Solution and error estimates using finite differences (p. 43)

Note: A small part of this material is covered in 660, too.

Notation (a slight change):
\[Au = -au'' + bu' + cu = f \]
with \(a, b, c \) smooth and \(a(x) > 0, c(x) \geq 0 \) in \(\bar{\Omega} \).

We would like to write down an approximation to this equation that would permit us to solve for values of \(u \) at selected points in \([0,1]\).

Unquiz 2: Suppose \(u \) has 4 continuous derivatives. Prove that the central difference approximations satisfy
\[
 u'(x) = \frac{u(x+h) - u(x-h)}{2h} + O(h^2),
\]
\[
 u''(x) = \frac{u(x-h) - 2u(x) + u(x+h)}{h^2} + O(h^2)
\]
for small values of \(h \).

More formally,
\[
 \left| u''(x) - \frac{u(x-h) - 2u(x) + u(x+h)}{h^2} \right| \leq Ch^2|u|_{C^4}
\]
and similarly for \(u'(x) \), where
\[
 |u|_{C^4} = \max_{x \in \Omega} |u'''(x)|
\]

So the finite difference approach is to choose mesh points \(x_j = jh \), where \(h = 1/M \) for some large integer \(M \), and solve for \(u_j \approx u(x_j) \) for \(j = 0, 1, \ldots, M \).

Unquiz 3: Consider the equation
\[Au = -u'' + bu' + u = f \]
where \(b(x) = x \). Let \(M = 5 \), and write the 4 finite difference equations for \(u \) at \(x = .2, .4, .6, \) and .8.

Properties of the finite difference formulation:
• We obtain a system of linear equations \(AU = g \), where \(g \) is determined by the function \(f \) and the boundary conditions.

• \(A \) is \((M - 1) \times (M - 1)\) and tridiagonal. In the \(j \)th row, the main diagonal element is \(2a_j/h^2 + c_j \) and the off-diagonal elements are \(- (a_j/h^2 \pm b_j/(2h))\). (The book’s \(A \) is \(h^2 \) times ours.)

• For small enough \(h \), the matrix \(A \) is row diagonally dominant: the main diagonal element is at least as big as the sum of the absolute values of the off-diagonal elements. This ensures that the matrix has no zero eigenvalues and therefore a unique solution \(U \) exists.

Now we need an error estimate, which we obtain from

• a discrete maximum principle.

• a stability estimate.

A discrete maximum principle

Lemma 4.1 (p. 44): Assume \(h \) is small enough that \(a_j \pm \frac{1}{2}hb_j \geq 0 \) and that \(AU \leq 0 \).

• (i) If \(c = 0 \), then

\[
\max_j U_j = \max(U_0, U_M).
\]

• (ii) If \(c \geq 0 \) then

\[
\max_j U_j \leq \max(U_0, U_M, 0).
\]

Proof of (i): The \(j \)th equation \((1 \leq j \leq M - 1)\):

\[
2a_jU_j/h^2 - (a_j + hb_j/2)U_{j-1}/h^2 - (a_j - hb_j/2)U_{j+1}/h^2 = g_j \leq 0
\]

so

\[
U_j = \frac{h^2}{2a_j}g_j + \frac{a_j - hb_j/2}{2a_j}U_{j+1} + \frac{a_j + hb_j/2}{2a_j}U_{j-1}
\]

\[
\leq \frac{a_j - hb_j/2}{2a_j}U_{j+1} + \frac{a_j + hb_j/2}{2a_j}U_{j-1}.
\]

Suppose \(U_j \) is the maximum. Then \(U_j = U_{j-1} = U_{j+1} \) because the coefficients on the right add to 1. Continuing this reasoning, we see that \(U \) is constant, so the result holds. Therefore, either \(U \) is constant or the max occurs at an endpoint.

A stability estimate

We use the \(\infty \)-norm of the vector \(U \):

\[
\|U\|_\infty = \max_j |U_j|.
\]
Lemma 4.2 (p. 45): If $b = 0$, then
\[\|U\|_\infty \leq \max(|U_0|, |U_M|) + C\|AU\|_\infty, \]
where C depends on A but not h or U.

