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Regularization by Spectral Filtering

We know already that filtering is needed when noise is present, since the solution
xnaive = A−1b is typically too contaminated by noise to be useful.

Now we take a closer look at filtering.

Filtering is also called regularization because it can be interpreted as enforcing
certain regularity conditions on the solution.

The degree of regularization is governed by a regularization parameter which
should be chosen carefully.

We focus on two candidate regularization methods

• TSVD

• Tikhonov

and three candidate ways to compute the regularization parameter

• the discrepancy principle,

• generalized cross validation,

• the L-curve criterion.

Reference: Chapter 6 of Deblurring Images.

Two Important Regularization Methods

Recall the equation for our filtered solution

xfilt =
N∑

i=1

φi
uT

i b
σi

vi

We need to choose the filter factors φi to control the spectral contents of the
deblurred images.
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The spectral coordinate system

xfilt =
N∑

i=1

φi
uT

i b
σi

vi

Note that we have a coordinate system determined by the matrix A:

• The data b is expressed in the coordinates uT
i b determined by the vectors

ui (i = 1, . . . , N).

• The solution xfilt is expressed in coordinates vT
i x determined by the

vectors vi (i = 1, . . . , N).

This is the spectral coordinate system, since these vectors are the eigenvectors
of ATA and AAT respectively.

Our goal is to scale the solution component in the direction vi by the filter factor
φi in order to reduce the effect of error in the component uT

i b.

Method 1: The Truncated SVD (TSVD) Method.

For this method, we define the filter factors to be

• one for large singular values,

• and zero for the rest.

More precisely,

φi ≡
{

1, i = 1, . . . , k

0, i = k + 1, . . . , N.

The parameter k is called the truncation parameter and it determines the
number of SVD components maintained in the regularized solution. Note that k
always satisfies 1 ≤ k ≤ N .

This is the method we used in Chapter 1 to improve upon the näıve method.

Method 2: The Tikhonov Method.

For this method we define the filter factors to be

φi =
σ2

i

σ2
i + λ2

, i = 1, . . . , N,
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where λ > 0 is called the regularization parameter.

This choice of filter factors yields the solution vector xλ for the minimization
problem

min
x

{‖b− Ax‖2
2 + λ2‖x‖2

2

}
.

This choice keeps ‖b− Ax‖2 small, but not so small that

‖x‖2
2 =

N∑
i=1

φ2
i

(uT
i b)2

σ2
i

is too big.

Thus, our minimization problem ensures that both the norm of the residual
b− Axλ and the norm of the solution xλ are somewhat small.

How does λ affect the Tikhonov solution?

Affect on components for large singular values

Suppose σi � λ (which is the case for some of the first filter factors).

Then, using the Taylor expansion (1 + ε)−1 = 1 − ε + 1
2ε2 + O(ε3), we obtain

φi =
σ2

i

σ2
i + λ2

=
1

1 + λ2/σ2
i

= 1 − λ2

σ2
i

+
1
2

λ4

σ4
i

+ . . . ≈ 1.

Affect on components for small singular values

Suppose σi � λ (which is the case for some of the last filter factors). Again
using the Taylor expansion of (1 + ε)−1, we obtain

φi =
σ2

i

σ2
i + λ2

=
σ2

i

λ2

1
1 + σ2

i /λ2
=

σ2
i

λ2

(
1 − σ2

i

λ2
+

1
2

σ4
i

λ4
+ . . .

)
.

Thus we can conclude that the Tikhonov filter factors satisfy

φi =




1 −
(

λ

σi

)2

+ O
((

λ

σi

)4)
, σi � λ

(σi

λ

)2

+ O
((σi

λ

)4
)

, σi � λ.
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Answer to how λ affects the Tikhonov solution

• φi ≈ 1 when λ << σi

• φi ≈ σ2
i /λ2 when λ ≥ σi.

Therefore, λ determines the breakpoint at which the filter factors change nature:
the point at which σi ≈ λ.
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The Tikhonov filter factors φi = σ2
i /(σ2

i + λ2) versus σi for three different values
of the regularization parameter λ.

Relation between TSVD and Tikhonov

The parameter λ in Tikhonov’s method acts in the same way as the parameter k
in the TSVD method: it controls which SVD components we want to dampen or
filter.

We also see that there is no point in choosing λ outside the interval [σN , σ1].

Implementation Issues

Implementation of Filtering Methods
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If all of the singular values of A are nonzero, then the inverse solution can be
written as

x = A−1b = VΣ−1UT b .

