8. (20) Write a Matlab program that uses a feasible direction method to solve the linear programming problem

$$\min \limits_{x} \ c^T x$$

$$Ax = b,$$

$$x \geq 0,$$

where \(x, c \in \mathbb{R}^n \) and \(b \in \mathbb{R}^m \) with \(m < n \). Assume a constraint qualification. Also assume that the initial point is a vertex (i.e., exactly \(n \) active constraints), and step from vertex to vertex, as in the simplex method.

Write a Matlab function \(\text{xo} = \text{lpfeasdir}(A,b,c,x) \). The parameters to your feasible direction algorithm are \(A, b, c, \) and an initial feasible point \(x \).

- Use \(\text{qrupdate}, \text{qrinter}, \) and/or \(\text{qrdelete} \) (instead of the \(B \) and \(N \) method in the notes) to update a factorization of the matrix \(A_W \) corresponding to the currently active constraints.
- At each iteration, one row of \(A_W \) is replaced by another.
- The next point is \(x + \alpha p \), where \(p \) is determined from solving the system involving a column of the identity matrix, and \(\alpha \) defines the longest step that is possible without violating any of the constraints. The constraint that we hit becomes the added one.
- Stop when there is no feasible downhill direction.

Test your program on this linear programming problem (Griva, Nash, and Sofer, p.221):

\[
A = \begin{bmatrix}
2 & 4 & 2 & 1 & 0 & 0 & 0 & 0 \\
3 & 5 & 4 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
\end{bmatrix};
\]

\[
b = [50; 80; 20; 20; 20];
\]

\[
c = [-5; 10; 15; 3; 0; 2; 0; 0];
\]

\% x0 is the initial point.

\[
x0 = [\text{zeros}(3,1); b];
\]

You can check your answer using Matlab’s simplex algorithm for linear programming:
options = optimset('largescale','off');
[x,fval,exitflag,output,lambda] = ...
 linprog(c,[],[],A,b,zeros(8,1),inf*ones(8,1),x0,options)

Grading: 20 points for the efficient implementation of the algorithm as a bug-free MATLAB function, with good documentation for the calling sequence and the algorithm. “Efficient” means not using an order of magnitude more computation than necessary.

Notes

• Let A and B be matrices, and let c be a vector. Make sure you understand why the statements $A*(B*c)$ and $A \backslash (B*c)$ take much less time than $A*B*c$ and $A \backslash B * c$, and then use this knowledge in your programming.

• Make sure that each iteration of your algorithm uses only $O(mn + n^2)$ multiplications. This is possible if you compute a QR factorization once, at the beginning of the algorithm, and then, for each iteration, use the updating functions rather than refactoring, or computing an inverse, or solving a linear system involving a general matrix.

• The grader will test your program on a larger problem. See the sample problem generator on the homepage.

• Your program does not need to handle error conditions such as violation of the constraint qualification, infeasibility, etc. This is just an exercise to understand the algorithm. Use a trusted routine such as linprog.m if you ever really need to solve such a problem.