restriction.
We let Rh be the operator takes values on grid h/2 and produces values
on grid h.

We already have matrices Ph for interpolation, and (for technical reasons related
to preserving the self-adjointness of the problems considered here) we choose
Rh = PT

h .

We define the V-Cycle idea recursively.

V-Cycle
vh = V-Cycle(vh, Ah, f h, η1,η2)
Perform η1 G-S iterations on Ahuh = f h using vh as the initial guess,
obtaining an approximate solution that we still call vh.
if h is the coarsest grid parameter then

compute vh to solve Ahvh = f h and return.
else

Let v2h = V-Cycle(0,A2h,R2h(f h − Ahvh), η1,η2).
Set vh = vh + P2hv2h.

end

Perform η2 G-S iterations on Ahuh = f h using vh as the initial guess,
obtaining an approximate solution that we still call vh.

In using this algorithm, we can define A2h = R2hAhP2h. This definition is key
to extending the multigrid algorithm beyond problems that have a geometric
grid. We’ll discuss these algebraic multigrid methods later. But for now, let’s see
how it works on our original problem.

Unquiz 1. Work through the V-Cycle algorithm to see exactly what
computations it performs on our simple example for the sequence of grids defined
in Figure 1. Estimate the amount of work, measured by the number of
floating-point multiplications performed.

The Standard Multigrid V-cycle Algorithm

5



The standard multigrid algorithm solves Ahuh = f h by repeating the V-Cycle
until convergence. We start the iteration by initializing uh = 0. Then, until
convergence, we do the following:

• Compute ∆uh = V-cycle(0,Ah, rh, η1, η2), where rh = f h − Ahuh.

• Update uh = uh + ∆uh.

Cost of Multigrid

We can estimate the work for multigrid.

• One step of the G-S iteration on a grid of size h costs about nz(h)
multiplications, where nz(h) is the number of nonzeros in Ah. We’ll call
nz(h) multiplications a work unit.

• Note that nz(h) ≈ 2nz(2h) since A2h has about half as many rows as Ah.

• So performing 1 G-S step on each grid h, h/2, . . . , 1 costs less than
nz(h)(1 + 1/2 + 1/4 + . . .) = 2nz(h) multiplications ≡ 2 work-units.

• So the cost of a V-Cycle is at most 2 times the cost of (η1 + η2) G-S
iterations on the finest mesh plus a modest amount of additional overhead.

Unquiz 2. Convince yourself that the storage necessary for all of the matrices
and vectors is also a modest multiple of the storage necessary for the finest grid.

We know that standard iterative methods like G-S are usually very slow (take
many iterations), so the success of multigrid relies on the fact that we need only
a few iterations on each grid, because the error is mostly local. Thus the total
amount of work to solve the full problem to a residual of size O(h2) is a small
number of work-units.

It is rather silly to use anything other than sparse Gauss elimination to solve a
system involving a tridiagonal matrix. Note, though, that our algorithm readily
extends to higher dimensions; we just need to define Ah and Ph for a nested set
of grids in order to use the multigrid V-Cycle algorithm.

Multigrid for 2-d Problems

Our first challenge in applying multi-grid to 2-dimensional problems is to develop
a sequence of nested grids. Since we discussed finite difference methods for the
1-dimensional problem, let’s focus on finite element methods for the
2-dimensional problem, using a triangular mesh and piecewise-linear basis
functions.

6



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Blue coarse grid

Figure 2: The blue gridpoints define the coarse mesh.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Red fine grid

Figure 3: The blue and the red gridpoints define the finer mesh.

It is most convenient to start from a coarse grid and obtain our finest grid
through successive refinements. Consider the initial grid in Figure ??, which
divides the unit square into 8 triangles with height h = 1/2. The grid points are
marked in blue.

Consider taking the midpoints of each side of one of triangles, and drawing the
triangle with those points as vertices. If we do this for each triangle, we obtain
the red grid points in Figure ?? and the red triangles. Each of the original blue
triangles has been replaced by 4 triangles, each having 1 or 3 red sides, and each
triangle has height h = 1/4.

If we repeat this process, we obtain the black grid points of Figure ?? and a
mesh length h = 1/8.

Writing a program for refining a general grid is complicated.

Interpolating from one grid to the next finer one is easy. For example, given the

7



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Black finest grid

Figure 4: The blue, red, and black gridpoints define the finest mesh.

blue grid values, we obtain values for the blue and red grid by following two
rules: blue gridpoints retain their values, and red grid values are defined as the
average of the nearest two values on the blue edge containing it. As before, we
take the restriction operator to be the transpose of the interpolation operator.

So we have all the machinery necessary to apply multigrid to 2-dimensional
problems.

If the partial differential equation is elliptic, it is not too hard to achieve
convergence in a small number of work-units. In fact, multigridders would say
that if you don’t achieve it, then you have chosen either your iteration or your
interpolation/restriction pair “incorrectly”.

What if the pde is not elliptic?

For problems that are not elliptic, though, things get a bit more complicated, as
can be seen using the Helmholtz equation

−∆u + κu = f.

The problem is much harder to solve for negative values of κ. There are two
reasons for this:

• First, the matrix Ah is no longer positive definite, so we lose a lot of nice
structure,

• Second, finer grids are necessary to represent the solution accurately.

In order to restore convergence in a small number of work units for the
non-elliptic problem, we must make the algorithm more complicated – for
example, we might use multigrid as a preconditioner for a Krylov subspace
method.

8



References

The multigrid idea dates back to R. P. Fedorenko in 1964. A good introduction
is given in a tutorial book by Briggs, Henson, and McCormick.

It is also useful to use multigrid if only a portion of the grid is refined from one
level to the next; for example, we might want to refine only in regions in which
the solution is rapidly changing, so that the current grid cannot capture its
behavior accurately enough. These adaptive methods are also discussed in Briggs
et al.

One multigrid approach to solving the Helmholtz equation with negative κ is
given in a paper by Elman, Ernst, and O’Leary.

9


