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Regularization by Spe
tral FilteringWe know already that �ltering is needed when noise is present, sin
e thesolution xnaive = A�1b is typi
ally too 
ontaminated by noise to be useful.Now we take a 
loser look at �ltering.Filtering is also 
alled regularization be
ause it 
an be interpreted asenfor
ing 
ertain regularity 
onditions on the solution.The degree of regularization is governed by a regularization parameterwhi
h should be 
hosen 
arefully.
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We fo
us on two 
andidate regularization methods� TSVD� Tikhonovand three 
andidate ways to 
ompute the regularization parameter� the dis
repan
y prin
iple,� generalized 
ross validation,� the L-
urve 
riterion.Referen
e: Chapter 6 of Deblurring Images.
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Two Important Regularization MethodsRe
all the equation for our �ltered solutionx�lt = NXi=1 �iuTi b�i vi

We need to 
hoose the �lter fa
tors �i to 
ontrol the spe
tral 
ontents ofthe deblurred images.
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The spe
tral 
oordinate system

x�lt = NXi=1 �iuTi b�i viNote that we have a 
oordinate system determined by the matrix A:� The data b is expressed in the 
oordinates uTi b determined by theve
tors ui (i = 1; : : : ; N).� The solution x�lt is expressed in 
oordinates vTi x determined by theve
tors vi (i = 1; : : : ; N).This is the spe
tral 
oordinate system, sin
e these ve
tors are theeigenve
tors of ATA and AAT respe
tively.Our goal is to s
ale the solution 
omponent in the dire
tion vi by the �lterfa
tor �i in order to redu
e the e�e
t of error in the 
omponent uTi b.5



Method 1: The Trun
ated SVD (TSVD) Method.For this method, we de�ne the �lter fa
tors to be� one for large singular values,� and zero for the rest.More pre
isely, �i � ( 1; i = 1; : : : ; k0; i = k + 1; : : : ; N:The parameter k is 
alled the trun
ation parameter and it determines thenumber of SVD 
omponents maintained in the regularized solution. Notethat k always satis�es 1 � k � N .This is the method we used in Chapter 1 to improve upon the na��vemethod.
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Method 2: The Tikhonov Method.For this method we de�ne the �lter fa
tors to be�i = �2i�2i + �2 ; i = 1; : : : ; N;where � > 0 is 
alled the regularization parameter.This 
hoi
e of �lter fa
tors yields the solution ve
tor x� for theminimization problem minx �kb�Axk22 + �2kxk22	 :This 
hoi
e keeps kb�Axk2 small, but not so small thatkxk22 = NXi=1 �2i (uTi b)2�2iis too big.Thus, our minimization problem ensures that both the norm of the residualb�Ax� and the norm of the solution x� are somewhat small.7



How does � a�e
t the Tikhonov solution?
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A�e
t on 
omponents for large singular values

Suppose �i � � (whi
h is the 
ase for some of the �rst �lter fa
tors).Then, using the Taylor expansion (1+ �)�1 = 1� �+ 12�2+O(�3), we obtain�i = �2i�2i + �2 = 11 + �2=�2i = 1� �2�2i + 12 �4�4i + : : : � 1:
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A�e
t on 
omponents for small singular valuesSuppose �i � � (whi
h is the 
ase for some of the last �lter fa
tors).Again using the Taylor expansion of (1 + �)�1, we obtain�i = �2i�2i + �2 = �2i�2 11 + �2i =�2 = �2i�2 (1� �2i�2 + 12 �4i�4 + : : :):Thus we 
an 
on
lude that the Tikhonov �lter fa
tors satisfy