Similarly, the spectral filter solution can be written as

xfilt = VΦΣ−1UT b

where Φ is a diagonal matrix consisting of the filter factors φi for the particular
method:

• 1’s and 0’s for TSVD and

• σ2
i /(σ2

i + λ2) for Tikhonov.

Computational issues include:

• Exploiting structure in A.

• Specifying the regularization parameter.

• Avoiding divide-by-zero.

Exploiting structure in A

Recall:

• Structured matrices arise in image deblurring problems: e.g., Kronecker
products, BTTB, etc.

• The SVD or spectral decomposition of such matrices can be computed
efficiently.

• The (näive) inverse solution is also easy.

Similarly, the TSVD and Tikhonov solutions can be computed efficiently.

A rewrite

Old equation:
xfilt = VΦΣ−1UT b

New equation:
xfilt = VΣ−1

filtU
Tb

where Σ−1
filt = ΦΣ−1.

Thus, given the filter factors, it is simple to to compute xfilt.
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Filtered solutions for structured matrices

• Given:

P = PSF
center = [row, col] = center of PSF
B = blurred image
BC = string denoting boundary condition (e.g., ’zero’)
Phi = filter factors

• For periodic boundary conditions, use:

S = fft2( circshift(P, 1 - center) );
Sfilt = Phi ./ S;
Xfilt = real( ifft2( fft2(B) .* Sfilt ) );

• For reflexive boundary conditions, with strongly symmetric PSF, use:

e1 = zeros(size(P));, e1(1,1) = 1;
S = dct2( dctshift(P, center) ) ./ dct2(e1);
Sfilt = Phi ./ S;
Xfilt = idct2( dct2(B) .* Sfilt ) ;

• For a separable PSF, use:

[Ar, Ac] = kronDecomp(P, center, BC);
[Uc, Sc, Vc] = svd(Ac);
[Ur, Sr, Vr] = svd(Ar);
S = diag(Sc) * diag(Sr)’;
Sfilt = Phi ./ S;
Xfilt = Vc * ( (Uc’ * B * Ur) .* Sfilt ) * Vr’;

Specifying the regularization parameter

• The TSVD truncation index should statisfy 1 ≤ k ≤ N .

• The Tikhonov parameter should satisfy σN ≤ λ ≤ σ1.

Later we discuss automatic methods for estimating good choices for these
parameters, but for now we can try to choose them experimentally.
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Specifying the TSVD parameter

In the case of TSVD, we might specify a tolerance below which all singular
(spectral) values are truncated. In this case the filter factors can be computed
very easily as:

Phi = ( abs(S) >= tol );

By experimenting with various values of tol, and displaying the computed filter
solution, Xfilt, we can see the effects of regularization.

Specifying the Tikhonov parameter

In the case of Tikhonov regularization, we could specify a value for λ, and
compute the filter factors from the singular (spectral) values as follows:

Phi = abs(S).^2 ./ (abs(S).^2 + lambda^2);

Note that the use of abs is necessary in the case when FFTs are used.

Again, we can experiment with various values of lambda and display the filtered
solution to see the effects of regularization.

Avoiding divide-by-zero

In computing the quantity

Sfilt = Phi ./ S

we will commit divide-by-zero if any singular (spectral) value is zero.

This will cause some values of Sfilt to be set to Inf or to NaN.

To avoid this, perform the computation only for nonzero values of S, and set all
other Sfilt values to 0.

idx = (S ~= 0);
Sfilt = zeros(size(Phi));
Sfilt(idx) = Phi(idx) ./ S(idx);

Regularization Errors and Perturbation Errors
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Regularization Errors and Perturbation Errors

Recall: xfilt can always be written in the SVD framework as

xfilt = VΦΣ−1UT b,

where Φ is a diagonal matrix consisting of the spectral filters φi for the particular
method

• 0s and 1s for TSVD,

• σ2
i /(σ2

i + λ2) for Tikhonov,

• etc.

Equipped with this formulation, we can now easily separate the two different
types of errors in a regularized solution

xfilt = VΦΣ−1UTb
= VΦΣ−1UTbexact + VΦΣ−1UT e

= VΦΣ−1UT Axexact + VΦΣ−1UTe
= VΦVTxexact + VΦΣ−1UT e

and therefore the error in xfilt is given by

xexact − xfilt = (IN − VΦVT )xexact − VΦΣ−1UT e.

