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Abstract - -  Zusammenfassung 

Numerical Solution of Nonlinear Elliptic Partial Differential Equations by a Generalized Conjugate 
Gradient Method. We have studied previously a generalized conjugate gradient method for solving 
sparse positive-definite systems of linear equations arising from the discretization of elliptic partial- 
differential boundary-value problems. Here, extensions to the nonlinear case are considered. We split 
the original discretized operator into the sum of two operators, one of which corresponds to a more 
easily solvable system of equations, and accelerate the associated iteration based on this splitting by 
(nonlinear) conjugate gradients. The behavior of the method is illustrated for the minimal surface 
equation with splittings corresponding to nonlinear SSOR, to approximate factorization of the Jacobian 
matrix, and to elliptic operators suitable for use with fast direct methods. The results of numerical 
experiments are given as well for a mildy nonlinear example, for which, in the corresponding linear 
case, the finite termination property of the conjugate gradient algorithm is crucial. 

Numerische L6sung von nichtlinearen elliptischen partiellen Differentialgleichungen mit einer ver- 
allgemeinerten Methode der konjugierten Gradienten. Wir haben friiher eine verallgemeinerte Methode 
der konjugierten Gradienten studiert, um diinnbesetzte positiv definite Systeme von linearen Glei- 
chungen zu 16sen, die vonder  Diskretisierung von elliptischen partiellen Differential-Randwert- 
problemen herriihren. Wir betrachten hier die Verallgemeinerung auf den nichtlinearen Fall: Wir 
spalten den urspriinglichen diskretisierten Operator auf in eine Summe von zwei Operatoren. Einer 
yon diesen Operatoren entspricht einem leicht 16sbaren System von Gleichungen, nnd wir beschleuni- 
gen die aus dieser Spaltung hervorgehende Iteration mit (nichtlinearen) konjugierten Gradienten. 
Das Verhalten der Methode wird illustriert durch Anwendung auf die Minimalfl/ichen-Gleichung, 
mit Spaltungen entsprechend dem nichtlinearen SSOR-Verfahren, der angen/iherten Faktorisierung 
der Jacobi-Matrix, oder den elliptischen Operatoren, die sich fiir schnelle direkte Methoden eignen. 
Die Resultate yon numerischen Experimenten ffir ein nur schwach nichtlineares Beispiel sind ebenfalls 
angegeben. Ffir den entsprechenden linearen Fall ist in diesem Fall die Konvergenz des konjugierten 
Gradienten-Algorithmus in einer endlichen Anzahl von Schritten wesentlich. 

0. Introduct ion  

In  ea r l i e r  p a p e r s  [8, 9]  we h a v e  d i scussed  a g e n e r a l i z e d  c o n j u g a t e  g r a d i e n t  
i t e r a t ive  m e t h o d  for so lv ing  s y m m e t r i c  a n d  n o n s y m m e t r i c  pos i t ive -de f in i t e  
sys tems  of  l inea r  e q u a t i o n s ,  w i t h  p a r t i c u l a r  a p p l i c a t i o n  to  d i sc re t i zed  el l ip t ic  
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partial differential boundary-value problems. The method consists of splitting 
the original coefficient matrix into the sum of two matrices, one of which is 
a symmetric positive-definite one that approximates the original and corresponds 
to a more easily solvable system of equations; the associated iteration based on 
this splitting is then accelerated using conjugate gradients. The conjugate gradient 
(cg) acceleration algorithm has a number of attractive features for linear problems, 
among which are: (a) not requiring an estimation of parameters, (b) taking 
advantage of the distribution of the eigenvalues of the iteration matrix, and 
(c) requiring fewer restrictions for optimal behavior than other commonly-used 
iteration methods, such as successive overrelaxation. Furthermore, cg is optimal 
among a large class of iterative algorithms in that for linear problems it reduces 
a particular error norm more than does any other of the algorithms for the same 
number of iterations. 
In this paper we study an extension of the generalized conjugate gradient method 
to obtain solutions of systems of equations arising from elliptic partial-differential 
boundary value problems that are nonlinear. For such systems-- which correspond 
to the minimization of convex nonquadratic functionals, as opposed to quadratic 
functionals for the linear case--optimality and orthogonality properties of cg 
need no longer hold. Some algorithms for the nonquadratic case have been 
proposed [e. g., 10, 11, 14, 16, 20, 22] that preserve one or more of the quadratic 
case properties of finite termination, monotonic decrease of the two-norm of 
the error, conjugacy of directions of search, and orthogonality of the residuals. 
The method we discuss only approximates these properties, but is found to be 
effective for solving the discrete nonlinear elliptic partial differential equations of 
primary concern in our study. The method is closely related to the one studied 
in [3] for solving mildly nonlinear equations using a particular splitting. 

