
MAPL 600 / CMSC 760 Fall 2007
Take-Home Exam 2

Partial answers

1a. (10) Let Tm be a symmetric tridiagonal matrix of size m×m and let Tm−1

be the (m− 1)× (m− 1) matrix formed from its first m− 1 rows and columns.
Denote the eigenvalues of Tm−1 by τ1 ≥ . . . ≥ τm−1, and denote the eigenvalues
of Tm by λ1 ≥ . . . ≥ λm. Prove that for j = 1, . . . ,m− 1,

λj ≥ τj ≥ λj+1.

Note: The result is true for general symmetric matrices, but we only need it
for the tridiagonal case. Hint: You may use without proof the Courant-Fischer
Minimax Theorem.

Answer: Suppose

w =
[

w1

0

]
where w1 is (m− 1)× 1 and w is m× 1. Then observe that

wT Tmw = wT
1 Tm−1w1.

Let Wn
k denote a subspace of Rn of dimension k. Let W̄n

k denote a subspace of
Rn of dimension k that includes the last column of the identity matrix. Then

τj = min
W m−1

j−1

max
w1⊥W m−1

j−1

wT
1 Tm−1w1

wT
1 w1

= min
W̄ m

j

max
w⊥W̄ m

j

wT Tmw
wT w

≥ min
W m

j

max
w⊥W m

j

wT Tmw
wT w

= λj+1.

(The first line follows from the minimax theorem, the second from the obser-
vation above, the third from expanding the set of subspaces we minimize over,
and the fourth from the minimax theorem.)

Similarly,

τj = max
W m−1

m−j−1

min
w1⊥W m−1

m−j−1

wT
1 Tm−1w1

wT
1 w1

= max
W̄ m

m−j

min
w⊥W̄ m

m−j

wT Tmw
wT w

≤ max
W m

m−j

min
w⊥W m

m−j

wT Tmw
wT w

= λj .
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Note that we have not used the tridiagonal structure of Tm, so the result holds
for general symmetric matrices.

1b. (10) This leads to an algorithm for approximating some of the eigenvalues of
a large sparse symmetric matrix A: run Arnoldi and use the eigenvalues of Tm

as approximations to some eigenvalues of A. Prove (using the Arnoldi relation
and about 2 lines of writing) that Tn is similar to the n×n matrix A, and show
how to use the eigenvectors of Tm to form approximations to some eigenvectors
of A.

Answer: The Arnoldi relation says

AVn = VnTn,

where Vn is an orthogonal matrix and therefore invertible. Therefore,

V−1
n AVn = Tn,

so Tn is a similarity tranform of A and therefore the two matrices have the
same eigenvalues. Further, if Tnz = λz (so that z is an eigenvector of Tn

corresponding to eigenvalue λ), then, starting with the Arnoldi relation we have

AVnz = VnTnz = λVnz,

so Vnz is an eigenvector of A corresponding to eigenvalue λ.

So our algorithm involves running Arnoldi for m steps, finding the eigenvalues
and eigenvectors of Tm, and using the eigenvalues and Vm times the eigenvec-
tors as approximations to the eigenvalues and eigenvectors of A. We know that
our estimated eigenvalues will always lie in the interval between the largest and
smallest eigenvalues of A (by 1a).

1c. (10) Implement your algorithm to approximate some of the eigenvalues and
eigenvectors of a symmetric positive definite A, by modifying cg.m (available
on the website) or by writing your own program. Use Matlab’s eig to find
the eigenvalues and eigenvectors of Tm (although faster algorithms exist, which
take advantage of the tridiagonal structure of Tm). Try it on the matrix a =
gallery(’wathen’,20,20) and compare your computed eigenvalues at m =
100 iterations (using b = the vector of all ones) with the true values, computed
by eig.

Discuss the results.

Answer: See sample program. The answer should note which eigenvalues of A
are well approximated and how accurate the approximations are.
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2a. (10) Suppose we apply the (symmetric) Lanczos (tridiagonalization) algo-
rithm (p.186) to the matrix

A =
[

0 C
CT 0

]
where C is m×n, m ≥ n. Show that we obtain vectors z1, . . . , zk and w1, . . . ,wk

satisfying

CZk = Wk+1T̄k+1,

CT Wk = Zk+1T̄k+1

where T̄k+1 is (k + 1) × k and tridiagonal. (Hint: Write out what AV = VT
means for this particular matrix.) Now show that the eigenvalues of Tm+n are
equal to the singular values of C, the negatives of the singular values of C, and
(possibly) zeros.

Hint: Every matrix has a singular value decomposition (SVD)

C = UΣV∗

where

• U has dimension m×m and UT U = I,

• Σ has dimension m× n, the only nonzeros are on the main diagonal, and
these singular values are nonnegative real numbers σ1 ≥ σ2 ≥ . . . ≥ σn ≥
0,

• V has dimension n× n and VT V = I.

• The columns of U are the eigenvectors of CCT .

• The columns of V are the eigenvectors of CT C.

• The eigenvalues of CT C (and the nonzero eigenvalues of CCT ) are σ2
1 , . . . , σ2

n.

Answer: It is not hard to see the first part. For the second, since CV = UΣ,
writing the ith column of this relationship yields Cvi = σiui. Similarly, CT U =
ΣT V, so CT ui = σivi. Now,

A
[

ui

vi

]
=

[
0 C

CT 0

] [
ui

vi

]
=

[
Cvi

CT ui

]
=

[
σui

σvi

]
= σ

[
ui

vi

]
,
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so σi is an eigenvalue of A. Similarly,

A
[

ui

−vi

]
=

[
0 C

CT 0

] [
ui

−vi

]
=

[
−Cvi

CT ui

]
=

[
−σui

σvi

]
= −σ

[
ui

−vi

]
,

so −σi is an eigenvalue of A. The rank of A is twice the rank of C, so all other
eigenvalues of A are zero. Since Tm+n is similar to A, its eigenvalues are also
±σi and zero.

2b. (10) Suppose we compute, column by column, the relations CZ = WB
and CT W = ZBT , where WT W = I, ZT Z = I, and B is zero except in its
main diagonal and superdiagonal. (You need not show that this W and Z are
the same as those from 2a.) Show that the singular values of C are equal to
the singular values of Bn. Write down the recurrences for an algorithm for
approximating the singular values and singular vectors of C by computing the
first k columns of the relations and applying an SVD algorithm to Bk.

Answer: If B = UΣVT , then

C = WBZT = WUΣVT ZT = (WU)Σ(ZV)T .

This is the product of an orthogonal times a diagonal times an orthogonal, so
this must be the SVD of C.

The algorithm is called Lanczos bidiagonalization, and can also be derived by
taking a starting vector in 2a that is zero in its second block. Let the main
diagonal elements of B be αi and the off-diagonal elements βi. The recursions
are

Czi = βiwi−1 + αiwi,

CT wi = αizi − βi+1zi+1.

Given z1 of norm one, use the first relation to compute w1, with αi (i = 1)
chosen to make wT

i wi = 1. Use the second relation to compute z2, choosing
βi+1 to enforce zT

i+1zi+1 = 1. Repeat for i = 2, . . .. Show by induction that the
bases are orthonormal.

2c. (10) Implement your algorithm from 2b in Matlab and try it on the matrix
from load(’west0479.mat’). Compare the singular values computed for k =
100 to the true values computed using svd(full(west0479)). Discuss the
results.

Answer: See sample code.
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