Two contributions to the errors:

• Regularization error (IN − VΦVT )xexact, caused by using a regularized
inverse VΦΣ−1UT (instead of the inverse A−1 = VΣ−1UT ) in order to
obtain the filtering.

• Perturbation error VΦΣ−1UTe, which consists of the inverted and
filtered noise.

Changing the regularization parameter changes the size of these errors.

• When too many filter factors φi are close to one, then

– the regularization error is small,

– the perturbation error is large.
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The solution is undersmoothed.

• When too few filter factors are close to one, then

– the regularization error is large,

– the perturbation error is small.

The solution is oversmoothed.

A proper choice of the regularization parameter balances the two types of errors.

Example

Consider TSVD as the regularization method.

We see in the next plot that the two types of errors are balanced for k ≈ 200:
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The 2-norms of the regularization error (IN − VΦVT )xexact and the
perturbation error VΦΣ−1UT e versus the truncation parameter k for the
TSVD method.

The Resolution matrix

The matrix VΦVT is called the resolution matrix for the regularized solution; it
describes the mapping between the exact solution and the filtered component in
xfilt.
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• The closer the resolution matrix is to the identity, the smaller the
regularization error, but the inverted noise will dominate.

• On the other hand, when most of the filter factors are small (or zero), then
the inverted noise is heavily damped (the perturbation error is small) – but
the resolution matrix is far from the identity and the regularization error is
large.

The importance of the Discrete Picard Condition

The reason why we are able to compute regularized approximations to the exact
solution, in spite of the large condition number, is that spectral filtering
suppresses much of the inverted noise while – at the same time – keeping the
regularization error small.

This is possible because the image deblurring problem satisfies the discrete
Picard condition – the exact right-hand side exhibits decaying expansion
coefficients when expressed in the spectral basis.

As a consequence, the noise affects primarily the high-frequency components
which are associated with the smaller singular values, and which are damped by
the spectral filtering method.

What is left in the regularized solution is primarily the low-frequency SVD
components associated with the larger singular values, and these components are
dominated by the contributions for the exact right-hand side.

Consider the norm of the regularization error:
xexact = A−1bexact = VΣ−1UT bexact, so

‖(IN − VΦVT )xexact‖2 = ‖(IN − Φ)VT xexact‖2

= ‖(IN − Φ)Σ−1UTbexact‖2

=
(∑N

i=1

(
(1 − φi)uT

i bexact/σi

)2)1/2

.

• Due to the discrete Picard condition, the coefficients |uT
i bexact/σi| decay

(on average).

• Since the first filter factors φi (for i = 1, 2, . . .) are close to one, the factors
(1−φi) dampen the contributions from the larger coefficients uT

i bexact/σi.

• Moreover, the small filter factors φi (for i = N, N − 1, . . .) correspond to
factors (1 − φi) close to one, which are multiplied by small coefficients
uT

i bexact/σi.

• Hence we conclude that if the filters are suitably chosen, then the norm of
the regularization error cannot be large.
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Parameter Choice Methods

We describe three important parameter choice methods:

• the discrepancy principle,

• generalized cross-validation,

• the L-curve criterion.

Effects of parameter choice

• The spectral filtering solution

‖xfilt‖2
2 =

N∑
i=1

(
φi

uT
i b
σi

)2

• The norm of the residual

‖b− Axfilt‖2
2 =

N∑
i=1

(
(1 − φi)uT

i b
)2

.

• TSVD method:

– the norm of the solution is a monotonically nondecreasing function of
k,

– the residual norm is monotonically nonincreasing.

• For the Tikhonov method,

– the norm of the solution x is a monotonically nonincreasing function
of λ

– the residual norm is monotonically nondecreasing.

The Discrepancy Principle.
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Required information: a good estimate of δ, the expected value of ‖e‖2 (the
error in the observations b).

This is powerful information, but often unreliable.

Idea: The regularization parameter should be chosen so that the norm of the
residual is approximately δ.

‖b− Axfilt‖2 = τδ,

where τ > 1 is some predetermined real number.

As δ → 0, the filtered solution satisfies xfilt → xexact.

How to compute the solution: Systematically try different values of k or λ to
satisfy the equation.

Cost: Given the SVD, the filter factors and the vector UTb, the cost is 2N
multiplications and additions for each trial to compute the residual norm.

Generalized Cross-Validation (GCV).

