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1 Laplace Transformation

F (s) =

∫ ∞

0

e−stf(t)dt

f(t) F (s)

f(t)
∫∞
0

e−stf(t)dt

af(t) + bg(t) aF (s) + bG(s)

f(at) 1
a
F ( s

a
)

f(t− T )θ(t− T ) =





f(t− T ) t ≥ T

0, t < T
e−TsF (s)

d
dt

f(t) sF (s)− f(0)

dn

dtn
f(t) snF (s)−∑n

k=1 sn−kf (k−1)(0)
∫ t

0
f(τ)dτ F (s)

s

1 1
s

cos(at) s
s2+a2

sin(at) a
a2+s2

e−at 1
s+a

−eat+ebt

b−a
1

(s−a)(s−b)

−aeat+bebt

b−a
s

(s−a)(s−b)
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The general procedure for solving a system of linear differential equation
by the Laplace transformation is:

• Transform the system from the time space into the Laplace space.
There it becomes a system of algebraic equations

• Solve the system of algebraic equation in the Laplace space

• Re-transform the solution back into the time domain. For the re-
transformation from the Laplace into the time domain there exist also
an integral transformation:

f(t) =
1

2π

∫ ∞

−∞
estF (s)ds (1)

However the direct application of that transformation is quite compli-
cated. Therefore one normally converts F (s) into a sum of terms for
which the Laplace transformation can be looked up in a table.

In the context of converting a function F (s) into a sum of terms with known
Laplace transformations, the partial fraction expansion of a rational function
is probably the most important conversion. The idea of that conversion is,
that given a rational function

G(s) =
A(s)

B(s)
(2)

where the order of the nominator polynomial A(s) is less than the order n of
the denominator polynomial B(s), then one can always write G(s) as a sum
of n partial fractions:

G(s) =
n∑

i=1

ci

s− si

(3)

where the si are the n zero points of the denominator polynomial B(s), which
are also called poles of the rational function G(s). The calculation of the ci

is given by
ci = lim

s→si

(G(si)(s− si)) (4)

This formula can be easily derived by multiplying (3) with (s − si) and
evaluating then both sides at si.

Remark 1.1 In case the order of the nominator polynomial is equal to the
denominator one has to make a polynomial division before doing the partial
fraction expansion.
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2 Example

2.1 Issue

Calculate the general solution for the system:

ẍ + 2dω0ẋ + ω2
0x = 0 (5)

with the initial conditions:

x(0) = x0 ẋ(0) = v0 (6)

Use afterwards the values:

case d ω0 x0 v0

a) 0 2 1 0
b) 0.5 2 1 1
c) 2 2 1 1

2.2 Solution

At first equation (5) will be transformed to the Laplace space:

s2X − sx(0)− ẋ(0) + 2dω0sX − 2dω0x(0) + ω2
0X = 0 (7)

where X = X(s) denotes the Laplace transform of x = x(t). Using now the
initial conditions (6) we get:

X(s2 + 2dω0s + ω2
0) = sx0 + v0 + 2dω0x0 (8)

X =
sx0

s2 + 2dω0s + ω2
0

+
v0 + 2dω0x0

s2 + 2dω0s + ω2
0

(9)

=
sx0

(s− s1)(s− s2)
+

v0 + 2dω0x0

(s− s1)(s− s2)
(10)

with s1 and s2 being the zero points of the characteristic polynomial s2 +
2dω0s + ω2

0:

s1,2 = ω0

(
−d±

√
d2 − 1

)
(11)

Transforming equation (10) back into the time domain, we have the general
solution to (5):

x =
−s1e

s1t + s2e
s2t

s2 − s1

x0 +
−es1t + es2t

s2 − s1

(v0 + 2dω0x0) (12)
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Figure 1: Plots to the example

a) For the first case one gets s1 = 2j , s2 = −2j. Hence by using equation
(12) the solution in the time domain becomes:

x =
−2j(cos(2t) + j sin(2t))− 2j(cos(−2t) + j sin(−2t))

−4j
· 1

+
−(cos(2t) + j sin(2t)) + (cos(−2t) + j sin(−2t))

−4j
(0 + 2 · 0 · 2 · 1)

= cos(2t) (13)

b) In the second case we have s1 = −1 + j
√

3 , s2 = −1 − j
√

3. Thus we
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get:

x =
(1− j

√
3)(cos(

√
3t) + j sin(

√
3t)) + (−1− j

√
3)(cos(−√3t) + j sin(−√3t))

−2j
√

3
e−t · 1

+
− cos(

√
3t)− j sin(

√
3t) + cos(−√3t) + j sin(−√3t))

−2j
√

3
e−t(1 + 2 · 0.5 · 2 · 1)

=
−2j

√
3 cos(

√
3t) + 2j sin(

√
3t)

−2j
√

3
e−t +

−2j sin(
√

3t)

−2j
√

3
3e−t

=

(
cos(

√
3t) +

2√
3

sin(
√

3t)