Proof: Let $w(x) = x - x^2$, $W_j = w(x_j)$, and
\[\alpha = \min_{x \in \Omega} a(x). \]
Then
\[
(AW)_j = (2a_j + h^2 c_j)W_j/h^2 - a_j W_{j-1}/h^2 - a_j W_{j+1}/h^2
\]
\[
= c_j W_j + \frac{a_j(2x_j - 2x_j^2 - (x_j - h) + (x_j + h)^2)}{h^2}
\]
\[
= c_j W_j + 2a_j
\]
\[\geq 2\alpha. \]

Now let
\[V_j^\pm = \pm U_j - (2\alpha)^{-1}\|AU\|_\infty W_j, \]
so that
\[(AV)_j^\pm = \pm (AU)_j - (2\alpha)^{-1}\|AU\|_\infty (AW)_j \leq 0. \]

Since $W_0 = W_M = 0$, we conclude from Lemma 4.1 that
\[V_j^\pm = \pm U_j - (2\alpha)^{-1}\|AU\|_\infty W_j \leq \max(|U_0|, |U_M|) \]
and therefore
\[|U_j| \leq \max(|U_0|, |U_M|) + (2\alpha)^{-1}\|AU\|_\infty |W_j|, \]
and since
\[\max_j |W_j| = \max_j x_j - x_j^2 = \max_j 1/4 - (x_j - 1/2)^2 = 1/4 \]
the result follows with $C = 1/(8\alpha)$. \[\]

The error in the finite difference solution

Theorem 4.1 (p. 45): If $b = 0$, then
\[\max_j |U_j - u(x_j)| \leq C h^2 \|u\|_{C^4}. \]

Proof: Let $e_j = U_j - u(x_j)$. Then by Unquiz 2,
\[|(Ae)_j| \leq C h^2 \|u\|_{C^4}, \]
so the result follows from Lemma 4.2, noting that $e_0 = e_M = 0$. \[\]

Summary
The finite difference approximation to our problem leads to a system of linear equations to be solved.

The approximation is \(O(h^2) = O(M^{-2}) \), so the more accuracy we need in the solution, the larger the system.

To get approximations to the solution at points between mesh points, we could use interpolation; see van Loan’s text for details.

Solution and error estimates using finite elements (p. 51)

Notation:

\[
Au = -(au')' + cu = f \text{ in } \Omega = (0, 1)
\]

with \(u(0) = u(1) = 0 \).

Assumptions:

- \(a(x) \) and \(c(x) \) smooth functions.
- \(a(x) \geq \alpha > 0, c(x) \geq 0 \) in \(\bar{\Omega} \).
- \(f \in L_2(\Omega) \).

Recall the variational formulation

\[
a(u, v) = (f, v), \ v \in H^1_0
\]

where

\[
a(u, v) = \int_{\Omega} (au'v' + cuv)dx
\]

\[
(f, v) = \int_{\Omega} fvdx
\]

As in finite differences, we choose a mesh \(0 = x_0 < x_1 < \ldots < x_M = 1 \).

\[
h_j = x_j - x_{j-1}, \quad K_j = [x_{j-1}, x_j],
\]

\[
h = \max_j h_j.
\]

But rather than solve for \(u \) at the mesh points, we seek an approximate solution of a particular form:

- continuous,
- satisfying the boundary conditions,
- and piecewise linear in each of the subintervals \(K_j \).
We call the space of such functions S_h and note that it is a subset of H^1_0, the space where the solution lives.

A convenient basis

We can construct our solution using any basis for S_h, but one basis is particularly convenient: the set of hat functions ϕ_i, $i = 1, \ldots, M - 1$, where

$$
\phi_i(x) = \begin{cases}
\frac{x-x_{i-1}}{x_i-x_{i-1}} & x \in [x_{i-1}, x_i] \\
\frac{x-x_{i+1}}{x_i-x_{i+1}} & x \in [x_i, x_{i+1}] \\
0 & \text{otherwise}
\end{cases}
$$

These are designed to satisfy $\phi_i(x_i) = 1$ and $\phi_i(x_j) = 0$ if $i \neq j$.

Any function $v \in S_h$ can be written as

$$
v(x) = \sum_{i=1}^{M-1} v_i \phi_i(x)
$$

where $v_i = v(x_i)$.

The resulting equations

Our original problem: Find $u \in H^1_0$ satisfying

$$
a(u, v) = (f, v)
$$

for all $v \in H^1_0$.

