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ABSTRACT

Volumetric data acquisition and increasingly massive data storage have increased the need to develop better
analysis tools for three-dimensional data sets. These volumetric data sets can provide information beyond that
contained in standard two-dimensional images. Common strategies to deal with such data sets have been based
on sequential use of two-dimensional analysis tools. In this work, we propose using an extension of the wavelet
transform known as the shearlet transform for the purpose of edge analysis and detection in three-dimensions.
This method takes advantage of the shearlet transform’s improved capability to identify edges compared to
wavelet-based approaches.
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1. INTRODUCTION

The desire to locate perceptible changes in image intensity or edges has received a considerable amount of
attention corresponding with the ongoing need to detect and estimate features. For a given image I := [0, 1]2 →
[0, 1], the collection of edge intensities are

E =
{
e ∈ [0, 1]2 : |∇I(e)| ≥ h

}
, (1)

where the magnitude of the gradient of I is above a scalar threshold h ∈ [0, 1] for each element e. Edge
detection applications include imagery collected from medical sensors and surveillance video, and many others.
Automating the extraction of image features and detecting small but important jumps in intensity has proven
difficult with many problems yet to be resolved. Real world data often provides many illumination changes,
occlusions, complicated clutter, and noise that challenges the robustness of the latest technology. Even under
ideal conditions, edge features are blurred or lost for edges that run close together. To mitigate the effects of
noise, the image should first be smoothed with a low-pass averaging filter or a Gaussian filter to remove higher
frequency information. This is accomplished by choosing a particular standard deviation σ for a Gaussian filter
Gσ and convolving it with the image I to generate a smoothed image

Iσ = I ∗Gσ. (2)

The drawback to this step is choosing the correct image specific standard deviation. There is a delicate balance
between removing unnecessary noise and possibly losing information. Multi-dimensional data sets add an addi-
tional degree of freedom for edges to change directions. Two-dimensional wavelet and shearlet approaches have
proven effective in isolating edges at different scales. The continuous wavelet transform of image I is given by

WϕI(M, τ) = 〈I, ϕM,τ 〉 = a−1

∫

R

I(x)ϕ(a−1(x− τ)) dx, (3)

where M = aI is an the identity matrix I scaled by a > 0. The analysis functions

ϕM,τ (e) = | detM |− 1
2ϕ(M−1(e− τ)), τ ∈ R

2, (4)
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are well localized waveforms that can decompose images I ∈ L2(R2) so that

I =

∫

R2

〈I, ϕM,τ 〉ϕM,τ dτ. (5)

By analyzing the the magnitudes of 〈I, ϕM,τ 〉 as a function of scale a, edge detection techniques can be
developed. Unfortunately, the wavelet approach does not isolate any directional information. The wavelet
transform is isotropic since the dilation factor is the same in all coordinate directions. Therefore, the wavelet has
poor angular accuracy for edges that cross or have sharp curvature. Multi-directional shearlet analysis, on the
other hand, has demonstrated better success at isolating edges whose orientations change in complicated ways.
Given the analyzing function

ϕa,s,τ (e) = | detM |− 1
2ϕ(M−1

a,s (e− τ)) (6)

where Mas =
(

a −√
as

0
√
a

)
, a ∈ R

+, s ∈ R, and τ ∈ R
2, the continuous shearlet transform is defined as

SHϕ : I → SHϕI(a, s, τ) = 〈I, ϕa,s,τ 〉 . (7)

The matrix Mas performs both the shearing and anisotropic dilation. Likewise, these directional waveforms
decompose images in L2(R2) so that

I =

∫

R2

∫ ∞

−∞

∫ ∞

0

〈I, ϕMas,τ 〉ϕMas,τ

da

a3
ds dτ. (8)

These analyzing functions can represent scale, location and orientation of important image features such as edges.

The edges can be precisely characterized from the asymptotic decay of SHϕI(a, s, t). Given the collection of
edge locations E, these characteristics are:

• If τ /∈ E, then SHϕI(a, s, τ) decays rapidly, as a → 0, for each s ∈ R. By rapid decay, we mean for any
N ∈ N there is a CN > 0 such that |SHϕI(a, s, τ)| ≤ CNaN as a → 0.

