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Solving parabolic PDEs numerically

As you would expect, there are two methods:

• Finite differences

• Finite elements

It takes just a bit of thought to realize that it is not very natural to use finite
elements in the time dimension.

• So popular algorithms use finite differences in time (for the t variable) and
either finite differences or finite elements in space (for the x variables).

• In the space dimensions, we just have an elliptic operator to discretize, so
we know all about that:

– If x ∈ R1 or if Ω ⊂ Rd is very simple, then finite differences can be
used.

– Otherwise, finite elements will probably be a better choice.

A brief discussion of finite difference methods

Reference: small pieces of Chapter 9

Consider the simplest possible parabolic PDE:

ut = uxx

with x ∈ R and initial conditions u(x, 0) = v(x) given.

(pp 129-131) Consider the simplest discretization: un
j ≈ u(jh, nk), using

Forward Euler for time and a central difference for space:

un+1
j − un

j

k
=

un
j+1 − 2un

j + un
j−1

h2
.

We march forward with this: given values at n, we solve for values at n + 1:

un+1
j = run

j+1 + (1− 2r)un
j + run

j−1
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where r = k/h2 is the mesh ratio.

We have a stability estimate for the continuous problem:

‖u(·, t)‖C ≤ ‖v‖C .

What about our discretization?

un+1
j = run

j+1 + (1− 2r)un
j + run

j−1

If 1− 2r > 0, then

|un+1
j | ≤ r|un

j+1|+(1−2r)|un
j |+r|un

j−1| ≤ (r+(1−2r)+r) max
j
|un

j | = max
j
|un

j |,

so we have the same stability estimate.

The restriction that 1− 2r > 0, so r = k/h2 < 1/2, is a special case of von
Neumann’s stability condition.

What about Backward Euler? (p140)

un+1
j − un

j

k
=

un+1
j+1 − 2un+1

j + un+1
j−1

h2
.

so
−run+1

j+1 + (1 + 2r)un+1
j − run+1

j−1 = un
j

where r = k/h2 is the mesh ratio.

This gives us a linear system of equations to solve:

Bun+1 = un.

Is the method stable? We need to look at the eigenvalues of B.

A very useful result about eigenvalues of matrices

Gershgorin’s Circle Theorem (not in your book)
Let A be an n× n matrix. For i = 1, . . . , n, let Ci be a circle in the complex
plane, centered at aii with radius

∑
i 6=j |aij |. Then all of the eigenvalues of A lie

in the union of the circles Ci.

Proof: See (for example) Golub and Van Loan, p320.

Example: For our matrix B, the main diagonal elements are all equal to 1 + 2r,
so this is the center of all of the circles. The radii are at most 2r. So all of the
eigenvalues of B lie either at λ = 1 or outside the unit circle, and therefore all
eigenvalues of B−1 lie either at λ = 1 or within.
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We can verify that λ = 1 is not an eigenvalue of B. (For example, Cholesky runs
to completion on B− I and produces two nonsingular factors.) Therefore, all
eigenvalues of B−1 are inside the unit circle.

Therefore, since un+1 = B−1un = B−2un−1 = . . . = B−(n+1)u0,

un+1 → 0,

and the method is unconditionally stable without a von Neumann condition on
the relation between h and k.

(But for accuracy, we need to take k much smaller than h, since the error is
proportional to O(k) + O(h2).)

What about Crank-Nicolson? (pp142-143)

un+1
j − un

j

k
=

1
2

(
un+1

j+1 − 2un+1
j + un+1

j−1

h2
+

un
j+1 − 2un

j + un
j−1

h2

)
.

so
−r

2
un+1

j+1 + (1 + r)un+1
j − r

2
un+1

j−1 =
r

2
un

j+1 + (1− r)un
j +

r

2
un

j−1

which we can write in matrix form as

Bun+1 = Aun.

where B has 1 + r on its main diagonal, −r/2 above and below, and A has 1− r
on its main diagonal and r/2 above and below.

Grinding the linear algebra crank (details not important for this course), we could
show that the eigenvalues of B−1A are all inside the unit circle and
Crank-Nicolson is unconditionally stable.

The error is proportional to O(k2) + O(h2).

What you need to know in order to use finite differences for
parabolic PDEs:

• There is a von Neumann stability restriction on the mesh sizes when
explicit methods such as forward Euler are used.

• Implicit methods like backward Euler and Crank-Nicholson avoid this, but,
as we know, they are more difficult to compute with. Further, we still need
to keep both h and k small enough so that the error term is sufficiently
small for our purposes.

