
Image DeblurringFall 2005Notes on Chapter 6Dianne P. O'Leary2005
1



Regularization by Spetral FilteringWe know already that �ltering is needed when noise is present, sine thesolution xnaive = A�1b is typially too ontaminated by noise to be useful.Now we take a loser look at �ltering.Filtering is also alled regularization beause it an be interpreted asenforing ertain regularity onditions on the solution.The degree of regularization is governed by a regularization parameterwhih should be hosen arefully.
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We fous on two andidate regularization methods� TSVD� Tikhonovand three andidate ways to ompute the regularization parameter� the disrepany priniple,� generalized ross validation,� the L-urve riterion.Referene: Chapter 6 of Deblurring Images.
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Two Important Regularization MethodsReall the equation for our �ltered solutionx�lt = NXi=1 �iuTi b�i vi

We need to hoose the �lter fators �i to ontrol the spetral ontents ofthe deblurred images.
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The spetral oordinate system

x�lt = NXi=1 �iuTi b�i viNote that we have a oordinate system determined by the matrix A:� The data b is expressed in the oordinates uTi b determined by thevetors ui (i = 1; : : : ; N).� The solution x�lt is expressed in oordinates vTi x determined by thevetors vi (i = 1; : : : ; N).This is the spetral oordinate system, sine these vetors are theeigenvetors of ATA and AAT respetively.Our goal is to sale the solution omponent in the diretion vi by the �lterfator �i in order to redue the e�et of error in the omponent uTi b.5



Method 1: The Trunated SVD (TSVD) Method.For this method, we de�ne the �lter fators to be� one for large singular values,� and zero for the rest.More preisely, �i � ( 1; i = 1; : : : ; k0; i = k + 1; : : : ; N:The parameter k is alled the trunation parameter and it determines thenumber of SVD omponents maintained in the regularized solution. Notethat k always satis�es 1 � k � N .This is the method we used in Chapter 1 to improve upon the na��vemethod.
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Method 2: The Tikhonov Method.For this method we de�ne the �lter fators to be�i = �2i�2i + �2 ; i = 1; : : : ; N;where � > 0 is alled the regularization parameter.This hoie of �lter fators yields the solution vetor x� for theminimization problem minx �kb�Axk22 + �2kxk22	 :This hoie keeps kb�Axk2 small, but not so small thatkxk22 = NXi=1 �2i (uTi b)2�2iis too big.Thus, our minimization problem ensures that both the norm of the residualb�Ax� and the norm of the solution x� are somewhat small.7



How does � a�et the Tikhonov solution?
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A�et on omponents for large singular values

Suppose �i � � (whih is the ase for some of the �rst �lter fators).Then, using the Taylor expansion (1+ �)�1 = 1� �+ 12�2+O(�3), we obtain�i = �2i�2i + �2 = 11 + �2=�2i = 1� �2�2i + 12 �4�4i + : : : � 1:
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A�et on omponents for small singular valuesSuppose �i � � (whih is the ase for some of the last �lter fators).Again using the Taylor expansion of (1 + �)�1, we obtain�i = �2i�2i + �2 = �2i�2 11 + �2i =�2 = �2i�2 (1� �2i�2 + 12 �4i�4 + : : :):Thus we an onlude that the Tikhonov �lter fators satisfy

�i = 8>><>>: 1�� ��i�2 +O(� ��i�4); �i � ���i� �2 +O(��i� �4); �i � �:

10



Answer to how � a�ets the Tikhonov solution� �i � 1 when � << �i� �i � �2i =�2 when � � �i.Therefore, � determines the breakpoint at whih the �lter fators hangenature: the point at whih �i � �.
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Relation between TSVD and TikhonovThe parameter � in Tikhonov's method ats in the same way as theparameter k in the TSVD method: it ontrols whih SVD omponents wewant to dampen or �lter.We also see that there is no point in hoosing � outside the interval[�N ; �1℄.
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Implementation Issues
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Implementation of Filtering MethodsIf all of the singular values of A are nonzero, then the inverse solution anbe written as x = A�1b = V��1UTb :Similarly, the spetral �lter solution an be written asx�lt = V���1UTbwhere � is a diagonal matrix onsisting of the �lter fators �i for thepartiular method:� 1's and 0's for TSVD and� �2i =(�2i + �2) for Tikhonov.
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Computational issues inlude:� Exploiting struture in A.� Speifying the regularization parameter.� Avoiding divide-by-zero.
15