We discuss in section 1 several nonlinear conjugate gradient algorithms and 
in section 2 some convergence properties. In section 3 possible splitting choices 
for the approximating operator are described. A test problem for the minimal 
surface equation is discussed in section 4, and experimental results for several 
splittings are summarized in section 5. In section 6 are given experimental results 
for a test problem for a mildly nonlinear equation, for which, in the corresponding 
linear case, the finite termination property of cg is crucial. 
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P. Swarztrauber, and R. Sweet, who made available to us their excellent computer 
programs for solving separable elliptic equations with fast direct methods. The 
work reported here was supported in part by the U.S. Energy Research and 
Development Administration, by the Fannie and John Hertz Foundation, and 
by the National Science Foundation. 
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1. Nonlinear Conjugate Gradient Algorithms 

In the linear case, the generalized conjugate gradient method [9J solves the 
N x N positive-definite system of equations 

A x = b (1) 

or, equivalently, minimizes the quadratic form 

= 2  x r  A x -  x T b. (2) f ( x )  

Let M be a positive-definite symmetric N • N matrix, chosen to approximate A. 

Then for symmetric A the algorithm, as described in [9] in its alternative form, is: 

Let x (~ be a given vector and define arbitrarily p(-1). For k =0, 1 . . . .  

(i) Calculate the residual r(k)= b--A x (k) and solve 

M z (k) = r (k). (3) 

(ii) Compute the parameter b(k 1), where b(o 1) = 0  and 

z(k) r r(k) 

b[ l )=z (k_ lVr (k_ l )  , k>_ l ,  

and the new direction p(k) = z(k) + b(kl) p(k- 1). 

(iii) Compute the parameter 
g(k)r r(k) 

a(1) 
k - -  p(k)T A p(k)' 

and the new iterate x (k+ 1) = x(k) + a(kl) p(k). 

In place of the parameters @) and b(k 1), one may use instead equivalent ones 
[18, 26], such as 

p(k) T r(k) z(k)V A p(k-1)  

a (2) p(gVAp(k )  o r  b(k 2 ) -  p ( k _ l ) T A p ( k _ l  ). 

Instead of computing the residual r (k) explicitly for k_> 1, as in (i), it is often 
advantageous to compute it recursively as  r (k) = r (k-  1) _ ak_ 1 A p(k -  1). 

The effectiveness of the algorithm (i, ii, iii) is discussed in [9] for cases in which 
A is a sparse matrix arising from the discrefization of an elliptic partial 
differential equation and M is one of severn sparse matrices arising naturally 
from A. 

For the nonlinear case, we consider solving the system of equations 

g (x) = 0 (4) 

arising from minimizing f ( x ) ,  where g (x) is the gradient off(x) .  (For the linear 
case (1, 2), g (x) = A x - b; in either case, g (x) is the negative of the residual.) 
We assume that the Jacobian matrix J of (4) is positive-definite and symmetric, 
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and, as for the linear case, we are interested in those situations for which (4) is 
a discrete form of an elliptic partial differential equation and, correspondingly, 
J is sparse. 

The approximating matrix M for the linear case is chosen in [9] to be one of 
several positive-definite symmetric matrices approximating A naturally in some 
manner. For the nonlinear case, we consider related choices for M to approximate 
J, although sometimes M may not be linear, symmetric, or everywhere positive- 
definite. We pattern after (i, ii, iii) the following algorithm (see also [3]). 

Let x (~ be a given vector and define arbitrarily p(-1). For k=0,  1, ... 

(Ni) Calculate 

r (k) = _ g (x  (k)) 
and solve 

M z (k) = r (k) . (5) 

(Nii) Compute bk----b(k t) or b(k 2), where bo = 0 and 

z(k)~ r(k) z(k) j (x(k)) p ( k -  1) 
b(~)= b(k2) = 1) ~ p(k-1)'  k>_l k z ( k -  1) r r ( k -  1)' p(k- j (x(k)) 

and 
p(k) = z(k) -t- b k p ( k -  1). 

(1) a(k 2), where (Niii) Compute ak-----a k or 
z(k)r r(k) 

a(k 1) 
----p(k)~ j (x(k)) p(k)' 

and 

a(k 2) : p(k) r r(k) 

p(k) T j (x(k)) p(~)'  

~(k) x(k + l ) -~ X(k) -Jr ak F . 

The algorithm (i, ii, iii) for the linear case is generally iterated without any restarts 
(setting of bk to zero for some value of k > 0); however the nonlinear algorithm 
(Ni, Nii, Niii) is usually restarted periodically to enhance convergence (see 
sections 2 and 5). For some of the splittings we consider and in the presence of 
roundoff error, the numerator of a(k z) may not be positive for some values of k. 
If it is not, then we find it convenient for these values of k to replace p(k) by its 
negative. 

2. Convergence 

In the form (Ni, Nii, Niii) the algorithm of section 1 cannot be guaranteed to 
converge. However, by introducing a line search to choose ak so that f ( x )  is 
minimized along the line x(k)+ ak p(k), by ensuring that M is positive definite, 
and by restarting the iteration periodically, convergence can be guaranteed. 
Convergence in this case can be shown by application of Zangwill's spacer step 
theorem [30], which states that if a closed algorithm with descent function f 
is applied infinitely often in the course of another algorithm that maintains the 
property 
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f (xtk + 1)) <__f (x(k)) 

for all k, and if 

{x :f(x) _ f  (x(m)} 

is compact, then the composite algorithm converges. 

We have the following theorem: 

Theorem 1: I f  the nonlinear conjugate gradient algorithm is modified to calculate 
ak by 

a k = rain {fi : f ( x  (k) + ~t p(k)) <_f(x(k) + a p(k)) V a e (0, c~)} 
a~ pt 

and if the iteration is restarted every ~ steps, then the algorithm is globally 
convergent (i, e., will converge from any initial point x (~ to x* such that f (x*) is a 
minimum o f f ( x )  over E N. 