�i = 8>><>>: 1�� ��i�2 +O(� ��i�4); �i � ���i� �2 +O(��i� �4); �i � �:
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Answer to how � a�e
ts the Tikhonov solution� �i � 1 when � << �i� �i � �2i =�2 when � � �i.Therefore, � determines the breakpoint at whi
h the �lter fa
tors 
hangenature: the point at whi
h �i � �.
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Relation between TSVD and TikhonovThe parameter � in Tikhonov's method a
ts in the same way as theparameter k in the TSVD method: it 
ontrols whi
h SVD 
omponents wewant to dampen or �lter.We also see that there is no point in 
hoosing � outside the interval[�N ; �1℄.
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Implementation Issues
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Implementation of Filtering MethodsIf all of the singular values of A are nonzero, then the inverse solution 
anbe written as x = A�1b = V��1UTb :Similarly, the spe
tral �lter solution 
an be written asx�lt = V���1UTbwhere � is a diagonal matrix 
onsisting of the �lter fa
tors �i for theparti
ular method:� 1's and 0's for TSVD and� �2i =(�2i + �2) for Tikhonov.
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Computational issues in
lude:� Exploiting stru
ture in A.� Spe
ifying the regularization parameter.� Avoiding divide-by-zero.
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Exploiting stru
ture in ARe
all:� Stru
tured matri
es arise in image deblurring problems: e.g., Krone
kerprodu
ts, BTTB, et
.� The SVD or spe
tral de
omposition of su
h matri
es 
an be 
omputedeÆ
iently.� The (na�ive) inverse solution is also easy.Similarly, the TSVD and Tikhonov solutions 
an be 
omputed eÆ
iently.
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A rewriteOld equation: x�lt = V���1UTbNew equation: x�lt = V��1�ltUTbwhere ��1�lt = ���1.Thus, given the �lter fa
tors, it is simple to to 
ompute x�lt.
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Filtered solutions for stru
tured matri
es� Given:P = PSF
enter = [row, 
ol℄ = 
enter of PSFB = blurred imageBC = string denoting boundary 
ondition (e.g., 'zero')Phi = �lter fa
tors� For periodi
 boundary 
onditions, use:S = fft2( 
ir
shift(P, 1 - 
enter) );Sfilt = Phi ./ S;Xfilt = real( ifft2( fft2(B) .* Sfilt ) );
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� For re
exive boundary 
onditions, with strongly symmetri
 PSF, use:e1 = zeros(size(P));, e1(1,1) = 1;S = d
t2( d
tshift(P, 
enter) ) ./ d
t2(e1);Sfilt = Phi ./ S;Xfilt = real( id
t2( d
t2(B) .* Sfilt ) );� For a separable PSF, use:[Ar, A
℄ = kronDe
omp(PSF, 
enter, BC);[U
, S
, V
℄ = svd(A
);[Ur, Sr, Vr℄ = svd(Ar);S = diag(S
) * diag(Sr)';Sfilt = Phi ./ S;Xfilt = V
 * ( (U
' * B * Ur) .* Sfilt ) * Vr';
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Spe
ifying the regularization parameter� The TSVD trun
ation index should statisfy 1 � k � N .� The Tikhonov parameter should satisfy �N � � � �1.Later we dis
uss automati
 methods for estimating good 
hoi
es for theseparameters, but for now we 
an try to 
hoose them experimentally.
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Spe
ifying the TSVD parameterIn the 
ase of TSVD, we might spe
ify a toleran
e below whi
h all singular(spe
tral) values are trun
ated. In this 
ase the �lter fa
tors 
an be
omputed very easily as:Phi = ( abs(S) >= tol );By experimenting with various values of tol, and displaying the 
omputed�lter solution, Xfilt, we 
an see the e�e
ts of regularization.
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Spe
ifying the Tikhonov parameterIn the 
ase of Tikhonov regularization, we 
ould spe
ify a value for �, and
ompute the �lter fa
tors from the singular (spe
tral) values as follows:Phi = abs(S).^2 ./ (abs(S).^2 + lambda^2);Note that the use of abs is ne
essary in the 
ase when FFTs are used.Again, we 
an experiment with various values of lambda and display the�ltered solution to see the e�e
ts of regularization.
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Avoiding divide-by-zeroIn 
omputing the quantitySfilt = Phi ./ Swe will 
ommit divide-by-zero if any singular (spe
tral) value is zero.This will 
ause some values of Sfilt to be set to Inf or to NaN.To avoid this, perform the 
omputation only for nonzero values of S, andset all other Sfilt values to 0.idx = (S ~= 0);Sfilt = zeros(size(Phi));Sfilt(idx) = Phi(idx) ./ S(idx);
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Regularization Errors and Perturbation Errors
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Regularization Errors and Perturbation ErrorsRe
all: x�lt 
an always be written in the SVD framework asx�lt = V���1UTb;where � is a diagonal matrix 
onsisting of the spe
tral �lters �i for theparti
ular method� 0s and 1s for TSVD,� �2i =(�2i + �2) for Tikhonov,� et
.
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Equipped with this formulation, we 
an now easily separate the twodi�erent types of errors in a regularized solutionx�lt = V���1UTb= V���1UTbexa
t +V���1UTe= V���1UTAxexa
t +V���1UTe= V�VTxexa
t +V���1UTeand therefore the error in x�lt is given byxexa
t � x�lt = (IN �V�VT )xexa
t �V���1UTe:
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Two 
ontributions to the errors:� Regularization error (IN �V�VT )xexa
t, 
aused by using a regularizedinverse V���1UT (instead of the inverse A�1 = V��1UT ) in orderto obtain the �ltering.� Perturbation error V���1UTe, whi
h 
onsists of the inverted and�ltered noise.
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Changing the regularization parameter 
hanges the size of these errors.�When too many �lter fa
tors �i are 
lose to one, then{ the regularization error is small,{ the perturbation error is large.The solution is undersmoothed.�When too few �lter fa
tors are 
lose to one, then{ the regularization error is large,{ the perturbation error is small.The solution is oversmoothed.A proper 
hoi
e of the regularization parameter balan
es the two types oferrors.
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ExampleConsider TSVD as the regularization method.We see in the next plot that the two types of errors are balan
ed fork � 200:

