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Ordinary Differential Equations, Initial Value Problems
Ordinary Differential Equations, Initial Value Problems = ODE/IVP

The plan:

e A review of the linear problem and initial conditions

e A few numerical methods

A recurring theme: Stability.

Note: We will assume that any matrix A that we use has a complete set of
eigenvalues and eigenvectors. Almost all matrices do. In that case, A can be
factored as in an eigendecomposition as

A =WAW™!

where A is a diagonal matrix with entries )\;, the eigenvalues of A.

The philosophy:

e Some of this material is covered in 660.

e We'll just do what we need to cover IVPs for PDEs.

Reference: Chapter 7.

A review of the linear problem and initial conditions

A single first order ODE

Problem: Find the function u(t) : R — R that satisfies
o +au = f(t)

for ¢t > 0, with u(0) = v, a given number and a a given number.

Jargon: The equation is called first order because the highest derivative is the
first.



Solution:

t
u(t) = e v —|—/ et=5) £ (s5)ds.
0

Unquiz 1: Verify that this solution satisfies the differential equation and the
initial value condition.

A system of first order ODEs
Problem: Find the function u(t) : R — R™ that satisfies

u + Au = f(t)

for t > 0, with u(0) = v, a given vector and A a given n X n matrix.

Solution: .
u(t) = Ay +/ e~ (t=AF (5)ds,
0

where

B3 8
=07

Unquiz 2: Verify that this solution satisfies the differential equation and the
initial value condition.

A more useful expression for the matrix exponential function

If A=WAW~! where A is a diagonal matrix with entries \;, then

o0

eA = A

Aside: Taylor series tells us that
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So we conclude that
A = W exp(A)W™1

where exp(A) is a diagonal matrix with entries .

Observation:
e Since the solution to the ODE is
t
u(t) = e~*Av —|—/ e (t=AF (5)ds,
0

we see that as t — oo, u(t) — 0 if all eigenvalues of A are positive. This is
called asymptotic stability. In this case, small changes in the data make
small changes in the solution.

e If A has any negative eigenvalues, then the solution u can grow as t — oo.
This is called instability.

A single second order ODE

Problem: Find the function u(t) : R — R that satisfies
u’ + au = f(t)

for t > 0, with «(0) = v,4/(0) = w, (given numbers) and a a given

number.
Solution: )

u(t) = cos(tyv/a)v + NG sin(tyv/a)w
if f=0.

Unquiz 3: Verify that this solution satisfies the differential equation and
the initial value conditions.

A system of second order ODEs

Problem: Find the function u(t) : R — R™ that satisfies
u’ + Au="f(t)

for t > 0, with u(0) = v,u’(0) = w, (given vectors) and A a given n X n
matrix.

Solution:

u(t) = cos(tVAW + (VA) L sin(tvVA)w



if f =0, where

1 .
cosB = i(ezBJre*ZB)
1 ,
sinB = Q—i(eZB e*’B)
VA = WVAW™!

and VA has diagonal entries /).

Unquiz 4: Verify that this solution satisfies the differential equation and
the initial value conditions.

Three numerical methods for first order equations

— Euler
— backward Euler

— Crank-Nicolson

Numerical methods for a single ODE

The single ODE:
u = f(t,u)

Let k& be the mesh spacing for ¢ (just as h was for the variable ).
— Euler (an explicit method)

EEN 2O _ g ey,

— backward Euler (an implicit method)

M = f(t+k,u(t + k).
— Crank-Nicolson (an implicit method)

u(t + k) — u(t)

i = f(t+k/2, (u(t + k) + u(t))/2).

(The generalization to a system of equations is clear(?77).)

Accuracy of these three methods

— Euler . ;
()

Taylor series expansion says we make an error of order k.



— backward Euler

u(t + k) — u(t)
k

Taylor series expansion says we make an error of order k.

= f(t+k,u(t + k).

— Crank-Nicolson

u(t + k) — u(t)

i = f(t+k/2, (ut + k) +u(t))/2).

Taylor series expansion says we make an error of order k2.

Stability analysis of these three methods
Suppose we apply them to the single ODE
u' +au =0,

and let u™ be the approximate solution we obtain for ¢ = nk. Then Euler's
method gives
u(t + k) = u(t) — kau(t)

so
o —
u' = (1—ka)
u' = (1—ka)"v

Unquiz 5: Show that the Backward Euler method gives

1

- mv.[]

n

In a similar way, you could show that Crank-Nicholson gives

u 1—ka/2 nv
~ \1+ka/2

So what?
Euler: u" = (1 — ka)"v

n __

Backward Euler: «™ = mv

Crank-Nicholson: u™ = (};22@) v

True solution: u(nk) = e~ "kay

Suppose a > 0, so that the ODE is asymptotically stable. When are our
approximations asymptotically stable?



Euler: u" = (1 — ka)™
Stable if |1 — ka| < 1, or k < 2/a.

n

Backward Euler: u v

_ 1
- (1+ka)™
Stable unconditionally.

Crank-Nicholson: u" = (%) v

Stable unconditionally.

A numerical method for a second order equation

u’ = f(t,u)
becomes
u(t + k) —2u(t) +u(t — k)

o = f(tul).

The error is O(k?), and the method is stable on the linear problem
u” + au = 0 for any k and a.