)
e−t (14)

c) In the last case one has s1 = −4 + 2
√

3 , s2 = −4− 2
√

3. This leads to:

x =
−(−4 + 2

√
3)e(−4+2

√
3)t + (−4− 2

√
3)e(−4−2

√
3)t

−4
√

3
· 1

−e(−4+2
√

3)t + e(−4−2
√

3)t

−4
√

3
(1 + 2 · 2 · 2 · 1)

=
5 + 2

√
3

4
√

3
e(−4+2

√
3)t +

−5 + 2
√

3

4
√

3
e(−4−2

√
3)t (15)

3 Homework

1. Calculate the Laplace transformations of:

• ∫ t

0
f(τ)dτ

• 1

• cos(at)

• −eat+ebt

b−a

• −aeat+bebt

b−a

2. Calculate the solutions for:

• ẋ− x = 0 with x0 = 1

• ẋ + x = 0 with x0 = 1

• ẍ− 2ẋ + 4x = 0 with x0 = 0 , v0 = ẋ0 = 1

• ẍ + 2ẋ− 4x = 0 with x0 = 0 , v0 = ẋ0 = 1

3. Implement the four systems above in Simulink
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4 Transfer function

For a linear system with a single input and a single output (SISO) the transfer
function describes the ratio between the output and the input of the system
in the Laplace space. For instance given the system governed by the linear
differential equation:

ÿ + a1ẏ + a0y = u (16)

which can be written in the Laplace space as:

Y (s2 + a1s + a0) = U (17)

one gets the transfer function:

G(s) =
Y

U
=

1

s2 + a1s + a0

(18)

Remark 4.1 For deriving the transfer function of a linear system in the
Laplace space all initial states are set to zero!

Transfer functions are very convenient for describing a system graphically
by a block diagram. There they can be combined as shown in Figure 2.

5 Inserting Control

The next goal will be to manipulate the behavior of the system, by applying
a controller to it. A normal configuration for a controlled system is shown
in Figure 3. The input-output relation of such a system can be described in
the Laplace space by:

y = G(s)u (19)

u = C(s)v = C(s)(r − y) (20)

⇒ y =
C(s)G(s)

1 + C(s)G(s)
r (21)

Equation (19) is normally referred to as the transfer function of the (un-
controlled) plant, while equation (21) represents the transfer function of the
controlled plant or the closed loop system respectively. The control law for
the system is given by equation (20).

In the following we want to study more detailed how to chose the transfer
function C(s) in the control law (20) in order to manipulate the closed loop
system behavior. The most common controllers are build up by summing
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Figure 2: Combining Transfer functions

the three elementary control units:

Name Transfer function equation in the time domain

P (proportional) KP u = KP v

I (integral) 1
s
KI u = KI

∫ t

0
v dt

D (derivative) sKD u = KD
d
dt

v

A common criteria for evaluating the performance of a controller is the
response of the closed loop system upon a step input:

r(t) = θ(t) =

{
0, t ≤ 0
1, t > 0

(22)

By regarding the step response of the closed loop system, the manipulation
capability of different controllers shall be demonstrated. To begin with a P
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Figure 3: Controlled system

controller shall be applied to the second order plant:

ÿ + a1ẏ + a0y = u → G(s) =
y(s)

u(s)
=

1

s2 + a1s + a0

(23)

Based on equation (21) the transfer function of the closed loop system be-
comes:

y

r
=

Kp

s2+a1s+a0

1 + Kp

s2+a1s+a0

=
Kp

s2 + a1s + a0 + Kp

(24)

The poles of the transfer function are determining the denominators of its
partial fraction expansion, which can be related directly to the exponents of
the exponential functions in the time domain. Therefore the poles of a trans-
fer function provide some significant information about the system behavior.
For the transfer function (24) the poles can be expressed analytically as:

s1,2 = −a1

2
±

√
a2

1

4
− (a0 + KP ) (25)

Due to the importance of the poles for the dynamical behavior of a system,
the dependence of their locus upon a parameter of the controller (KP ) is
therefore sometimes expressed graphically in the so called root locus plot.
An example for such a plot is given by Figure 4. The plots for the step
response are shown in Figure 5. There the dotted lines indicate the final
value of the system output. With regard to that Figure one can observe,
that an increase of KP leads to:

• a faster increase of the system output,

• a smaller steady-state error (difference between the final output value
and the step input),

• a higher overshoot.

Especially because of the last property one cannot increase the proportional
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Figure 4: Root locus for the system (24) with a1 = 2 , a0 = 0.2

gain KP arbitrarily. Instead of that one adds an integral or a differential
element to the control law (or both). The main advantage of the integral el-
ement is its capability to cancel any steady state error, while it increases the
overshoot. The derivative or D-part of the controller is able to decrease the
overshoot, while it is not affecting the steady-state error significantly. There-
fore a commonly used control architecture is the so called PID controller,
which is formed by the sum of a proportional an integral and a derivative
element. The transfer function of the PID controller is:

C(s) =
u

v
=

KDs2 + KP s + KI

s
(26)

Consequently the transfer function of the closed loop second order system
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Figure 5: Step response for the system (24) with a1 = 2 , a0 = 0.2

becomes:
y

r
=

KDs2 + KP s + KI

s3 + (a1 + KD)s2 + (a0 + KP )s + KI

(27)

From (27) the transfer function of the PD controlled system can be derived
by setting KI = 0. In that case one would get:

y

r
=

KDs + KP

s2 + (a1 + KD)s + a0 + KP

(28)

In the PD and PID controlled case it is possible to achieve any desired pole
configuration of the closed loop system, because except of the coefficient in
front of the highest order term all coefficients of the denominator polynomial
are independently selectable by the parameters of the controller!