Proof:The sequence ~(x(k))} is monotone non-increasing and every ~ steps 
we take a scaled steepest descent step. Since scaled steepest descent is a convergent 
algorithm, we can conclude by Zangwill's spacer step theorem that our algorithm 
converges. 

This algorithm can be quite slow due to time consumed in line searches. In 
order to avoid a line search at every iteration, we impose additional constraints 
on the stepsize so that we can guarantee that f is monotone non-increasing at 
each stage of the iteration. We have the following theorem: 

Theorem 2: I f  the conjugate gradient iteration is restarted every a steps with the 
first step length in each cycle calculated by a line search, and if no conjugate 
gradient step causes an increase in the function f (x), then the iteration will be 
globally convergent to x* that minimizes f (x). 

Proof: By direct application of the spacer step theorem. 

If the function f ( x  (k)) is explicitly available, then we can accept our original 
definition of a k if 

f (x(k + 1)) N f  (X (k)) 

and do a line search if this test fails. 

Lemma 1: Let ak be chosen by the rule 

~ atk 1) (or a(k 2)) if f(x(k)+a~l)p(k))~f(x(k)) (or f(x(k)+a(k2)p(k))<f(x(k))) 

ak = ( a~Pt otherwise. 

Then f (x) is monotone non-increasing at the k-th step. 

If we have available only values of g (x) and J (x) at our iterates and not f(x),  
we must make use of conditions that imply that f is decreasing. 



326 P. Concus, G. H. Golub, and D. P. O'Leary: 

Because f is convex, 

p (k)~ g (X (k) -b a p(k)) 

will be a monotone increasing function of a that is negative at a = 0 and is 0 
a t  a = a~ pt, the point at which f attains its minimum on the line from x (k) in 
the direction p(k). 

If am,x is chosen such that 

a~, x = rain {a > a~ pt : f ( x  (s) -k a p(g)) =f(x(g))} 

then we can deduce that f ( x  (k+ ~)) will be less than f (x (s)) if 0 < a < a~,~. Without 
further information (e.g., that obtained through a line search), we cannot 
calculate am,~- We can, however, easily verify whether a <  a~ pt and this will 
give us a sufficient condition for convergence: 

Lemma 2: Let ak be chosen by the following rule: 

a~" (or a~ 2)) if p(k~ ~g (x(s~+ a~l)p(s~) < 0 (or p(k)T g (X(S~+ a~2~ r < O) 
as = ( a~, pt otherwise. 

Then f (x (k + 1)) <_ f (x(k)). 

If we have information on the curvature of the funct ionf  we can derive an alternate 
condition. Consider the Taylor series expansion o f f  at X(k+l): 

f ( x ( k + l ) ) _ _ f ( x t k ) )  = asg(X(k))~ptk)  1 2 (sV + ~ as p d (w) p(S), (6) 

where w is between x (k) and x (k- ~), and suppose we know that 

0 < d <_ 2 (J (x)) 

for all x in a convex set including all iterates. Then the right hand side of (6) 
can be guaranteed to be negative if 

- 2  g (x(k)) ~ p(S) 

ak < d p(k) ~ p(k) 

This gives an alternate condition for convergence: 

Lemma 3: Let ak be chosen by the rule 

29(x(k)) 'p (k) or a(k 2)< ~ / p ~  ; 
~ = a~ 1) (or a(~ ~)) if a~  < d p(~)" p(~) 

[ a~ t't otherwise. 

Then f (x) is non-increasing at that step. 

In general, each of the conditions in lemma 1 through lemma 3 is quite restrictive, 
but verifying any one is sufficient for descent at a given step. Thus an algorithm 
might incorporate facilities for testing each of the conditions successively if the 
preceding ones did not verify descent. This would keep the additional operational 
overhead for the algorithm low. 
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Notice that we do not need constraints on the bk (other than bk ~0),  the 
parameters that determine the step direction, in order to guarantee convergence. 
In our numerical experiments (section 5), we have observed that for the test 
problem considered here the algorithm is less sensitive to choices of the parameter 
bk than to choices of ak. It was found, on the other hand, for the problem studied 
in [25] with small N (,-~ 100), dense Jacobian, and exact line searches for a, that 
the cg algorithm could be quite sensitive to the choice for b. 

3. Choice of Splitting Operator 

We consider several choices for the splitting operator M. All the choices attempt 
to approximate the Jacobian J with an operator that is computationally easier 
to invert. 

First, we consider choices related to the nonlinear block successive overrelaxation 
method, which has been found to be efficient for solving nonlinear elliptic 
equations [6, 7, 24, 27]. This method obtains from the residual r ~k) an increment 
z (k) = M - 1  r(k) that is added to x ~k) to obtain a new approximation 

x~k+ 1) = X~k) + z(k). (7) 

Equation (7) is the underlying first-order iteration that is accelerated by means 
of the conjugate gradient algorithm in (Ni, Nii, Niii). 