29



0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

10
1

Perturbation error
Regularization error

The 2-norms of the regularization error (IN �V�VT )xexa
t and theperturbation error V���1UTe versus the trun
ation parameter k for theTSVD method.

30



The Resolution matrixThe matrix V�VT is 
alled the resolution matrix for the regularizedsolution; it des
ribes the mapping between the exa
t solution and the�ltered 
omponent in x�lt.� The 
loser the resolution matrix is to the identity, the smaller theregularization error, but the inverted noise will dominate.� On the other hand, when most of the �lter fa
tors are small (or zero),then the inverted noise is heavily damped (the perturbation error issmall) { but the resolution matrix is far from the identity and theregularization error is large.
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The importan
e of the Dis
rete Pi
ard ConditionThe reason why we are able to 
ompute regularized approximations to theexa
t solution, in spite of the large 
ondition number, is that spe
tral�ltering suppresses mu
h of the inverted noise while { at the same time {keeping the regularization error small.This is possible be
ause the image deblurring problem satis�es the dis
retePi
ard 
ondition { the exa
t right-hand side exhibits de
aying expansion
oeÆ
ients when expressed in the spe
tral basis.As a 
onsequen
e, the noise a�e
ts primarily the high-frequen
y
omponents whi
h are asso
iated with the smaller singular values, andwhi
h are damped by the spe
tral �ltering method.What is left in the regularized solution is primarily the low-frequen
y SVD
omponents asso
iated with the larger singular values, and these
omponents are dominated by the 
ontributions for the exa
t right-handside. 32



Consider the norm of the regularization error:xexa
t = A�1bexa
t = V��1UTbexa
t, sok(IN �V�VT )xexa
tk2 = k(IN ��)VTxexa
tk2= k(IN ��)��1UTbexa
tk2= �PNi=1 �(1� �i)uTi b=�i�2�1=2 :� Due to the dis
rete Pi
ard 
ondition, the 
oeÆ
ients juTi b=�ij de
ay(on average).� Sin
e the �rst �lter fa
tors �i (for i = 1; 2; : : :) are 
lose to one, thefa
tors (1� �i) dampen the 
ontributions from the larger 
oeÆ
ientsuTi b=�i.�Moreover, the small �lter fa
tors �i (for i = N;N � 1; : : :) 
orrespondto fa
tors (1� �i) 
lose to one, whi
h are multiplied by small
oeÆ
ients uTi b=�i.� Hen
e we 
on
lude that if the �lters are suitably 
hosen, then the normof the regularization error 
annot be large.33



Parameter Choi
e MethodsWe des
ribe three important parameter 
hoi
e methods:� the dis
repan
y prin
iple,� generalized 
ross-validation,� the L-
urve 
riterion.
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E�e
ts of parameter 
hoi
e� The spe
tral �ltering solutionkx�ltk22 = NXi=1 ��iuTi b�i �2

� The norm of the residualkb�Ax�ltk22 = NXi=1 �(1� �i)uTi b�2 :
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� TSVD method:{ the norm of the solution is a monotoni
ally nonde
reasing fun
tion ofk,{ the residual norm is monotoni
ally nonin
reasing.� For the Tikhonov method,{ the norm of the solution x is a monotoni
ally nonin
reasing fun
tionof �{ the residual norm is monotoni
ally nonde
reasing.
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The Dis
repan
y Prin
iple.Required information: a good estimate of Æ, the expe
ted value of kek2(the error in the observations b).This is powerful information, but often unreliable.Idea: The regularization parameter should be 
hosen so that the norm ofthe residual is approximately Æ.kb�Ax�ltk2 = �Æ;where � > 1 is some predetermined real number.As Æ ! 0, the �ltered solution satis�es x�lt ! xexa
t.How to 
ompute the solution: Systemati
ally try di�erent values of k or �to satisfy the equation.Cost: Given the SVD, the �lter fa
tors and the ve
tor UTb, the 
ost is 2Nmultipli
ations and additions for ea
h trial to 
ompute the residual norm.37



