
1

October 1999, 2007 Dianne P. O'Leary 1

Some additional topics in

numerical integration

This set of notes gives some information about

-- adaptive integration

-- handling singularities

-- multidimensional integration

-- Matlab’s integration software

October 1999, 2007 Dianne P. O'Leary 2

Adaptive integration

The idea: Often, if we integrate a function, we’ll find that
some intervals are “easy” and some are “hard”.

easy easy hard easy very hard

f(t)

October 1999, 2007 Dianne P. O'Leary 3

Non-Adaptive integration

If we always took equally spaced intervals of length h,
then h would have to be unnecessarily small.

easy easy hard easy very hard

f(t)

October 1999, 2007 Dianne P. O'Leary 4

Adaptive integration

Instead, we would like to use a different value of h on
different subintervals: large on easy ones, small on hard ones.

easy easy hard easy very hard

f(t)

2

October 1999, 2007 Dianne P. O'Leary 5

Adaptive integration

f(t)

Idea: use an initial mesh (black points),
and then a mesh with more points (redand black points).

October 1999, 2007 Dianne P. O'Leary 6

What we get:

f(t)

This gives us two estimates of the integral, Q and Q.

October 1999, 2007 Dianne P. O'Leary 7

Better yet:

f(t)

It also gives us an estimate of the error, Q - Q, in the
less accurate formula Q .

October 1999, 2007 Dianne P. O'Leary 8

Important note

Q and Q can be any of our favorite methods.

Usually, they are either

-- Romberg formulas (perhaps two trapezoidal rules, or
trapezoidal and Simpson).

-- Gauss formulas.

3

October 1999, 2007 Dianne P. O'Leary 9

Are we finished?

f(t)

If the error estimate is less than our tolerance, then we can quit.
Otherwise, we subdivide the interval into two pieces, and repeat
the procedure on each one.

October 1999, 2007 Dianne P. O'Leary 10

Setting the error tolerance

f(t)

Each subinterval gets 1/2 the error tolerance, so if the full
integral estimate needs to be within .001 of the true value, then
Each subestimate needs to be within .0005 of its true value.

October 1999, 2007 Dianne P. O'Leary 11

Upon convergence

Eventually, each subinterval achieves success.
Some use a lot of points, some only a few.

easy easy hard easy very hard

f(t)

October 1999, 2007 Dianne P. O'Leary 12

The final answer

We add up the answers and the error estimates, and that
is the information the user receives.

easy easy hard easy very hard

f(t)

4

October 1999, 2007 Dianne P. O'Leary 13

Recursion

The algorithm has a neat recursive implementation:

[est_integral,est_error] = Adapt(a,b,f,tol)

Apply the basic formula to obtain estimate Q.
Apply the improved formula to obtain estimate Q.
If the error estimate |Q-Q| < tol ,

return [Q, |Q-Q|]
else

[I1, e1] = Adapt(a, (a+b)/2, f, tol/2)
[I2, e2] = Adapt((a+b)/2, b, f, tol/2)
return [I1+I2, e1+e2]

end

Note our
sin here.

October 1999, 2007 Dianne P. O'Leary 14

Banking

We may be doing more work than necessary in that
implementation.

Suppose that the first half interval is easy,
so easy that e1 is much smaller than tol/2.

Then we can bank the extra tolerance, and give
it to the second interval, asking for a less accurate
answer.

The new tolerance would be tol-e1.

October 1999, 2007 Dianne P. O'Leary 15

Adaptive integration with

banking

The algorithm has a neat recursive implementation:

[est_integral,est_error] = Adapt(a,b,f,tol)

Apply the basic formula to obtain estimate Q.
Apply the improved formula to obtain estimate Q.
If the error estimate |Q-Q| < tol ,

return [Q, |Q-Q|]
else

[I1, e1] = Adapt(a, (a+b)/2, f, tol/2)
[I2, e2] = Adapt((a+b)/2, b, f, tol-e1)
return [I1+I2, e1+e2]

end
October 1999, 2007 Dianne P. O'Leary 16

Complication 1:

Confession of a lie

The recursive implementation isn’t really as neat as we claimed.

We just did a lot of work (i.e., function evaluations)
to get Q and Q, but now we throw it all away in
our calls

[I1, e1] = Adapt(a, (a+b)/2, f, tol/2)
[I2, e2] = Adapt((a+b)/2, b, f, tol-e1)

To make this practical, we might want to pass this information
Down so that the information gained from the function evaluations
can be reused.