Let x, g (x), and J (x) be subdivided into blocks, for example those corresponding 
to rows of points on a rectangular mesh for the finite difference approximation 
to a partial differential equation 

x2 g2 
x = , g ( x )  = 

m 

a ( x )  = 

J l l  J12 ... Jim] 
J21 J22 .-. J2m 

[ 
Jml J~2 ... J m 

For standard discretization of elliptic equations, J has small block bandwidth, 
and its blocks are sparse. In two dimensions on a rectanglar mesh, for the nine- 
point discretization we shall consider here for the minimal surface equation, 
J is block tridiagonal with tridiagonal blocks [6]. 

We consider first the one-step block successive overrelaxation-Newton (BSOR- 
Newton) iteration [-24]. For it, the (k + 1)-th approximation to x j  is obtained from 
the (k)-th by 

x(k + l ) = x}k) j - o o J ~ j l g j ,  j = l ,  2 . . . . .  m, (8) 

where g (x) and J (x) are evaluated at the latest values for x, and co is an 
acceleration parameter. If we partition the residual r = - g ( x )  in the same 
manner as g (x), then we can write (8) as 

x } k +I )=  xSk) +cg.I]5 i rj, j = l ,  2 , . . . ,m 



328 P. Concus, G. H. Golub, and D. P. O'Leary: 

to correspond with our earlier notation. The banded, positive-definite system 
of equations 

J j j  zj  = co rj  

can be solved efficiently in a numerically stable manner using Gaussian elimi- 
nation, without pivoting, or Cholesky factorization. 

For  linear problems, BSOR is not suitable for use with conjugate gradient 
acceleration because its iteration matrix is not similar to a symmetric one. A 
symmetrized variant is suitable, however. This variant corresponds to ordering 
the equations alternately from blocks j = 1 to j = m for one sweep and then from 
blocks j - - m  to j = 1 for the next sweep; it is termed block symmetric SOR 
(BSSOR). For  BSSOR the solution of M z (k~ = r (k~ reduces to the solution of 

1 
(D d- co L)  D - l  (D + co U) z(k) = r(k), 0 < o ) < 2 ,  

co ( 2 -  co) 

where D is the block diagonal of A, L ( U )  is a strictly block lower (upper) 
triangular matrix, and A = L + D + U. Conjugate gradient acceleration has 
been found ' to  be particularly effective for BSSOR because of the distribution 
of the eigenvalues of the iteration matrix [1, 12, 17]. 

For  the nonlinear case we consider the correspondingly symmetrized variant 
of the one-step BSOR-Newton iteration, and we denote it by BSSOR-Newton. 

We consider also another extension of the BSSOR method. For  the case in which 
the calculation of the elements of J#  in (8) is costly, the symmetric form of the 
one-step Newton-BSOR method [24] can be more efficient. This algorithm 
applies a back and forth sweep of BSSOR to the Newton iteration step 

J (x (k)) z = -g(k)  = r(k) 

to obtain the increment z (k) in (7). As we did above for A, we write J (x (k)) = L + D + U, 
where b is the block diagonal of J (x (k)) and L (U) is strictly block lower (upper) 
triangular. Then for the choice of zero as initial approximation for z, and for 
z partitioned in the same manner as r, the back and forth BSSOR sweep is 

forward sweep : 

~k) = CO j ~ l  (r}k) _ [L ~(k)]j), j = 1, 2 . . . .  , m, 

followed by 

backward sweep : 

zj.~ = ~k~ + co j ~ l  (rjk~ _ [ L  ~k~ + D ~k~ + Cf z ~ % ) ,  j = m, m -  1 . . . . .  1. 

Here J and r are evaluated at x (k~. Note that the most recently obtained values 
of z are used in the computation of [J  z]j on the right hand sides. 

Either BSSOR-Newton or Newton-BSSOR are reasonable choices for the 
operator M for the conjugate gradient iteration. When x (k~ approaches the 
solution x* the Jacobian approaches J ( x * )  so that M, which changes from 
iteration from iteration, approaches a limit also. As a possible alternative, one 
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could fix M for a number of iterations by keeping J fixed at a value from an earlier 
iteration, updating only occasionally. 

Another choice for M that we consider approximates the Jacobian matrix directly. 
We choose M to be the approximate sparse L D  L r (Cholesky) factorization of 
the Jacobian, as developed by Meijerink and van der Vorst for the solution of 
linear elliptic problems [21]. The matrix L is chosen with a sparsity pattern 
resembling that of the lower triangular part of J, and the elements are obtained 
systematically from J by enforcing the sparsity structure as the approximate 
factorization proceeds. For linear problems this splitting has been found to 
yield an iteration matrix with eigenvalues favorably distributed for conjugate 
gradient acceleration [21]. 

For "M" matrices, Meijerink and van der Vorst proved in [-21] that the approxi- 
mate factorization can be carried out in a stable manner. For the problems we 
consider, the Jacobian may not be such a matrix; however, we did not encounter 
difficulty in carrying out the approximate factorization for our test cases. 

Finally, we consider approximating the Jacobian by a discretized separable 
operator, for which fast direct methods can be used [2, 5, 13, 19]. For our test 
problems we consider as a choice for M the discrete Helmholtz operator, possibly 
scaled by the diagonal of the Jacobian. 