A possible problem of the above introduced PID controller lies in the
availability of the used signals. This can be understood by writing the control
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Figure 6: Block diagram of controlled system
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Figure 7: Block diagram of the controller in Figure 6

equation (20) for the PID controller in the time domain. There it becomes:

u(t) = KD
d

dt
(r − y) + KP (r − y) + KI

∫ t

0

(r(τ)− y(τ))dτ (29)

For practical application the differentiation of a measured signal (r−y) should
be avoided. By assuming that y and ẏ are directly measurable one could use
the following control law instead:

u(t) = −KDẏ + KP (r − y) + KI

∫ t

0

(r(τ)− y(τ))dτ (30)

Applying this control law, one gets for the closed loop transfer function:

y

r
=

KP s + KI

s3 + (a1 + KD)s2 + (a0 + KP )s + KI

(31)

The related block diagrams are shown in Figure 6 and Figure 7.
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6 Homework

1. What kind of controller is required for being able to freely chose the
poles of the closed loop system, if the plant dynamics are given by:

ẏ + ay = u

2. Between the Laplace space and the time domain, the following relation
holds:

lim
t→∞

f(t) = lim
s→0

sF (s)

Use this relation to calculate the final value of the PD and the PID
controlled system upon a step input (r(s) = 1

s
)

3. In order to achieve steady state accuracy with a PD controller, someone
suggests to use the control law:

u = (KDs + KP )(kvr − y)

How has the gain kv to be chosen for that purpose? How can the block
diagram (Figure 3) be modified accordingly?

4. Given the second order plant (23) with a1 = 1 , a2 = 2. Calculate the
gains of a PID controller, such that the closed system has the following
pole configuration:

s1 = −2 , s2 = −1.5− j , s3 = −1.5 + j

5. Implement the system in Simulink. (use the step function as input)
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7 How to chose the poles of the transfer func-

tion
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Figure 8: Step responses with ITAE pole configuration

The incorporation of a controller in the system allows to manipulate the
pole configuration of the transfer function. In that context the question
arises what pole configuration is desirable. A possible way for answering this
question can be given by examining the influence of the pole configuration
upon the step response of the system.

Very often the minimization of the ITAE (Integral Time multiplied Ab-
solute Error) criteria is used for determining the optimal pole configuration.
The ITAE criteria is defined as:

IITAE =

∫ ∞

0

t|e(t)|dt (32)
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The optimal step responses with respect to the ITAE criteria is achieved by
the following pole configurations:

system order n basis pole configuration
1 −1
2 −0.7071± 0.7071j
3 −0.7071 − 0.521± 1.068j
4 −0.424± 1.263j − 0.626± 0.4141j

The related step responses can be seen in Figure 8.

8 Frequency response characteristic
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Figure 9: bode([1],[1 1.4 1])

Another important tool in the analysis of a dynamical system is the fre-
quency response characteristic, which describes the output or response of a
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Figure 10: nyquist([1],[1 1.4 1])

system upon an harmonic input. From the theory of linear differential equa-
tions it is known, that the partial solution of harmonically disturbed linear
system:

y(n) + an−1y
(n−1) + ... + a1ẏ + a0y = cos(ωt) = Re

{
ejωt

}
(33)

is given by an oscillation of the same angular frequency. Hence for the partial
solution one can use the approach:

yp = b1 cos(ωt) + b2 sin(ωt) = Re
{
dejωt

}
(34)

with d ∈ C. The relation between the coefficients b1 , b2 and the complex
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vector d is:

d = ejφ
√

b2
1 + b2

2 (35)

φ = − arctan

(
b2

b1

)
(36)

The frequency response characteristic of a system describes the dependence
of the vector d upon the angular frequency ω of the input. The calculation
of d can be done by inserting (34) into (33):

Re
{
d(jω)nejωt + an−1d(jω)(n−1)ejωt + ... + a1djωejωt + a0dejωt

}
= Re

{
ejωt

}

⇒ d =
1

(jω)n + an−1(jω)(n−1) + ... + a1jω + a0

(37)

Equation (37) is normally referred to as the frequency response characteristic
(FRC) of the system:

y(n) + an−1y
(n−1) + ... + a1ẏ + a0y = u (38)

Interestingly the FRC of a linear system can be achieved directly from its
transfer function by replacing s by jω!

There are mainly two ways for visualizing the vector d:

• The so called Bode diagram, where the amplitude and the phase angle
of d are plotted separately.

• The so called Nyquist diagram, where d is directly plotted in the com-
plex plane.

Figure 9 shows the Bode diagram for the linear system with the transfer
function:

G(s) =
Y

U
=

1

s2 + 1.4s + 1
(39)

The Nyquist diagram for the same system can be seen in Figure 10.
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