Generalized Cross-Validation (GCV).Required information: In 
onstrast to the dis
repan
y prin
iple, theparameter 
hoi
e in GCV does not depend on a priori knowledge about thenoise varian
e.Idea: If we omit a data value, then a good value of the parameter shouldbe able to predi
t the missing data point well.How to 
ompute the solution: Determine the parameter � that minimizesthe GCV fun
tionalG(�) = k(IN �AV���1UT )bk22(tra
e(IN �AV���1UT ))2;where� � is the Tikhonov parameter or, abusing notation, � = 1=k where k isthe TSVD 
uto�.�U���1VT is the matrix that maps the right hand side b onto theregularized solution x�. 38



Cost:� The numerator is just kb�Ax�ltk22, for whi
h we already have aformula.�We evaluate the denominator by noting that the tra
e of a matrix is thesum of its main diagonal elements, and the tra
e is invariant underorthogonal transformation, sotra
e(IN �AV���1UT ) = tra
e(U(IN ��)UT )= tra
e(IN ��)= N �PNi=1�i :In parti
ular, for the TSVD method we haveG(k) = kb�Axkk22=(N � k)2.� Given the SVD, the �lters and UTb we 
an therefore 
ompute G(�) in2N multipli
ations and 3N additions.
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The L-Curve Criterion.Required information: None.Idea: The L-
urve is a log-log plot of the norm of the regularized solutionversus the 
orresponding residual norm for ea
h of a set of regularizationparameter values.
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often is in the shape of the letter L, from whi
h it draws its name. Thelog-log s
ale emphasizes the L shape.Intuitively, the best regularization parameter should lie at the 
orner of theL, sin
e� for values higher than this, the residual in
reases rapidly while the thenorm of the solution de
reases only slowly,� for values smaller than this, the norm of the solution in
reases rapidlywithout mu
h de
rease in residual.Hen
e, we expe
t a solution near the 
orner to balan
e the regularizationand perturbation errors.How to 
ompute the solution: In pra
ti
e, only a few points on the L-
urveneed to be 
omputed, and the 
orner is lo
ated by estimating the point ofmaximum 
urvature.Cost: Computing a point on the L-
urve 
osts only 3N multipli
ations andadditions and N divisions. 42



Whi
h Choi
e Is Best?Choosing an appropriate regularization parameter is very diÆ
ult.Every parameter 
hoi
e method, in
luding the three we dis
ussed, hassevere 
aws:� either they require more information than is usually available,� or they fail to 
onverge to the true solution as the error norm goes tozero
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Spe
i�
 
aws� The Dis
repan
y Prin
iple is 
onvergent as the noise goes to zero, but itrelies on information that is often unavailable or erroneous. Even with a
orre
t estimate of the varian
e, the solutions tend to be over-smoothed.� For GCV, the solution estimates fail to 
onverge to the true solution asthe error norm goes to zero.� Another noted diÆ
ulty with GCV is that the graph for G 
an be very
at near the minimizer, so that numeri
al methods have diÆ
ulty indetermining a good value of �.� The L-Curve Criterion is usually more tra
table numeri
ally, but itslimiting properties are far from ideal. The solution estimates fail to
onverge to the true solution as N !1 or as the error norm goes tozero.
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Implementation of GCV(Similar details for the L-
urve will be given in a later le
ture by PerChristian.)We want to minimizeG(�) = k(IN �AV���1UT )bk22(tra
e(IN �AV���1UT ))2;so we need to evaluate it eÆ
iently.Spe
i�
ally, in the 
ase we are using the SVD, we obtainG(�) = jj(IN �AV���1UT )bjj22tra
e(IN �AV���1UT ) = jj(IN ��)UTbjj22tra
e(IN ��) :A similar simpli�
ation 
an be done for spe
tral de
ompositions.
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Consider now spe
i�
 regularization methods:
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�GCV for TSVD.
G(k) =