4. First Test Problem 

The first test problem, for which the above splittings are compared, is that of 
solving numerically the minimal surface equation on a rectangle. This problem 
was used previously for studying the behavior of nonlinear relaxation methods 
[6, 7] and is of interest because of its strong nonlinearity. The minimal surface 
equation arises in finding a single-valued twice continuously differentiable 
function v (x, y) that attains given values on the boundary of a region R and 
minimizes the area integral over R [15]. This equation is 

d i v ( T V v ) = 0  on R, (9) 

where 7 (I V v [2) = ([ + IV v [2)- 1/2, with the boundary condition 

v = s ( x , y )  on 0R.  (10) 

We consider the domain 0 _< x _ 2, 0 _< y _  1. If s (x, y) is symmetric about 
x =  1, then the problem need only be solved on the unit square with the 
symmetry condition 

~v 
= 0  on x = l .  (11) 

Ox 

We discretize (9, 10, 11) in the same manner as is done in [6]. A square mesh 
of size h = 1/n is placed on the domain, and u~j denotes the approximation to 
v (x, y) at the mesh point x = i h, y = j  h. Then at the interior points we obtain, 
after multiplication by - 2 h 2, 
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gi, j ~  ~,j(2Hi, j - -Ui - l , j - -Ui ,  j-1)"~ ~+l,](2Ui,  j--Ui+l, j--Ui,  j -1)  
+?r , j+ l (2u~ , j -u i_ l , j - u~ , j+ l )+?r+l , j+ l (2u i ,~ -u i+ l , j - u i ,  i+l)---O, (12) 

i =  1 , 2 , . . . , n -  1; j = l ,  2 , . . . , n - 1 ,  

where ?c,7= ;~ ([ V u]~,7 ) approximates 7' ([ V vl 2) at ((i - 1/2) h, (j - 1/2) h), with 

I V u [ ~ , j = ~ I  [(ui, j _ u i _ l  j)2 + (ui , - u i , ~ _ l ) z  

+ (Ui, j -  1 -- U i _ I , j _ I )  2 At- (Ui_l, j -  U i - I , j - - I ) 2 ] ,  

i = l ,  2 , . . . ,n ;  j - l ,  2 , . . . ,n .  

Along the symmetry boundary we obtain 

g.,J = ~'~,i (2 u . , j -  u._ 1 , j -  u.,j_ 1) + ~,7+ 1 (2 u . , j -  u._ 1 , j -  u.,j+ 1) = O, 
j =  1,2 . . . . .  n-- 1. (13) 

In (12, 13) we do not group together explicitly the coefficients of u~,j and of 
u~+~,j+l, as is customary for the linear case, in order to emphasize that the 
problem is nonlinear and that the ~r, j are themselves functions of the u~j. 

The Jacobian matrix J is given by 

a positive-definite symmetric matrix that is block tridiagonal, with each block 
being tridiagonal. For this test problem, the calculation of 7}, y - - d  7r, j /d[V u172,7 
and of a can be carried out with only a modest amount of computational effort 
in addition to that required for calculation of the g~, 2" 

5. Experimental Results for the First Test Problem 

The test problem of section 4 was solved numerically for the same boundary 
data as was considered in [6, 7], 

v = 0  on x = 0  and y = l ,  

l) = s i n  g X on y = 0 ,  

and the symmetry condition (11). The following algorithms discussed in sections 
2 and 3 were used: 

L One-step block SOR-Newton 
II. One-step block SSOR-Newton. 

III. One-step block Newton-SSOR. 
IV. Conjugate gradient algorithm (with M the identity matrix). 
V. Conjugate gradient algorithm with M the BSSOR-Newton operator. 

VI. Conjugate gradient algorithm with M the Newton-BSSOR operator. 
VII. Conjugate gradient algorithm with M the Meijerink-van derVorst approxi- 

mate sparse factorization of J, renewed every restart. The sparsity pattern of 
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VIII. 

IX. 

the approximate factor is chosen to be identical with that of the lower triangular 
part of J (the ICCG(0) variant [-21]). 

Conjugate gradient algorithm with M = / k ,  - 2  h 2 times the discrete Laplace 
5 point operator [7 --- 1 in (12, 13)]. 
Conjugate gradient algorithm with M = D 1/2 ( A  + ~ I )D 1/2, where /~ is the 
operator of VIII. and D is the diagonal of J, renewed every iteration. ~c is a 
constant chosen so that the average of three sample values of the diagonal 
of J equals the diagonal of M. 

For the conjugate gradient algorithms each test used either a ~ or a (2) and either 
b m or b (2), with no line searches and none of the convergence safeguards 
developed in lemmas 1--3 of section 2. 

The algorithms are compared in terms of number of iterations and operation 
counts required to decrease the residual to specified values. In table 1 are given 
approximate operation counts for various phases of the algorithms. In tables 2 
and 3 are given the results of experiments carried out in double precision with 
FORTRAN programs on the IBM 360/168 computer for grids with spacing 
h =  1/16 and h =  1/32, for initial approximation u(~ The results were 
obtained originally in terms of the number of iterations, which were converted 
subsequently to multiplication counts by means of the cost factors. The cost 
factors relate to our test programs, which are not generally optimal but never- 
theless should give a reasonable basis for comparison. Note that an iteration of 
one of the SOR algorithms requires half the number of operations of an iteration 
of the corresponding symmetric form, which requires both one forward and one 
backward sweep. 