• If τ ∈ E and E is smooth near τ , then |SHϕI(a, s, τ)| decays rapidly as a → 0, for each s ∈ R unless s = s0
is the normal orientation to E at τ where SHϕI(a, s, τ) ∼ a

3
4 , as a → 0.

• If τ is a corner point of E and s = s0, and s = s1 are normal orientations to the E at τ , then |SHϕI(a, s0, τ)|,
|SHϕI(a, s1, τ)| ∼ a

3
4 as a → 0. For all other orientations the asymptotic decay of |SHϕI(a, s, τ)| is faster.

Up to this point, attention has been focused on one image at a time without regard for the possibility of
processing an image sequence as a whole. Extending the wavelet edge detection routine to 3D data gives extra
information that will likely help mitigate noise and improve identification. Our intent is to demonstrate the
advantage of processing a cube of data representing video instead of sequentially on a frame by frame basis. The
multi-scale, multi-directional aspect of the 3D shearlet transform should track edge information better than the
3D wavelet transform because of its added directional selectivity. It is interesting to note that, to the best of
our knowledge, a 3D continuous wavelet transform has never been developed for this purpose before.

To understand the directional selectivity, one should realize that the 3D shearlet transform divides the spatial
frequency domain into a number of filters shaped like hyper-trapezoids, as shown in Figure 1. Specifically, 3D
shearlets are constructed by first restricting the subspace of L2(R3) to be L2(C(1))∨ = {f ∈ L2(R3) : suppf̂ ⊂
C(1)}, where C(1) is the horizontal cone in the frequency plane:

C(1) =

{
(η1, η2, η2) ∈ R

3 : |η1| ≥ 2,

∣∣∣∣
η2
η1

∣∣∣∣ ≤ 1and

∣∣∣∣
η3
η1

∣∣∣∣ ≤ 1

}
. (9)

We consider the shearlet group

Λ(1) =

{
(Mas1s2,x) : 0 ≤ a ≤ 1

4
,−3

2
≤ s1 ≤ 3

2
,−3

2
≤ s2 ≤ 3

2
, x ∈ R

2

}
(10)



where Mas1s2 =

(
a −a1/2s1 −a−1/2s2

0 a1/2 0
0 0 a1/2

)
. Then the following (see Proposition 2.1 from 3 ) defines the conditions

on the function ϕ(1) to generate a continuous shearlet transform on L2(C(1))∨, where the shearlet analyzing

function is ϕ
(1)
as1s2x(y) = | detMas1s2 |−

1
2ϕ(1)(M−1

as1s2
(y − x)). For η = (η1, η2, η3) ∈ R

3, η1 6= 0, let the function

ϕ(1) be such that

ϕ̂(1)(η) = ϕ̂(1)(η1, η2, η3) = ϕ̂1(η1)ϕ̂2

(
η2
η1

)
ϕ̂2

(
η3
η1

)
. (11)

If ϕ1 ∈ L2(R) satisfies the Calderòn condition
∫ ∞

0

|ϕ̂1(aη)|2
da

a
= 1 for a.e. η ∈ R (12)

with supp ϕ̂1 ⊂
[
−2,− 1

2

]
∪
[
1
2 , 2

]
and ‖ϕ2‖L2 = 1 with supp ϕ̂2 ⊂

[
−

√
2
4 ,

√
2
4

]
, then

I(u) =

∫

R3

∫ 3
2

− 3
2

∫ 3
2

− 3
2

∫ 1
4

0

〈I, ϕ(1)
as1s2

〉ϕ(1)
as1s2

(u)
da

a4
ds1 ds2 du (13)

for all I ∈ L2(C(1)).