Required information: In constrast to the discrepancy principle, the parameter
choice in GCV does not depend on a priori knowledge about the noise variance.

Idea: If we omit a data value, then a good value of the parameter should be able
to predict the missing data point well.

How to compute the solution: Determine the parameter λ that minimizes the
GCV functional

G(λ) =
‖(IN − AVΦΣ−1UT )b‖2

2

(trace(IN − AVΦΣ−1UT ))2
,

where

• λ is the Tikhonov parameter or, abusing notation, λ = 1/k where k is the
TSVD cutoff.

• VΦΣ−1UT is the matrix that maps the right hand side b onto the
regularized solution xλ.

Cost:

• The numerator is just ‖b− Axfilt‖2
2, for which we already have a formula.

• We evaluate the denominator by noting that the trace of a matrix is the
sum of its main diagonal elements, and the trace is invariant under
orthogonal transformation, so

trace(IN − AVΦΣ−1UT ) = trace(U(IN − Φ)UT )
= trace(IN − Φ)

= N −∑N
i=1φi .
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In particular, for the TSVD method we have
G(k) = ‖b− Axk‖2

2/(N − k)2.

• Given the SVD, the filters and UTb we can therefore compute G(λ) in 2N
multiplications and 3N additions.
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The GCV functions G(k) = ‖b− Axk‖2
2/(N − k)2 for TSVD (left) and G(λ)

for Tikhonov regularization (right), applied to the same problem.

The L-Curve Criterion.

Required information: None.

Idea: The L-curve is a log-log plot of the norm of the regularized solution versus
the corresponding residual norm for each of a set of regularization parameter
values.
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The L-curve for the TSVD method applied to the same problem. This plot often
is in the shape of the letter L, from which it draws its name. The log-log scale
emphasizes the L shape.

Intuitively, the best regularization parameter should lie at the corner of the L,
since

• for values higher than this, the residual increases rapidly while the the
norm of the solution decreases only slowly,

• for values smaller than this, the norm of the solution increases rapidly
without much decrease in residual.

Hence, we expect a solution near the corner to balance the regularization and
perturbation errors.

How to compute the solution: In practice, only a few points on the L-curve need
to be computed, and the corner is located by estimating the point of maximum
curvature.

Cost: Computing a point on the L-curve costs only 3N multiplications and
additions and N divisions.

Which Choice Is Best?

Choosing an appropriate regularization parameter is very difficult.

Every parameter choice method, including the three we discussed, has severe
flaws:
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• either they require more information than is usually available,

• or they fail to converge to the true solution as the error norm goes to zero

Specific flaws

• The Discrepancy Principle is convergent as the noise goes to zero, but it
relies on information that is often unavailable or erroneous. Even with a
correct estimate of the variance, the solutions tend to be over-smoothed.

• For GCV, the solution estimates fail to converge to the true solution as the
error norm goes to zero.

• Another noted difficulty with GCV is that the graph for G can be very flat
near the minimizer, so that numerical methods have difficulty in
determining a good value of λ.

• The L-Curve Criterion is usually more tractable numerically, but its limiting
properties are far from ideal. The solution estimates fail to converge to the
true solution as N → ∞ or as the error norm goes to zero.

Implementation of GCV

(Similar details for the L-curve will be given in a later lecture by Per Christian.)

We want to minimize

G(λ) =
‖(IN − AVΦΣ−1UT )b‖2

2

(trace(IN − AVΦΣ−1UT ))2
,

so we need to evaluate it efficiently.

Specifically, in the case we are using the SVD, we obtain

G(λ) =
||(IN − AVΦΣ−1UT )b||22

trace(IN − AVΦΣ−1UT )2
=

||(IN − Φ)UT b||22
trace(IN − Φ)2

.

A similar simplification can be done for spectral decompositions.

Consider now specific regularization methods:
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• GCV for TSVD.

G(k) =

N∑
i=k+1

b̂2
i

(N − k)2

where b̂ = UT b. Note that this is a discrete function. The truncation
index is found by evaluating G(k) for k = 1, 2, . . . , N − 1, and finding the
index at which G(k) attains its minimum.

• GCV for Tikhonov.

G(λ) =

N∑
i=1

(
b̂i

σ2
i + λ2

)2

(
N∑

i=1

1
σ2

i + λ2

)2

where b̂ = UT b. To find the minimum of this continuous function we can
use Matlab’s built-in routine fminbnd. For example, if we implement the
GCV function as:

function G = GCV(lambda, bhat, s)
t = 1 ./ (s.^2 + lambda^2);
G = sum((bhat .* t).^2)/(sum(t)^2);

end

Then the ”optimal” λ can be found using:

lambda = fminbnd(@GCV,min(s),max(s),[],bhat,s);

where s=diag(S) and bhat= UT b.