The columns, from left to right, in the tables correspond to successively larger 
values of ]Jr(k)[[2, the two-norm of the residual. The initial residual ][r(~ 2 is 
approximately 0.47 for the coarser mesh and 0.34 for the finer one. (Recall that 
the residuals are for (12, 13), which are obtained from (9) after multiplication by 
a factor proportional to h2.) 

From the tables, one observes that for this test problem the conjugate gradient 
algorithm with discrete Laplace operator splitting, with or without shift or 
Jacobian diagonal scaling, produces an algorithm favorably competitive with 
nonlinear block SOR in terms of operation counts. On the larger problem, 
the conjugate gradient algorithm with one of the nonlinear BSSOR splittings 
is also faster than nonlinear BSOR. As has been observed also for linear 
cases [1, 12, 17], the symmetric SOR algorithms accelerated by cg are less 
sensitive to the choice of relaxation parameter co than are the corresponding 
unaccelerated SOR algorithms. 

Of course, as with any higher order method, the storage requirements of cg are 
greater than those of the basic unaccelerated iteration. It should be noted also, 
that for nonrectangular domains more operations would be required to obtain 
the solution of (5) for cases VIII. and IX. 

The results for initial approximations other than u (~ - 0 are not included in the 
tables; however, there were indications in our experiments that poorer initial 
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Tables 1 a and I b. Cost factors per step for minimal surface algorithms 

Table la 

I tem Cost 

(1) Conjugate  gradient overhead 5 N 

(2) SOR overhead N 

(3) Calculation of ~ 3 N 

(4) Calculation of g (given Vcj) 4 N 

(5) Calculation of ;~  (given 7rj) 2 N 

(6) Calculation of J (given 7rj, 7~3) 20 N 

(7) Calculation of only the tridiagonal por t ion  of J (8 N for the diagonal only) 12 N 

(8) Factor ing and solving tridiagonal system 5 N 

(9) F o r m a t i o n  of J p (given J) 9 N 

There are n (n - 1) = N unknowns .  Costs  consider only multiplications, divisions, and square  roots  
and include only the highest order  terms in N. 

Table lb 

Total  
Algori thm I tem (1) (2) (3) (4) (5) (6) (7) (8) (9) Scaling operat ions 

Cost  5 N  1 N  3 N  4 N  2 N  20N 12N 5 N  9 N  N 
per  point  

I. BSOR-Newton  - -  1 2 1 2 - -  1 1 - -  - -  32 

II. BSSOR-Newton  - -  2 3 2 3 - -  2 2 - -  - -  59 

III.  Newton-BSSOR - -  2 1 1 1 1 - -  2/1" 2 - -  57 

IV. C G  1 - -  1 1 1 1 1 - -  43 

V. C G  with BSSOR- 
Newton  1 - -  1"* 1"* 1"* 1"* 1 59 73--102 

VI. C G  with Newton-  
BSSOR 1 1 57 71 

VII. C G  with sparse LD L r 1 - -  1 1 t 1 1 7 50 

VIII .  C G  with Laplacian 1 - -  1 1 1 1 1 3 log 2 ~ 43 + 3 logz n 

IX. C G  with Laplacian 
and J diagonal 
and shift 1 - -  1 1 1 1 1 3 + 3 log 211 46 + 3 log 2 n 

* 2 solves and 1 factorization 

** Can be eliminated once we are near the solution. 

approximations could result in divergence for some of the methods, without the 
safeguards of section 2, as would be the case also for the unaccelerated nonlinear 
SOR methods [6, 7]. In the experiments, the algorithms exhibited some sensitivity 
to the length of the conjugate gradient cycle between restarts~ Restarting every 
9 iterations, which is the case reported in table 2, seemed effective for the 
coarser grid. For the finer grid 13 to 16 iterations were better. 
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Table 2. Comparison of algorithms by number of iterations (and number of multiplications per mesh point) 
to obtain a residual I] r(k)]I~ -< EPS ; h = 1/16 minimal surface equation 

Algorithm (Cost Factor) co EPS = 10 -5 10 -4 10 -a 10 -2 

I. BSOR-Newton (32) 

II. BSSOR-Newton (59) 

III. Newton-BSSOR (57) 

IV. CG (43) 

V. CG + BSSOR-Newton 
Restart 9 (102) 

a 2 b I 
a 2 b 2 
a 1 b 1 
a 1 b 2 

a 2 b 1 

Restart 13 

V. CG + BSSOR-Newton a z b 1 
co = 1.7 (102) a 2 b 2 

a 1 b 1 
a 1 b 2 

VI. CG + Newton-BSSOR a ~ b ~ 
(71) 

1.1 182(5824) 139(4448) 96(3072) 53(1696) 
1.2 147(4704) 113(3616) 78(2496)  43(1376) 
1.3 118(3776) 90(2880) r 48(1536) 35(1120) 
1.4 93(2976) 71(2272) 50(1600) 28 (896) 
1.5 70(2240) 54 (1728)  38(1216) 22 (704) 
1.6 49(1568) 39(1248) 28 (896) 17 (544) 
1.7 33(1056) 26 (832) 20 (640) 14 (448) 
1.8 48(1536) 38(1216) 30 (960) 17 (544) 
1.9 102(3264) 80(2560) 60(1920)  37(1184) 

