AMSC 607 / CMSC 764 Homework 1, Fall 2008 30 points Due September 16, 2pm

1. (3) At what rate does the sequence

$$e_k = 1 + (0.5)^{2^{\kappa}}$$

converge to 1?

2. (5) Let $\boldsymbol{x} = \boldsymbol{S}\boldsymbol{z} + \boldsymbol{d}$, where \boldsymbol{S} is a given $n \times n$ matrix and \boldsymbol{d} is a given $n \times 1$ vector.

Suppose f is a function of n variables, and define $\hat{f}(\mathbf{z}) = f(\mathbf{x}) = f(\mathbf{S}\mathbf{z} + \mathbf{d})$. Write expressions for the gradient and Hessian of \hat{f} with respect to the variables \mathbf{z} , using the gradient and Hessian of the function f. (Hint: compute $\partial \hat{f}/\partial z_j$ by using the chain rule and the values $\partial f/\partial x_i$ and $\partial x_i/\partial z_j$.)

3. Consider the following problem: Find a value of γ so that the solution p to the linear system

$$(\boldsymbol{H} + \gamma \boldsymbol{I})\boldsymbol{p} = -\boldsymbol{g}$$

satisfies $\|\boldsymbol{p}\|_2 = \delta$, where $\delta > 0$ is a given value.

Suppose we have factored $\boldsymbol{H} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}$, where $\boldsymbol{\Lambda}$ is a diagonal matrix with diagonal elements λ_{i} and \boldsymbol{U} is orthogonal, so that $\boldsymbol{U}\boldsymbol{U}^{T} = \boldsymbol{U}^{T}\boldsymbol{U} = \boldsymbol{I}$.

3a. (5) Write the solution p to the linear system in terms of g, γ , U, u_i , and λ_i , where u_i is the *i*th column of U. (Hint: Remember that scalars like γ commute with matrices.)

3b. (2) Show that, for any vector \boldsymbol{w} , $\|\boldsymbol{w}\|_2 = \|\boldsymbol{U}^T \boldsymbol{w}\|_2$.

3b. (5) Use 3b to write an expression for $\|p\|_2$ in terms of g, γ, U , and λ_i .

3c. (5) Find an interval for γ on which $\|\boldsymbol{p}\|_2$ is monotonically decreasing. (Hint: Remember that some of the λ_i might be negative.)

3d. (5) Describe how you could use MATLAB's fzero to find a value of γ for which $\|\boldsymbol{p}\|_2 = \delta$ (if such a value exists). What initial interval would you give zeroin?

In Homework 2, you will write a program, using this algorithm to solve minimization problems.