NXi=k+1 ^b2i(N � k)2where ^b = UTb. Note that this is a dis
rete fun
tion. The trun
ationindex is found by evaluating G(k) for k = 1; 2; : : : ; N � 1, and �ndingthe index at whi
h G(k) attains its minimum.
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�GCV for Tikhonov.
G(�) =

NXi=1  ^bi�2i + �2!2
 NXi=1 1�2i + �2!2

where ^b = UTb. To �nd the minimum of this 
ontinuous fun
tion we
an use Matlab's built-in routine fminbnd. For example, if weimplement the GCV fun
tion as:fun
tion G = GCV(lambda, bhat, s)t = 1 ./ (s.^2 + lambda^2);G = sum((bhat .* t).^2)/(sum(t)^2);end
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Then the "optimal" � 
an be found using:lambda = fminbnd(�GCV,min(s),max(s),[℄,bhat,s);where s=diag(S) and bhat= UTb.If the spe
tral de
omposition is used instead of the SVD, the values in Sand bhat may be 
omplex, and so absolute values must be in
luded withthe squaring operations.See g
v tik and g
v tsvd for details on exploiting matrix stru
ture inthese 
omputations.
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Statisti
al Aspe
ts
50



A few more details on the statisti
s of the errorConsider the SVD analysis of the noise and the inverted noise.We �rst note that the 
oeÆ
ients uTi b in the spe
tral expansion are theelements of the ve
tor UTb = UTbexa
t +UTe:Assume that the elements of the ve
tor e are statisti
ally independent,with zero mean and identi
al standard deviation.Then the expe
ted value of e is the zero ve
tor, while its 
ovarian
e matrixis a s
aled identity matrix,E(e) = 0; Cov(e) = E(e eT ) = �2IN ;where � > 0 is the standard deviation.Then it follows that the expe
ted value of the ve
tor UTe is also the zerove
tor, E(UTe) = 0, and that the 
ovarian
e matrix for UTe is given byCov(UTe) = UTCov(e)U = �2UTU = �2IN :51



Hen
e the 
oeÆ
ients uTi e behave, statisti
ally, like the elements of thenoise ve
tor e.The expe
ted value of (uTi b)2 isE((uTi b)2) = E((uTi bexa
t + uTi e)2)= E((uTi bexa
t)2 + 2uTi bexa
tuTi e + (uTi e)2)= (uTi bexa
t)2 + �2(be
ause E(uTi e) = 0), andE(juTi bj) �qE((uTi b)2) =q(uTi bexa
t)2 + �2:We 
on
lude that for any index i where juTi bexa
tj is somewhat larger than� we have uTi b � uTi bexa
t, while E(juTi bj) � � when juTi bexa
tj is smallerthan �.
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It is now evident that for small indi
es i the quantities uTi b are indeeddominated by the 
omponent uTi bexa
t (whi
h has an overall de
reasingbehavior), while for larger indi
es we have uTi b � uTi e � � whosestatisti
al behavior is identi
al to that of e. We have thus explained theoverall behavior of the plot.
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We 
an also say something about the statisti
al properties of theregularized solution x�lt. Assuming again that �2IN is the 
ovarian
ematrix for the errors e in the right-hand side, the 
ovarian
e matrix for theerrors in the na�ive solution xnaive = A�1b and the �ltered solutionx�lt = V���1UTb areCov(xnaive) = �2A�1A�T = �2V��2VT = �2 NXi=1 1�2i vi vTi ;Cov(x�lt) = �2V�2��2VT = �2 NXi=1 �2i�2i vi vTi ;showing that the elements in the latter 
ovarian
e matrix are mu
h smallerin magnitude than those in the former.
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Summary� For TSVD regularization, we 
hoose the trun
ation parameter k so thatthe residual kb�Axk is reasonably small but the solution x does notin
lude 
omponents 
orresponding to small singular values�k+1; : : : ; �N .� Exploit stru
ture in A when 
omputing the TSVD or Tikhonovsolutions.� Pra
ti
al implementations of �ltering methods should avoid possibledivision by zero.� Regularization by means of spe
tral �ltering requires{ Choosing a suitable �lter and a 
orresponding regularized inverse sothat the resolution matrix V�VT is suÆ
iently 
lose to the identitymatrix, and{ Finding a suitable balan
e between the regularization error and theperturbation error. 56



� No parameter 
hoi
e method is perfe
t, and the 
hoi
e between theDis
repan
y Prin
iple, GCV, the L-Curve, and other methods isdependent on what information is available about the problem.
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