1. (3) At what rate does the sequence

\[e_k = 1 + (0.5)^{2^k} \]

converge to 1?

2. (5) Let \(x = Sz + d \), where \(S \) is a given \(n \times n \) matrix and \(d \) is a given \(n \times 1 \) vector.

Suppose \(f \) is a function of \(n \) variables, and define \(\hat{f}(z) = f(x) = f(Sz + d) \).

Write expressions for the gradient and Hessian of \(\hat{f} \) with respect to the variables \(z \), using the gradient and Hessian of the function \(f \). (Hint: compute \(\partial \hat{f}/\partial z_j \) by using the chain rule and the values \(\partial f/\partial x_i \) and \(\partial x_i/\partial z_j \).)

3. Consider the following problem: Find a value of \(\gamma \) so that the solution \(p \) to the linear system

\[(H + \gamma I)p = -g \]

satisfies \(\|p\|_2 = \delta \), where \(\delta > 0 \) is a given value.

Suppose we have factored \(H = U \Lambda U^T \), where \(\Lambda \) is a diagonal matrix with diagonal elements \(\lambda_i \) and \(U \) is orthogonal, so that \(UU^T = U^T U = I \).

3a. (5) Write the solution \(p \) to the linear system in terms of \(g \), \(\gamma \), \(U \), \(u_i \), and \(\lambda_i \), where \(u_i \) is the \(i \)th column of \(U \). (Hint: Remember that scalars like \(\gamma \) commute with matrices.)

3b. (2) Show that, for any vector \(w \), \(\|w\|_2 = \|U^T w\|_2 \).

3b. (5) Use 3b to write an expression for \(\|p\|_2 \) in terms of \(g \), \(\gamma \), \(U \), and \(\lambda_i \).

3c. (5) Find an interval for \(\gamma \) on which \(\|p\|_2 \) is monotonically decreasing. (Hint: Remember that some of the \(\lambda_i \) might be negative.)

3d. (5) Describe how you could use MATLAB’s \texttt{fzero} to find a value of \(\gamma \) for which \(\|p\|_2 = \delta \) (if such a value exists). What initial interval would you give \texttt{zeroin}?

In Homework 2, you will write a program, using this algorithm to solve minimization problems.