Exploiting struture in AReall:� Strutured matries arise in image deblurring problems: e.g., Kronekerproduts, BTTB, et.� The SVD or spetral deomposition of suh matries an be omputedeÆiently.� The (na�ive) inverse solution is also easy.Similarly, the TSVD and Tikhonov solutions an be omputed eÆiently.
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A rewriteOld equation: x�lt = V���1UTbNew equation: x�lt = V��1�ltUTbwhere ��1�lt = ���1.Thus, given the �lter fators, it is simple to to ompute x�lt.
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Filtered solutions for strutured matries� Given:P = PSFenter = [row, ol℄ = enter of PSFB = blurred imageBC = string denoting boundary ondition (e.g., 'zero')Phi = �lter fators� For periodi boundary onditions, use:S = fft2( irshift(P, 1 - enter) );Sfilt = Phi ./ S;Xfilt = real( ifft2( fft2(B) .* Sfilt ) );
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� For reexive boundary onditions, with strongly symmetri PSF, use:e1 = zeros(size(P));, e1(1,1) = 1;S = dt2( dtshift(P, enter) ) ./ dt2(e1);Sfilt = Phi ./ S;Xfilt = real( idt2( dt2(B) .* Sfilt ) );� For a separable PSF, use:[Ar, A℄ = kronDeomp(PSF, enter, BC);[U, S, V℄ = svd(A);[Ur, Sr, Vr℄ = svd(Ar);S = diag(S) * diag(Sr)';Sfilt = Phi ./ S;Xfilt = V * ( (U' * B * Ur) .* Sfilt ) * Vr';
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Speifying the regularization parameter� The TSVD trunation index should statisfy 1 � k � N .� The Tikhonov parameter should satisfy �N � � � �1.Later we disuss automati methods for estimating good hoies for theseparameters, but for now we an try to hoose them experimentally.
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Speifying the TSVD parameterIn the ase of TSVD, we might speify a tolerane below whih all singular(spetral) values are trunated. In this ase the �lter fators an beomputed very easily as:Phi = ( abs(S) >= tol );By experimenting with various values of tol, and displaying the omputed�lter solution, Xfilt, we an see the e�ets of regularization.
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Speifying the Tikhonov parameterIn the ase of Tikhonov regularization, we ould speify a value for �, andompute the �lter fators from the singular (spetral) values as follows:Phi = abs(S).^2 ./ (abs(S).^2 + lambda^2);Note that the use of abs is neessary in the ase when FFTs are used.Again, we an experiment with various values of lambda and display the�ltered solution to see the e�ets of regularization.
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Avoiding divide-by-zeroIn omputing the quantitySfilt = Phi ./ Swe will ommit divide-by-zero if any singular (spetral) value is zero.This will ause some values of Sfilt to be set to Inf or to NaN.To avoid this, perform the omputation only for nonzero values of S, andset all other Sfilt values to 0.idx = (S ~= 0);Sfilt = zeros(size(Phi));Sfilt(idx) = Phi(idx) ./ S(idx);
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Regularization Errors and Perturbation Errors
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Regularization Errors and Perturbation ErrorsReall: x�lt an always be written in the SVD framework asx�lt = V���1UTb;where � is a diagonal matrix onsisting of the spetral �lters �i for thepartiular method� 0s and 1s for TSVD,� �2i =(�2i + �2) for Tikhonov,� et.
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Equipped with this formulation, we an now easily separate the twodi�erent types of errors in a regularized solutionx�lt = V���1UTb= V���1UTbexat +V���1UTe= V���1UTAxexat +V���1UTe= V�VTxexat +V���1UTeand therefore the error in x�lt is given byxexat � x�lt = (IN �V�VT )xexat �V���1UTe:
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Two ontributions to the errors:� Regularization error (IN �V�VT )xexat, aused by using a regularizedinverse V���1UT (instead of the inverse A�1 = V��1UT ) in orderto obtain the �ltering.� Perturbation error V���1UTe, whih onsists of the inverted and�ltered noise.
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Changing the regularization parameter hanges the size of these errors.�When too many �lter fators �i are lose to one, then{ the regularization error is small,{ the perturbation error is large.The solution is undersmoothed.�When too few �lter fators are lose to one, then{ the regularization error is large,{ the perturbation error is small.The solution is oversmoothed.A proper hoie of the regularization parameter balanes the two types oferrors.
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ExampleConsider TSVD as the regularization method.We see in the next plot that the two types of errors are balaned fork � 200:
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The Resolution matrixThe matrix V�VT is alled the resolution matrix for the regularizedsolution; it desribes the mapping between the exat solution and the�ltered omponent in x�lt.� The loser the resolution matrix is to the identity, the smaller theregularization error, but the inverted noise will dominate.� On the other hand, when most of the �lter fators are small (or zero),then the inverted noise is heavily damped (the perturbation error issmall) { but the resolution matrix is far from the identity and theregularization error is large.
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The importane of the Disrete Piard ConditionThe reason why we are able to ompute regularized approximations to theexat solution, in spite of the large ondition number, is that spetral�ltering suppresses muh of the inverted noise while { at the same time {keeping the regularization error small.This is possible beause the image deblurring problem satis�es the disretePiard ondition { the exat right-hand side exhibits deaying expansionoeÆients when expressed in the spetral basis.As a onsequene, the noise a�ets primarily the high-frequenyomponents whih are assoiated with the smaller singular values, andwhih are damped by the spetral �ltering method.What is left in the regularized solution is primarily the low-frequeny SVDomponents assoiated with the larger singular values, and theseomponents are dominated by the ontributions for the exat right-handside. 32