5

October 1999, 2007 Dianne P. O'Leary 17

Complication 2:

relative error tolerances

I don’t know a simple way to discuss the algorithm if the
user wants a relative error tolerance instead of an absolute one.

In this case, it seems to be unavoidable that we may need
to go back and reconsider intervals that we thought were
finished.

October 1999, 2007 Dianne P. O'Leary 18

Iterative implementation

Because of banking and relative error, the algorithm is usually
implemented iteratively rather than recursively.

We keep a list of the current intervals, initially [a,b].

Until our total error estimate satisfies the tolerance,

We choose one of the longest intervals [c,d] with a big error est.

We get Q and Q for each subinterval
[c,(c+d)/2] and [(c+d)/2,d] and put them on the list,
along with bookkeeping information.

October 1999, 2007 Dianne P. O'Leary 19

Panic button

There is also an error exit built in if
there get to be too many subintervals.

And there is usually a provision to prevent
any subinterval from becoming too short.

October 1999, 2007 Dianne P. O'Leary 20

Fooling adaptive routines

Fact: Given any deterministic adaptive integration routine,
you can construct a function that will fool it.

For example, you can construct a function with integral 1
for which the routine will return an estimated integral of 0,
and a very small error estimate.

6

October 1999, 2007 Dianne P. O'Leary 21

Randomization

To prevent this embarrassment, adaptive routines
usually include some randomization, breaking the
interval [c,d] at (c+d)/2 + a small random number.

There are still functions that fool it, but they are not
so easy to construct!

October 1999, 2007 Dianne P. O'Leary 22

Singularities

October 1999, 2007 Dianne P. O'Leary 23

Singularities

Adaptive routines handle singularities rather well,
but if you know you have one, it is preferable, if possible,
to handle it analytically and send the rest of the problem
to the adaptive routine.

f(t)

Adapt applied here analytic here

October 1999, 2007 Dianne P. O'Leary 24

Multidimensional

integration

In principle, all of our ideas still work.

7

October 1999, 2007 Dianne P. O'Leary 25

Multidimensional

integration

We can:

-- fit multidimensional polynomials p(x1,x2,…, xk) and integrate.

-- fit polynomials p1(x1) p2(x2)… pk (xk) and integrate.
(This is called using a product formula.)

-- we can use multidimensional adaptive methods.

-- we can use our favorite one-dimensional method.
Unquiz: how?

October 1999, 2007 Dianne P. O'Leary 26

But if the number of

dimensions is high…

…these methods become hopelessly expensive.

October 1999, 2007 Dianne P. O'Leary 27

The only practical

algorithms...

…for high dimensional problems are based on statistical
sampling.

October 1999, 2007 Dianne P. O'Leary 28

The simplest of these:

Monte Carlo

Idea:

To estimate the integral of some function f(x),
over some k-dimensional region S,

we generate n points, uniformly distributed in S,
and estimate the integral as

the average function value among the n points

times the area of S.

8

October 1999, 2007 Dianne P. O'Leary 29

Error estimation for

Monte Carlo

The expected value of the estimate is I(f), the true integral.

The standard deviation of the estimate is

area(S) N -1/2 s(f) ,

where s(f) is a constantindependent of the dimension!

If the expected value were normally distributed, this would mean
that 19 times out of 20, the error would be less than

2 area(S) N -1/2 s(f) .

October 1999, 2007 Dianne P. O'Leary 30

Matlab’s integration

algorithms

quad

quad8

quadl

Adaptive use of Simpson’s rule
Useful when function is not very smooth.

Adaptive use of closed Newton-Cotes rules;
Listed as “obsolete”

Adaptive use of “Lobatto” rule –
more precisely:

Gauss (chooses points to minimize the max of
the polynomial in the error function)

Lobatto (uses endpoints)
Kronrod (reuses old points)

Useful on smooth functions – lots of small derivatives.

October 1999, 2007 Dianne P. O'Leary 31

References

Adaptive integration: See the book Moler, published by SIAM, 2006.

Singularities: See Section 3.7 of book by Stoer and Bulirsch.

Monte Carlo integration: The methods are much more
sophisticated than we hinted at here.

A starting place is, “Monte Carlo and quasi-Monte Carlo methods,”
Russel E. Caflisch, Acta Numerica7 (1998) 1-49.