In the frequency domain a shearlet ϕ
(1)
as1s2 is defined by

ϕ̂(1)
as1s2x

(η1, η2, η3) = aϕ̂1(aη1)ϕ̂2(a
− 1

2 (
η2
η1

− s1))ϕ̂2(a
− 1

2 (
η3
η1

− s2))e
−2πiηx. (14)

Therefore, the functions ϕ̂
(1)
as1s2x have supports in the sets:

{
(η1, η2, η3) | η1 ∈

[
−2

a
,− 1

2a

]
∪
[
1

2a
,
2

a

]
,

∣∣∣∣
η2
η1

− s1

∣∣∣∣ ≤
√
2

4
a

1
2 ,

∣∣∣∣
η3
η1

− s2

∣∣∣∣ ≤
√
2

4
a

1
2

}
. (15)

The frequency support is a pair of hyper-trapezoids that are symmetric with respect to the origin with orien-
tation determined by slope parameters s1 and s2 and become elongated as a → 0, as indicated in Figure 1.
This construction is further extended to cover the entire space L2(R3) by forming similar components valid on
complementary cone regions for the generating functions ϕ(2) and ϕ(3) (see 3 for more details). The superscript
is then dropped and the notation ϕ is simply used to denote the combined generating functions.
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Figure 1. The support of a 3D shearlet ϕ̂as1s2x
in the frequency domain with a = 1/4 and s1 = s2 = 0.

To characterize singularities (edge point locations), consider the example of the 3D Heaviside function
H(y1, y2, y3) = 1{y1>0}(y1, y2, y3) where 1Y denotes the characteristic function of the set Y . It is then known
the following are true for SHϕH(a, s1, s2, x) = 〈H,ϕas1s2x〉:



• If x = (x1, x2, x3), with x1 6= 0, then

lim
a→0+

a−NSHϕH(a, s1, s2, x) for all N > 0.

• If s1 6= 0 or s2 6= 0, then
lim

a→0+
a−NSHϕH(a, s1, s2, x) for all N > 0.

• If x1 = s1 = s2 = 0, then
lim

a→0+
a−1SHϕH(a, s̄1, s̄2, x) 6= 0.

This means the continuous shearlet transform of H has rapid asymptotic decay as a → 0, unless x is on the
plane y1 = 0 and s1, s2 correspond to the normal direction to the plane. For planes with arbitrary orientation
whose normal vector is given as (sinφ cos θ, sinφ sin θ, cosφ), the continuous shearlet transform will have rapid
decay, except for x on the plane and (s1, s2) satisfying s1 = tan θ, s2 = cotφ sec θ.

In general, let Ω be a region in R
3 with boundary denoted by ∂Ω. We assume the boundary is smooth and

has positive Gaussian curvature at every point. If B = 1Ω, then we know3:

• If x /∈ ∂Ω, then
lim

a→0+
a−NSHϕB(a, s1, s2, s2, x) = 0 for all N > 0.

• If x ∈ ∂Ω and (s1, s2) does not correspond to the normal direction of ∂Ω at x, then

lim
a→0+

a−NSHϕB(a, s1, s2, s2, x) = 0 for all N > 0.

• If x ∈ ∂Ω and (s1, s2) = (s̄1, s̄2) corresponds to the normal direction of ∂Ω at x, then

lim
a→0+

a−1SHϕB(a, s̄1, s̄2, x) 6= 0.

These results establish that edge points can be located by analyzing the asymptotic rate of change of the
magnitudes of the 3D shearlet coefficients as a function of scale. This means that the concepts developed in 9

can be extended and will be valid for 3D shearlets.

2. IMPLEMENTATION

Our use of the 3D wavelet and 3D shearlet transforms for edge detection is an extension of the routines developed
in 9 . The horizontal and vertical, and time components of the transform are computed separately and then
reassembled in the end. The first critical step for both the wavelet and shearlet processing is to compute the
3D gradient-like components of the image. The continuous scaling is then accomplished by using repeatedly

a weighted average filter or mask A =
(

1 2 1
2 4 2
1 2 1

)
extended in a similar manner into the third dimension that

gives more emphasis to the central pixels. This repeated application of the smoothing filter is used to behave
as the continuous dilation of the waveforms. The shearlet directional filtering is accomplished by creating the
appropriate frequency formed hyper-trapezoid filters. These directional components are specifically constructed
by multiplying the 2D constructed directional components developed in 9 . A different scale of the image is
processed each time the image is convolved with the average filter and represents a different amount of smoothing.
This achieves an effect similar to the Canny edge detection process of initially smoothing the image with a
Gaussian function at a particular standard deviation. The drawback to the Canny method is choosing the
correct standard deviation, as this can be image-specific. Our 3D wavelet and 3D shearlet based methods, on
the other hand, can accumulate the gradient information present at multiple scales and thus does not suffer from
the same problems as a Canny detector.