Consider the norm of the regularization error:xexat = A�1bexat = V��1UTbexat, sok(IN �V�VT )xexatk2 = k(IN ��)VTxexatk2= k(IN ��)��1UTbexatk2= �PNi=1 �(1� �i)uTi b=�i�2�1=2 :� Due to the disrete Piard ondition, the oeÆients juTi b=�ij deay(on average).� Sine the �rst �lter fators �i (for i = 1; 2; : : :) are lose to one, thefators (1� �i) dampen the ontributions from the larger oeÆientsuTi b=�i.�Moreover, the small �lter fators �i (for i = N;N � 1; : : :) orrespondto fators (1� �i) lose to one, whih are multiplied by smalloeÆients uTi b=�i.� Hene we onlude that if the �lters are suitably hosen, then the normof the regularization error annot be large.33



Parameter Choie MethodsWe desribe three important parameter hoie methods:� the disrepany priniple,� generalized ross-validation,� the L-urve riterion.
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E�ets of parameter hoie� The spetral �ltering solutionkx�ltk22 = NXi=1 ��iuTi b�i �2

� The norm of the residualkb�Ax�ltk22 = NXi=1 �(1� �i)uTi b�2 :
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� TSVD method:{ the norm of the solution is a monotonially nondereasing funtion ofk,{ the residual norm is monotonially noninreasing.� For the Tikhonov method,{ the norm of the solution x is a monotonially noninreasing funtionof �{ the residual norm is monotonially nondereasing.
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The Disrepany Priniple.Required information: a good estimate of Æ, the expeted value of kek2(the error in the observations b).This is powerful information, but often unreliable.Idea: The regularization parameter should be hosen so that the norm ofthe residual is approximately Æ.kb�Ax�ltk2 = �Æ;where � > 1 is some predetermined real number.As Æ ! 0, the �ltered solution satis�es x�lt ! xexat.How to ompute the solution: Systematially try di�erent values of k or �to satisfy the equation.Cost: Given the SVD, the �lter fators and the vetor UTb, the ost is 2Nmultipliations and additions for eah trial to ompute the residual norm.37