1.1 99(5841) 76(4484) 53(3127)  30(1770) 
1.2 83 (4897)  63 (3717)  44(2596) 25(1475) 
1.3 70 (4130)  53(3127) 37(2183) 22(1298) 
1.4 59(3481)  45(2655) 32(1888)  18(1062) 
1.5 51(3009) 39(2301) 28(1652) 16 (944) 
1.6 45 (2655)  35 (2065)  25(1475) 14 (826) 
1.7 44(2596) 34 (2006)  24(1416) 14 (826) 
1.8 52 (3068)  41(2419) 29(1711)  17(1003) 

1.1 99(5643) 77(4389) 54(3078)  31(1767) 
1.2 83 (4731)  64 (3648)  45(2565) 26(1482) 
1.3 70 (3990)  54 (3078)  38(2166) 22(1254) 
1.4 60(3420)  46(2622) 33(1881)  19(1083) 
1.5 52 (2964)  40(2280) 28(1596) 17 (969) 
1.6 46(2622) 36 (2052)  25(1425) 15 (855) 
1.7 45(2565) 35 (1995)  24(1368) 14 (798) 
1.8 52 (2964)  40(2280) 28(1596) 17 (969) 
1.9 94 (5358) 72 (4104) 50 (2850) 29 ( 1653) 

279(11997) 217(9331) 158(6794) 99(4257) 
274(11782) 217(9331) 157(6751) 98(4214) 
244(10492) 183(7869) 134(5762) 84(3612) 
243(10449) 183(7869) 134(5762) 84(3612) 

1.1 23(2346) 22(2244) 20(2040)  16(1632) 
1.2 23(2346) 21(2142) 19(1938)  15(1530) 
1.3 22(2244) 21(2142) 18(1836)  14(1428) 
1.4 22(2244) 20(2040) 16(1632)  14(1428) 
1.5 21 (2142)  19 (1938)  16(1632)  13(1326) 
1.6 20(2040) 18(1836)  16(1632)  12(1224) 
1.7 20(2040) 18 (1836)  15(1530)  12(1224) 
1.8 22(2244) 20(2040) 18(1836)  13(1326) 
1.9 no convergence 

1.65 16(1632)  13(1326)  11(1122) 9 (918) 

20(2040) 18(1836)  15(1530)  12(1224) 
15(1530) 13 (1326)  11(1122) 8 (816) 
17(1734) 15(1530)  13(1326)  10(1020) 
17(1734) 14 (1428)  12(1224)  10(1020) 

1.1 24(1704) 22(1562) 21(1491) 16(1136) 
1.2 23(1633) 2l(1491) 19(1349)  15(1065) 
1.3 22(1562) 2l(1491) 19(1349)  15(1065) 
1.4 22 (1562)  20(1420) 17(1207) 14 (994) 
1.5 21(1491) 18 (1278)  16(1136) 14 (994) 

Computing 19/4 22 
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Table 2. (continued) 
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Algorithm (Cost Factor) o9 EPS = 10 -5 10 - 4  10 -3  10 -a 

VI. CG + Newton-BSSOR 
co = 1.4 (71) 

VII. CG + sparse L D L  r 
(50 + 6 per restart) 

VIII. CG + Laplacian (55) 

IX. CG + Laplacian + J 
diagonal + shift (58) 

1.6 23(1633) 20(1420) 18(1278) 15(1065) 
1.7 26(1846) 23(1633) 20(1420) 18(1278) 
1.8 29(2059) 26(1846) 23(1633) 20(1420) 
1.9 31 (2201) 28 (1988) 26 (1846) 21 (1491) 

a 2 b 1 22(1562) 20(1420) 17(1207) 14 (994) 
a 2 b 2 19(1349) 17(1207) 15(1065) 11 (781) 
a 1 b x 26(1846) 23(1633) 20(1420) 18(1278) 
a 1 b 2 22(1562) 18(1278) 15(1065) 13 (923) 

a 2 b I 26(1318) 21(1068) 
a 2 b 2 30(1524) 27(1374) 21(1068) 16 (812) 
a ~ b z 27(1374) 24(1218) 20(1018) 13 (662) 
a 1 b 2 28(1424) 25(1268) 19 (968) 15 (762) 

a z b ~ 19(1045) 19(1045) 16 (880) 11 (605) 
a2b 2 16 (880) 16 (880) 13 (715) 7 (385) 
a 1 b ~ 15 (825) 15 (825) 13 (715) 7 (385) 
a 1 b 2 15 (825) 15 (825) 13 (715) 8 (440) 

a2b ~ 13 (754) 13 (754) 12 (696) 9 (522) 
a a b 2 11 (638) 11 (638) 9 (522) 7 (406) 
a ~ b ~ 12 (696) 12 (696) 10 (580) 7 (406) 
a ~ b z 13 (754) 13 (754) t l  (638) 9 (522) 

Limitations of time prevented us from investigating case VII. for the finer grid 
and from investigating either a variant of the L D  L T approximate factorization 
allowing one more subdiagonal nonzero band in L (analogous to ICCG (3) in [21]) 
or a variant utilizing block techniques developed recently in [29]. Either of 
these variants might yield results superior to those reported for case VII., as they 
have been found generally to be more efficient for linear problems. 

We conclude from these experiments that the generalized conjugate gradient 
algorithm, with modifications to ensure convergence, holds promise of being 
favorably competitive with relaxation techniques for solving strongly nonlinear 
elliptic problems. 

