Write a Matlab program using a feasible direction method to solve linear programming problems

$$\max_{\mathbf{x}} \mathbf{b}^T \mathbf{x}$$

$$\mathbf{A}^T \mathbf{x} \geq \mathbf{c}$$

where \(\mathbf{x} \in \mathbb{R}^n \) and \(\mathbf{c} \in \mathbb{R}^m \) with \(n \leq m \). Assume a constraint qualification.

Write a Matlab function \(\mathbf{x}_{\text{opt}} = \text{lpfeasdir}(\mathbf{A}, \mathbf{b}, \mathbf{c}, \mathbf{x}) \). The parameters to your feasible direction algorithm are \(\mathbf{A}, \mathbf{b}, \mathbf{c}, \) an initial feasible point \(\mathbf{x} \).

- Use \text{qrupdate}, \text{qrinsert}, \text{qrdelete} (instead of the \(\mathbf{B} \) and \(\mathbf{N} \) method in the notes) to update a factorization of the matrix \(\hat{\mathbf{A}} \) corresponding to the currently active constraints.

- At each iteration, \(\hat{\mathbf{A}} \) gains one row, and it may also lose one: if there is no feasible downhill direction, remove the constraint corresponding to the most negative (estimated) Lagrange multiplier.

- The next point is \(\mathbf{x} + \alpha \mathbf{p} \), where \(\mathbf{p} \) is determined from solving the system involving a column of the identity matrix, and \(\alpha \) defines the longest step that is possible without violating any of the constraints. The constraint that we hit becomes the added one.

- Stop when there is no feasible downhill direction.

- You must apply the feasible direction approach to the problem as written above, not to the dual problem.

Find one linear programming problem on which to test your algorithm.

Grading: 30 points total.

- 20 points for the efficient implementation of the algorithm as a bug-free Matlab function, with good documentation for the calling sequence and the algorithm. “Efficient” means not using an order of magnitude more computation than necessary.

- 10 points for the script that tests the algorithm.

Note. Let \(\mathbf{A} \) and \(\mathbf{B} \) be matrices, and let \(\mathbf{c} \) be a vector. Make sure you understand why the statements \(\mathbf{A} *(\mathbf{B} * \mathbf{c}) \) and \(\mathbf{A} \backslash (\mathbf{B} * \mathbf{c}) \) take much less time than \(\mathbf{A} * \mathbf{B} * \mathbf{c} \) and \(\mathbf{A} \backslash \mathbf{B} * \mathbf{c} \), and then use this knowledge in your programming.