Generalized Cross-Validation (GCV).Required information: In onstrast to the disrepany priniple, theparameter hoie in GCV does not depend on a priori knowledge about thenoise variane.Idea: If we omit a data value, then a good value of the parameter shouldbe able to predit the missing data point well.How to ompute the solution: Determine the parameter � that minimizesthe GCV funtionalG(�) = k(IN �AV���1UT )bk22(trae(IN �AV���1UT ))2;where� � is the Tikhonov parameter or, abusing notation, � = 1=k where k isthe TSVD uto�.�U���1VT is the matrix that maps the right hand side b onto theregularized solution x�. 38



Cost:� The numerator is just kb�Ax�ltk22, for whih we already have aformula.�We evaluate the denominator by noting that the trae of a matrix is thesum of its main diagonal elements, and the trae is invariant underorthogonal transformation, sotrae(IN �AV���1UT ) = trae(U(IN ��)UT )= trae(IN ��)= N �PNi=1�i :In partiular, for the TSVD method we haveG(k) = kb�Axkk22=(N � k)2.� Given the SVD, the �lters and UTb we an therefore ompute G(�) in2N multipliations and 3N additions.
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The L-Curve Criterion.Required information: None.Idea: The L-urve is a log-log plot of the norm of the regularized solutionversus the orresponding residual norm for eah of a set of regularizationparameter values.
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often is in the shape of the letter L, from whih it draws its name. Thelog-log sale emphasizes the L shape.Intuitively, the best regularization parameter should lie at the orner of theL, sine� for values higher than this, the residual inreases rapidly while the thenorm of the solution dereases only slowly,� for values smaller than this, the norm of the solution inreases rapidlywithout muh derease in residual.Hene, we expet a solution near the orner to balane the regularizationand perturbation errors.How to ompute the solution: In pratie, only a few points on the L-urveneed to be omputed, and the orner is loated by estimating the point ofmaximum urvature.Cost: Computing a point on the L-urve osts only 3N multipliations andadditions and N divisions. 42



Whih Choie Is Best?Choosing an appropriate regularization parameter is very diÆult.Every parameter hoie method, inluding the three we disussed, hassevere aws:� either they require more information than is usually available,� or they fail to onverge to the true solution as the error norm goes tozero
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Spei� aws� The Disrepany Priniple is onvergent as the noise goes to zero, but itrelies on information that is often unavailable or erroneous. Even with aorret estimate of the variane, the solutions tend to be over-smoothed.� For GCV, the solution estimates fail to onverge to the true solution asthe error norm goes to zero.� Another noted diÆulty with GCV is that the graph for G an be veryat near the minimizer, so that numerial methods have diÆulty indetermining a good value of �.� The L-Curve Criterion is usually more tratable numerially, but itslimiting properties are far from ideal. The solution estimates fail toonverge to the true solution as N !1 or as the error norm goes tozero.

44



Implementation of GCV(Similar details for the L-urve will be given in a later leture by PerChristian.)We want to minimizeG(�) = k(IN �AV���1UT )bk22(trae(IN �AV���1UT ))2;so we need to evaluate it eÆiently.Spei�ally, in the ase we are using the SVD, we obtainG(�) = jj(IN �AV���1UT )bjj22trae(IN �AV���1UT ) = jj(IN ��)UTbjj22trae(IN ��) :A similar simpli�ation an be done for spetral deompositions.
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Consider now spei� regularization methods:
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�GCV for TSVD.
G(k) =

