Computer Science for Scientific Computing

Topic of the course: What every computational scientist needs to know in order to produce efficient and well-designed computer programs.
The plan

Goal: Give you a view of the state-of-the-art in computer science *from the programmer’s viewpoint.*

Big difficulty: This is a moving target!
We seek codes that are:

- **reliable.** (In particular, we must use **stable** algorithms.)
- **well documented.**
- **modular**, so that they share pieces.
- **convenient for the user**, so we reduce the temptation to tinker.
- **efficient.**
- **easy to modify.**
- **portable.**
The course organization

Handouts:

- Course information: text, grading, etc.
- Course syllabus.
- Information form: please fill out at end of class.
Getting off to a good start

This week:

• Buy the textbook.
• Study the website to see what information is available to you. Find the old quizzes, the lecture notes, the schedule, and the Survival Guide for Scientific Computing.
• Begin Homework 1.
• Make a list of questions you have and ask them in office hours or at the beginning of class.
• Determine how you will access MATLAB. Try it out. Make sure that you can view and print figures and save a diary of your work.
About the notes:

The lecture notes are a work-in-progress. There are lots of typos in them. I'll appreciate your help during and after class to try to find all of the errors.

- I will borrow notes from many sources in order to better coordinate with the text and avoid redrawing complicated pictures.
- I gratefully acknowledge all of these sources.
- The first person to find each substantive error in material on the website will earn extra credit.
A quick overview and motivation: nontechnical

Problem: Drive your car 20 miles (on a closed racetrack) using the smallest possible amount of fuel.

• At what speed should you drive?
• What factors matter?
A quick overview and motivation: more technical

• Useful data structures.
• Basic non-numeric algorithms.
• Anatomy of a computer.
• Under the hood: from program input to output.
• Parallel computing.
• Issues: programming tools and reliability, privacy, reproducibility, language choice, the internet, green computing, etc.
Textbook overview

Slides labeled “Carnegie Mellon” are taken from the instruction site for

Computer Systems: A Programmer’s Perspective, 2/E (CS:APP2e)
Randal E. Bryant and David R. O’Hallaron, Carnegie Mellon
University

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/schedule.html

01-overview.pdf pp 3-21.