• For the mixed Initial-Boundary value problem (for example, when
x ∈ [0, 1]), then we use the same discretization (Euler, for example)

un+1
j = run

j+1 + (1− 2r)un
j + run

j−1

but plug in boundary values when the subscript is 0 or 1/h.
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• Read Chapter 9 if you ever need to use these methods.

Finite element methods

Reference: Chapter 10, especially pp. 149-150

Consider the parabolic Initial-Boundary Value Problem

ut(x, t)−∆u(x, t) = f(x, t) (x, t) ∈ Ω×R+

u = 0 (x, t) ∈ Γ×R+

u(x, 0) = v(x) x ∈ Ω

where Ω ⊂ R2 and ∆u = uxx + uyy.

We discretize in two steps:

• Use the Galerkin finite element method on ∆u.

• Use finite differences on ut.

Step 1a: Galerkin

Let t be fixed and choose φ ∈ H1
0 . Then we take

ut(x, t)−∆u(x, t) = f(x, t)

and integrate its product with φ to get

(ut, φ)− (∆u, φ) = (f, φ).

Use integration by parts to get

(ut, φ) + a(u, φ) = (f, φ).

Step 1b: Finite elements

Galerkin equation:
(ut, φ) + a(u, φ) = (f, φ).

Let

u(x, t) ≈ uh(x, t) =
M∑

j=1

αj(t)φj(x)

where the functions φj form a basis for the finite element space (piecewise
linears, for example). Then substituting for u, our Galerkin equation becomes

M∑
j=1

α′
j(t)(φj , φ) +

M∑
j=1

αj(t)a(φj , φ) = (f, φ).
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Repeating,
M∑

j=1

α′
j(t)(φj , φ) +

M∑
j=1

αj(t)a(φj , φ) = (f, φ).

We get a system of equations by letting φ = φk, for k = 1, . . . ,M :

Bα′(t) + Aα(t) = g(t)

where

• α(t) is a vector with M components αj(t).

• a(φk, φj) =
∫
Ω
5φk · 5φj , and this is element (k, j) of the stiffness matrix

A.

• g(t) is a vector with kth component (f, φk) =
∫
Ω

f(x, t)φk(x)dx.

• B is the mass matrix with element (k, j) equal to (φk, φj).

Bα′(t) + Aα(t) = g(t)

This is a system of ordinary differential equations with initial values

αj(0) = v(xj).

Recall that the stiffness matrix is symmetric and positive definite.
So is the mass matrix, since it is clearly symmetric and for any z,

zT Bz =
M∑

k=1

M∑
j=1

(φk, φj)zkzj = ‖
M∑

k=1

zkφk‖2 ≥ 0,

and zero only if z = 0. (The first equality comes from the definition of

matrix-vector product, and the value is equal to the norm of
∑M

k=1 zkφk. Since
the φk are linearly independent, this is zero only if all zk = 0.)

Therefore, if our integrator requires it, we can express

Bα′(t) + Aα(t) = g(t)

as
α′(t) = −B−1Aα(t) + B−1g(t).

This helps to establish existence and uniqueness of the solution.
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In the rest of Section 10.1, the authors use what we already know about elliptic
finite element methods to derive estimates for the parabolic problem.

Step 2: Discretize in time

We have a system of M ordinary differential equations

Bα′(t) = −Aα(t) + g(t).

with α(0) given.

In some sense we are finished; plug the ODEs into your favorite solver (e.g.,
ode23s) and let it go.

But because M is typically quite large (perhaps 106 if d = 2), it is worthwhile to
have options to solve the ODEs by less expensive (although less sophisticated)
methods.

So pull out

• Euler

• Backward Euler

• Crank-Nicholson

and use them on the system.

A few notes about using Euler

Bα′(t) = −Aα(t) + g(t).

becomes

B
α(t + k)−α(t)

k
= −Aα(t) + g(t).

This isn’t really explicit unless the mass matrix B is diagonal. So sometimes we
lump the mass, replacing B by a diagonal matrix B̄ with the same row-sums.

This sounds like an awful idea, until we stop to realize:

• We have already made an approximation in computing the elements of B
by numerical integration, and we are free to choose the integration formula
in a convenient way.

• So instead of the barycentric integration rule we discussed before, let’s use
a nodal rule, that only evaluates the functions at the nodes of the
triangles. Any such rule gives us a diagonal matrix B!
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A few notes about Backward Euler and Crank-Nicolson

Backward Euler, used in place of Forward, gives a method that is stable for a
wider choice of h, k values, but not unconditionally stable, because of the
behavior of our approximation to ∆u.

Crank-Nicolson is unconditionally stable for this problem. See the definition of
the method at the bottom of p. 158 and read Theorem 10.6.
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