NXi=k+1 ^b2i(N � k)2where ^b = UTb. Note that this is a disrete funtion. The trunationindex is found by evaluating G(k) for k = 1; 2; : : : ; N � 1, and �ndingthe index at whih G(k) attains its minimum.
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�GCV for Tikhonov.
G(�) =

NXi=1  ^bi�2i + �2!2
 NXi=1 1�2i + �2!2

where ^b = UTb. To �nd the minimum of this ontinuous funtion wean use Matlab's built-in routine fminbnd. For example, if weimplement the GCV funtion as:funtion G = GCV(lambda, bhat, s)t = 1 ./ (s.^2 + lambda^2);G = sum((bhat .* t).^2)/(sum(t)^2);end
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Then the "optimal" � an be found using:lambda = fminbnd(�GCV,min(s),max(s),[℄,bhat,s);where s=diag(S) and bhat= UTb.If the spetral deomposition is used instead of the SVD, the values in Sand bhat may be omplex, and so absolute values must be inluded withthe squaring operations.See gv tik and gv tsvd for details on exploiting matrix struture inthese omputations.
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Statistial Aspets
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A few more details on the statistis of the errorConsider the SVD analysis of the noise and the inverted noise.We �rst note that the oeÆients uTi b in the spetral expansion are theelements of the vetor UTb = UTbexat +UTe:Assume that the elements of the vetor e are statistially independent,with zero mean and idential standard deviation.Then the expeted value of e is the zero vetor, while its ovariane matrixis a saled identity matrix,E(e) = 0; Cov(e) = E(e eT ) = �2IN ;where � > 0 is the standard deviation.Then it follows that the expeted value of the vetor UTe is also the zerovetor, E(UTe) = 0, and that the ovariane matrix for UTe is given byCov(UTe) = UTCov(e)U = �2UTU = �2IN :51



Hene the oeÆients uTi e behave, statistially, like the elements of thenoise vetor e.The expeted value of (uTi b)2 isE((uTi b)2) = E((uTi bexat + uTi e)2)= E((uTi bexat)2 + 2uTi bexatuTi e + (uTi e)2)= (uTi bexat)2 + �2(beause E(uTi e) = 0), andE(juTi bj) �qE((uTi b)2) =q(uTi bexat)2 + �2:We onlude that for any index i where juTi bexatj is somewhat larger than� we have uTi b � uTi bexat, while E(juTi bj) � � when juTi bexatj is smallerthan �.
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It is now evident that for small indies i the quantities uTi b are indeeddominated by the omponent uTi bexat (whih has an overall dereasingbehavior), while for larger indies we have uTi b � uTi e � � whosestatistial behavior is idential to that of e. We have thus explained theoverall behavior of the plot.
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We an also say something about the statistial properties of theregularized solution x�lt. Assuming again that �2IN is the ovarianematrix for the errors e in the right-hand side, the ovariane matrix for theerrors in the na�ive solution xnaive = A�1b and the �ltered solutionx�lt = V���1UTb areCov(xnaive) = �2A�1A�T = �2V��2VT = �2 NXi=1 1�2i vi vTi ;Cov(x�lt) = �2V�2��2VT = �2 NXi=1 �2i�2i vi vTi ;showing that the elements in the latter ovariane matrix are muh smallerin magnitude than those in the former.
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Summary� For TSVD regularization, we hoose the trunation parameter k so thatthe residual kb�Axk is reasonably small but the solution x does notinlude omponents orresponding to small singular values�k+1; : : : ; �N .� Exploit struture in A when omputing the TSVD or Tikhonovsolutions.� Pratial implementations of �ltering methods should avoid possibledivision by zero.� Regularization by means of spetral �ltering requires{ Choosing a suitable �lter and a orresponding regularized inverse sothat the resolution matrix V�VT is suÆiently lose to the identitymatrix, and{ Finding a suitable balane between the regularization error and theperturbation error. 56



� No parameter hoie method is perfet, and the hoie between theDisrepany Priniple, GCV, the L-Curve, and other methods isdependent on what information is available about the problem.
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