It is important to note that the extension of these methods into 3D present some difficult issues. One of
these issues is how to appropriately compensate for smoothing that is done in the horizontal, vertical, and time



directions. Our current method of isolating the edges is accomplished by applying a thresholding step to both
the wavelet and shearlet based edge nominations to further refine these nominations and help separate the edge
information from noise. Next, a hysteresis thresholding step is applied to both wavelet and shearlet to further
refine the edges and help separate edge information from noise. This process includes first setting all values above
the high threshold T2 to one and setting all values below the low threshold T1 to zero. Those values between
the high and low threshold are retained only if the pixel is connected to a pixel whose intensity is greater than
the high threshold. Finally, a morphological-like process is used to thin the remaining nominated edges by
projecting a non-weighted ideal 3D gradient nomination onto the wavelet and shearlet based edge nominations.
This method has proven satisfactory, yet we are still in the process of developing better compensation strategies.

3. EXPERIMENTAL RESULTS

In this section we compare the results of our 2D and 3D wavelet edge detection schemes with the 2D and 3D
shearlet edge detection schemes. In all experiments, only four scales were processed as this proved adequate.
Our experiments use synthetic data to better analyze the performance of the 3D shearlet transform compared
to the 3D wavelet transform using known truth data. One of these data sets is a 3D image consisting of a solid
spherical harmonic shape located in the center of a cube. The spherical harmonic functions are solutions of
Laplace’s equation

∇2V = 0 (16)

for spherical polar coordinates. Our experiments used a spherical harmonic of order 2 and degree 7, shown
in Figure 2. Here there are 7 symmetrical structures with 2 lobes on each structure. These functions are

Figure 2. Spherical harmonic truth data

useful because they describe rotation invariant structures for 3D surfaces and present good directionally oriented
shapes to test the directional sensitivity of the routines. The first experiment consists of performing the 3D
shearlet transform and the 3D wavelet transform based routines on the solid spherical harmonic. This data
set was subjected to identically distributed additive white Gaussian noise with a standard deviation σn = 0.2.
To demonstrate the improvements by considering the third dimension, we have also done comparisons with the
previously developed 2D routines by applying them separately to a sequence of images creating the dataset. The
results are displayed for the wavelet transforms in Figure 3 and for the shearlet transforms in Figure 4. In this
test, the results indicate that the 3D edge detection routines give a more complete representation of the surface
in the presence of noise with fewer artifacts than their 2D counterparts. The contour plots shown only display
points with a resulting magnitude of .9 or greater. This presentation has a drawback in not displaying all of the
noise present in the result.



Figure 3. Results for spherical harmonic with noise for 2D (left) and 3D (right) wavelet routines.

Figure 4. Results for spherical harmonic with noise for 2D (left) and 3D (right) shearlet routines.

The next experiment involves tracking a solid moving ball of known trajectory through an image sequence.
This solid 2D ball spirals around the origin at a given number of frames. A few frames of the image sequence
are shown in Figure 5. Both 2D and 3D wavelet transforms are applied to this sequence of images to detect the
edges and the results are displayed in Figure 6. Also both the 2D and 3D shearlet transforms are applied to the
same sequence of images to detect the edges and the results are given in Figure 7.

4. CONCLUSION

We have demonstrated the value of applying multi-scale and multi-directional transforms to detect edges in
a sequence of images. As expected, extending the traditional 2D wavelet and shearlet transforms to three
dimensions has provided more information and improved the detection performance. In particular, the 3D
shearlet routine developed so far is especially effective in the presence of noise because it takes edge direction into
account. We anticipate further improvements in these routines’ performances as we devise better compensation
methods for the directional spread we noted earlier.



Figure 5. Ball spiraling without noise

Figure 6. Results of ball spiraling surface detected for 2D and 3D wavelet routines without noise added to data.
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Figure 7. Results of ball spiraling surface detected for 2D and 3D shearlet routines without noise added to data.

Figure 8. Results of ball spiraling surface detected for 2D and 3D wavelet routines with noise added to data.



Figure 9. Results of ball spiraling surface detected for 2D and 3D shearlet routines with noise added to data.