Our new problem: Find $u_h \in S_h$ satisfying

$$
a(u_h, v) = (f, v)
$$

for all $v \in S_h$.

Because the ϕ_i form a basis, our new problem becomes: Find

$$
u_h = \sum_{i=1}^{M-1} u_i \phi_i(x)
$$

satisfying

$$
a(u_h, \phi_j) = (f, \phi_j)
$$

for $j = 1, \ldots, M - 1$.

Unquiz 4: Write the resulting system of equations $AU = g$ and compare with the answer to Unquiz 3.

Some properties
• This method of constructing the discrete equations is called Galerkin’s method and is characterized by seeking u_h in some subspace of the space H^1_0 that contains the solution, and making the residual $a(u_h, v) - (f, v)$ zero on that subspace.

• A is called the stiffness matrix and g is called the load vector.

• A is symmetric (because $a(\phi_i, \phi_j) = a(\phi_j, \phi_i)$) and $V^T AV = a(v, v) > 0$ when

$$v = \sum_{i=1}^{M-1} v_i \phi_i(x) \neq 0.$$

Therefore, the solution exists and is unique.

• A is tridiagonal.

Error analysis

The error analysis of the finite element method proceeds in two steps:

• **Step 1:** Show that for every function $u \in H^1_0$, there is a function $\hat{u}_h \in S_h$ that is close to it.

• **Step 2:** Show that the system of equations yields a solution close to \hat{u}_h.

Step 1: Approximability

For any $u \in H^1_0$, let $\hat{u}_h \in S_h$ be defined by

$$I_h u \equiv \hat{u}_h = \sum_{i=1}^{M-1} u(x_i) \phi_i(x).$$

(This is the piecewise linear interpolating function.)

A standard result in approximation theory tells us that over the interval K_j we have

$$\|I_h u - u\|_{K_j} \leq C h^2 |u|_{2, K_j},$$

$$\|(I_h u)' - u'\|_{K_j} \leq C h |u|_{2, K_j}.$$

(The proof follows from Taylor series expansions.)

(Remember notation: $|u|_2 = L_2$ norm of u''.)

So

$$\|I_h u - u\| = \left(\sum_{j=1}^{M-1} \|I_h u - u\|_{K_j}^2 \right)^{1/2} \leq \left(\sum_{j=1}^{M-1} C^2 h^4 |u|_{2, K_j}^2 \right)^{1/2} \leq Ch^2 \|u\|_2,$$
and similarly
\[\| (I_h u)' - u' \| \leq Ch \| u \|_2. \]

Step 2: \(u_h \) is close to \(I_h u \)

We use the energy norm
\[\| v \|_a = a(v, v)^{1/2}. \]

Theorem 5.1a (p. 54):
\[(**) \| u_h - u \|_a = \min_{v \in S_h} \| v - u \|_a \]

A note: Let \(e = u - u_h \). We know that \(a(u, v) = (f, v) \) and \(a(u_h, v) = (f, v) \) for all \(v \in S_h \), so
\[(** *) a(e, v) = 0 \]
for all \(v \in S_h \). This means that the error is orthogonal to \(S_h \), or, in other words, \(u_h \) is the orthogonal projection (with respect to the inner product \(a \)) of \(u \) onto \(S_h \), and therefore (**) holds, as we now prove in detail.

Proof: Using (** *), we see that for any \(v \in S_h \),
\[\| e \|_a^2 = a(e, e) = a(e, u - u_h - v) \equiv a(e, u - \hat{v}) \leq \| e \|_a \| u - \hat{v} \|_a, \]
where \(\hat{v} = v + u_h \in S_h \). Therefore, \(\| e \|_a \leq \| u - \hat{v} \|_a \) for all \(\hat{v} \in S_h \).