If the spectral decomposition is used instead of the SVD, the values in S and
bhat may be complex, and so absolute values must be included with the
squaring operations.

See gcv tik and gcv tsvd for details on exploiting matrix structure in these
computations.

Statistical Aspects

A few more details on the statistics of the error
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Consider the SVD analysis of the noise and the inverted noise.

We first note that the coefficients uT
i b in the spectral expansion are the

elements of the vector
UT b = UT bexact + UT e.

Assume that the elements of the vector e are statistically independent, with zero
mean and identical standard deviation.

Then the expected value of e is the zero vector, while its covariance matrix is a
scaled identity matrix,

E(e) = 0, Cov(e) = E(e eT ) = η2IN ,

where η > 0 is the standard deviation.

Then it follows that the expected value of the vector UT e is also the zero vector,
E(UT e) = 0, and that the covariance matrix for UT e is given by

Cov(UT e) = UT Cov(e)U = η2UT U = η2IN .

Hence the coefficients uT
i e behave, statistically, like the elements of the noise

vector e.

The expected value of (uT
i b)2 is

E((uT
i b)2

)
= E

(
(uT

i bexact + uT
i e)2

)
= E

(
(uT

i bexact)2 + 2uT
i bexact uT

i e + (uT
i e)2

)
= (uT

i bexact)2 + η2

(because E(uT
i e) = 0), and

E(|uT
i b|) ≈√E((uT

i b)2
)

=
√

(uT
i bexact)2 + η2.

We conclude that for any index i where |uT
i bexact| is somewhat larger than η we

have uT
i b ≈ uT

i bexact, while E(|uT
i b|) ≈ η when |uT

i bexact| is smaller than η.

Recall this plot:

17



300 600 900

10
−4

10
−2

10
0

10
2

Narrow PSF

0 300 600 900

10
−4

10
−2

10
0

10
2

300 600 900

10
−4

10
−2

10
0

10
2

Medium PSF

0 300 600 900

10
−4

10
−2

10
0

10
2

300 600 900

10
−4

10
−2

10
0

10
2

Wide PSF

0 300 600 900

10
−4

10
−2

10
0

10
2

Plots of singular values σi (colored lines) and coefficients |uT
i b| (black dots) for

the three matrices defined by various PSFs and two different noise levels in
B = Bexact + E. Top row: ‖E‖F = 3 · 10−3; bottom row: ‖E‖F = 3 · 10−1.

It is now evident that for small indices i the quantities uT
i b are indeed dominated

by the component uT
i bexact (which has an overall decreasing behavior), while for

larger indices we have uT
i b ≈ uT

i e ≈ η whose statistical behavior is identical to
that of e. We have thus explained the overall behavior of the plot.

We can also say something about the statistical properties of the regularized
solution xfilt. Assuming again that η2IN is the covariance matrix for the errors e
in the right-hand side, the covariance matrix for the errors in the näive solution
xnaive = A−1b and the filtered solution xfilt = VΦΣ−1UT b are

Cov(xnaive) = η2 A−1A−T = η2 VΣ−2VT = η2
N∑

i=1

1
σ2

i

vi vT
i ,

Cov(xfilt) = η2 VΦ2 Σ−2VT = η2
N∑

i=1

φ2
i

σ2
i

vi vT
i ,

showing that the elements in the latter covariance matrix are much smaller in
magnitude than those in the former.
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Summary

• For TSVD regularization, we choose the truncation parameter k so that
the residual ‖b− Ax‖ is reasonably small but the solution x does not
include components corresponding to small singular values σk+1, . . . , σN .

• Exploit structure in A when computing the TSVD or Tikhonov solutions.

• Practical implementations of filtering methods should avoid possible
division by zero.

• Regularization by means of spectral filtering requires

– Choosing a suitable filter and a corresponding regularized inverse so
that the resolution matrix VΦVT is sufficiently close to the identity
matrix, and

– Finding a suitable balance between the regularization error and the
perturbation error.

• No parameter choice method is perfect, and the choice between the
Discrepancy Principle, GCV, the L-Curve, and other methods is dependent
on what information is available about the problem.
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