
AMSC 607 / CMSC 764 Homework 6, Fall 2010
Due October 26, before class begins.

———————————————————————————————–

8. (20) Write a Matlab program that uses a feasible direction method to solve
the linear programming problem

min
x

cTx

Ax = b,

x ≥ 0,

where x, c ∈ Rn and b ∈ Rm with m < n. Assume a constraint qualification.
Also assume that the initial point is a vertex (i.e., exactly n active constraints),
and step from vertex to vertex, as in the simplex method.

Write a Matlab function xopt = lpfeasdir(A,b,c,x). The parameters to
your feasible direction algorithm are A, b, c, and an initial feasible point x.

• Use qrupdate, qrinsert, and/or qrdelete (instead of the B and N
method in the notes) to update a factorization of the matrix AW corre-
sponding to the currently active constraints.

• At each iteration, one row of AW is replaced by another.

• The next point is x + αp, where p is determined from solving the system
involving a column of the identity matrix, and α defines the longest step
that is possible without violating any of the constraints. The constraint
that we hit becomes the added one.

• Stop when there is no feasible downhill direction.

Test your program on this linear programming problem (Griva, Nash, and Sofer,
p.221):

A = [2 4 2 1 0 0 0 0
3 5 4 0 1 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1];

b = [50; 80; 20; 20; 20];
c=[-5; 10; 15; 3; 0; 2; 0; 0];
% x0 is the initial point.
x0 = [zeros(3,1);b];

You can check your answer using Matlab’s simplex algorithm for linear pro-
gramming:

1



options = optimset(’largescale’,’off’);
[x,fval,exitflag,output,lamba] = ...

linprog(c,[],[],A,b,zeros(8,1),inf*ones(8,1),x0,options)

Grading: 20 points for the efficient implementation of the algorithm as a bug-free
Matlab function, with good documentation for the calling sequence and the
algorithm. “Efficient” means not using an order of magnitude more computation
than necessary.

Notes

• Let A and B be matrices, and let c be a vector. Make sure you understand
why the statements A*(B*c) and A \ (B*c) take much less time than
A*B*c and A \ B * c, and then use this knowledge in your programming.

• Make sure that each iteration of your algorithm uses only O(mn + n2)
multiplications. This is possible if you compute a QR factorization once,
at the beginning of the algorithm, and then, for each iteration, use the
updating functions rather than refactoring, or computing an inverse, or
solving a linear system involving a general matrix.

• The grader will test your program on a larger problem. See the sample
problem generator on the homepage.

• Your program does not need to handle error conditions such as violation
of the constraint qualification, infeasibility, etc. This is just an exercise
to understand the algorithm. Use a trusted routine such as linprog.m if
you ever really need to solve such a problem.

———————————————————————————————–

2