Theorem 5.1b (p. 54):
\[\| u_h' - u' \| \leq Ch \| u \|_2. \]

Proof:

Notice that if \(v \in H_0^1 \), then
\[
\| v \|_a^2 = \int_0^1 a(x)(v'(x))^2 + c(x)v(x)^2 \, dx \\
\geq \min_{x \in [0,1]} a(x) \int_0^1 (v'(x))^2 \, dx \\
\geq a \| v' \|^2
\]
and
\[
\| v \|_a^2 = \int_0^1 a(x)(v'(x))^2 + c(x)v(x)^2 \, dx \\
\leq \max_{x \in [0,1]} a(x) \int_0^1 (v'(x))^2 \, dx + \max_{x \in [0,1]} c(x) \int_0^1 (v(x))^2 \, dx \\
\leq C \| v' \|^2 + C \| v \|^2 \\
\leq C \| v' \|^2.
\]
where the last step follows from equation (2.17). Thus,
\[(\ast) \quad \sqrt{\alpha\|v^\prime\|} \leq \|v\|_a \leq C\|v^\prime\|\]
for $v \in H^1_0$. Now, Theorem 5.1a implies
\[\|e\|_a \leq \|z - u\|_a\]
for all $z \in S_h$, and since $z - u \in H^1_0$, by (\ast) we conclude that
\[\|e\|_a \leq \|z - u\|_a \leq C\|z' - u'\|\]
Therefore,
\[\|e\|_a \leq C\min_{z \in S_h} \|z' - u'\|\]
so, using (\ast) again,
\[\|e^\prime\| \leq C\|e\|_a \leq C\min_{z \in S_h} \|z' - u'\|\]
Now let $z = I_h u$ and use the interpolation bound
\[\|(I_h u)' - u'\| \leq Ch\|u\|_2.\]

This is nice, but it gives us a result on the energy norm, not the L_2 norm, so we need to work a little more.

Theorem 5.2 (p. 55):
\[\|e\| \leq Ch^2\|u\|_2.\]

Proof: We use a duality argument.

Original problem: Find $u \in H^1_0$ such that $a(u, \phi) = (f, \phi)$ for all $\phi \in H^1_0$.

Dual problem: Find $\phi \in H^1_0$ such that $a(w, \phi) = (w, e)$ for all $w \in H^1_0$.

We proved that
\[\|\phi\|_1 \leq C\|e\|,\]
but it is also true (see (2.22)) that
\[\|\phi\|_2 \leq C\|e\|.

Now
\[
(e, e) = \|e\|^2 \quad \text{(definition)}
= a(e, \phi) \quad \text{(a(w, \phi) = (w, e))}
= a(e, \phi - I_h \phi) \quad \text{(orthogonality)}
\leq \|e\|_a \|(\phi - I_h \phi)\|_a \quad \text{Cauchy-Schwarz}
\leq C\|e^\prime\| \|(\phi - I_h \phi)^\prime\| \quad \text{\((\ast)\)}
\leq Ch\|e^\prime\| \|\phi\|_2 \quad \text{\(\text{approximability}\)}
\leq Ch\|e^\prime\| \|e\|, \quad \text{\(\text{previous equation}\)}
\]

8
so \(\|e\| \leq Ch\|e'\| \), and by Theorem 5.1b, this is bounded by \(Ch^2\|u\|_2 \).

Higher order approximation

We derived our finite element equation using the space of piecewise linear functions (i.e., piecewise polynomials of degree 1) with a convenient basis, the basis of hat functions.

We could also use higher order polynomials: quadratics, cubics, etc. The basis we choose consists of our old hat functions plus quadratic or cubic hat functions that vanish at all mesh points.

Picture: p. 57.

Because the approximability properties are better, we get higher order estimates for the error: if we use piecewise polynomials of degree \(r - 1 \), then
\[
\|u - u_h\| \leq Ch^r\|u\|_r, \\
\|u' - u'_h\| \leq Ch^{r-1}\|u\|_r,
\]
when \(u \in H^r \).

h-p methods

Result: If we want a better approximation, we have two choices:

- decrease \(h \).
- increase \(r \).

The parameter \(r \) is often called \(p \) in the literature, so the resulting adaptive methods are called h-p methods.

Summary

- We have shown existence, uniqueness, and stability of the solution to our ODE-BVP.
- We have introduced several tools for analysis, including
 - the maximum principle,
 - Green’s functions,
 - approximability,
 - duality,
 - the energy norm,
 - regularity.
• We have defined a finite difference approximation to the ODE-BVP, reducing the problem to solving a linear system of equations.

• We showed existence and uniqueness of the finite difference approximation, as well as an error bound.

• Omitted: We could also have applied shooting methods to solve our ODE-BVP (660).

• We have defined a finite element approximation.

• We showed existence and uniqueness of the finite element approximation, as well as an error bound.