6. Second Test Problem 
For the second test problem we consider a mildly nonlinear equation arising 
f r o m  t h e  t h e o r y  o f  s e m i c o n d u c t o r  d e v i c e s ,  

- vxx - vyy + (1 - e -  5 ~) e v = 1. (14) 

E q u a t i o n  (14) is t o  b e  s o l v e d  o n  t h e  u n i t  s q u a r e  s u b j e c t  t o  t h e  b o u n d a r y  c o n d i t i o n s  

o n  x = O :  v = O  

o n  x = l :  v = l  

o n  y = 0 :  a v / O y = O  

~ # v / a y = O  

o n  y = 1 : 4  v - - 1  

L c~v/~y 0 

f o r  O < x < a < l / 2  

f o r  a < x < l - a  

f o r  1 - a _ < x < l .  

(15) 
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Table 3. Comparison of algorithms by number of iterations (and number of multiplications per mesh point) 
to obtain a residual [[ r ~k) 112 -< EPS ; h = 1/32 minimal surface equation 

Algorithm (Cost Factor) co E P S =  10 - 6  10 -5 10 -4 10 -3 10 -2 

I. BSOR-Newton(32) 1.3 >350(>11200) 330(10560) 217(6944) 104(3328) 
1.4 >350(>11200) 262 (8384) 173(5536) 83(2656) 
1.5 341(10912) 272 (8704) 203 (6496) 134(4288) 65(2080) 
1.6 253 (8096) 202 (6464) 151 (4832) 101(3232) 50(1600) 
1.7 173 (5536) 139 (4448) 105 (3360) 71(2272) 37(1184) 
1.8 93 (2976) 77 (2464) 61 (1952) 45(1440) 27 (864) 
1.9 128 (4096) 103 (3296) 86 (2752) 64(2048) 36(1152) 

1.5 192(11328) 154 (9086) 115 (6785) 77(4543) 39(2301) 
1.6 154 (9086) 123 (7257) 93 (5487) 62(3658) 32(1888) 
1.7 123 (7257) 99 (5841) 75 (4425) 50(2950) 26(1534) 
1.75 112 (6608) 90 (5310) 68 (4012) 46(2714) 24(1416) 
1.8 106 (6254) 85 (5015) 64 (3776) 44(2596) 24(1416) 
1.85 107 (6313) 86 (5074) 66 (3894) 45(2655) 26(1534) 

1.4 238(13566) 191 (10887) 143 (8151) 96(5472) 48(2736) 
1.5 192(10944) 154 (8778) 115 (6555) 77(4389) 39(2223) 
1.6 153 (8721) 123 (7011) 92 (5244) 62(3534) 32(1824) 
1.7 123 (7011) 99 (5643) 75 (4275) 50(2850) 26(1482) 
1.8 104 (5928) 84 (4788) 63 (3591) 42(2394) 22(1254) 
1.9 127 (7239) 102 (5814) 77 (4389) 52(2964) 29(1653) 

1.5 30 (3060) 29 (2958) 25 (2550) 20(2040) 17(1734) 
1.6 41 (4182) 39 (3978) 34 (3468) 30(3060) 27(2754) 
1.7 31 (3162) 28 (2856) 23 (2346) 19(1938) 16(1632) 
1.75 34 (3468) 31 (3162) 29 (2958) 27(2754) 23(2346) 
1.8 31 (3162) 28 (2856) 26 (2652) 21(2142) 19(1938) 
1.85 31 (3162) 28 (2856) 25 (2550) 21(2142) 18(1836) 
1.9 no convergence 

1.4 36 (2556) 32 (2272) 30 (2130) 24(1704) 18(1278) 
1.5 32 (2272) 30 (2130) 27 (1917) 21(1491) 18(1278) 
1.6 35 (2485) 30 (2130) 25 (1775) 23(1633) 18(1278) 
1.7 33 (2343) 32 (2272) 30 (2130) 27(1917) 23(1633) 
1.8 37 (2627) 33 (2343) 30 (2130) 27(1917) 24(1704) 
1.9 no convergence 

38 (2318) 35 (2135) 32 (1952) 29(1769) 23(1403) 
39 (2379) 36 (2196) 33 (2013) 30(1830) 22(1342) 

II. BSSOR-Newton (59) 

III. Newton-BSSOR (57) 

V. CO + BSSOR-Newton 
Restart 13, a z b z (102) 

VI. CG + Newton-BSSOR 
a 2 b 2, Restart 13 (71) 

IX. CG + Laplacian a 2 b 1 
+ J diagonal a ~ b 1 
+ shift 
Restart 16 (61) 
Restart 9 a 2 b 1 27 (1647) 25 (1525) 21 (1281) 19(1159) 15 (915) 

O f  p a r t i c u l a r  in te res t  is the  m i x e d  b o u n d a r y  c o n d i t i o n  o n  the  edge y = 1, as it 
w o u l d  p r e c l u d e  the  i m m e d i a t e  use of  o n e  of  the  bas ic  fast d i rect  a l g o r i t h m s  for 
so lv ing  (5) if M were chosen  to  be a discrete  H e l m h o l t z  o p e r a t o r  wi th  b o u n d a r y  
c o n d i t i o n s  (15). 

W e  p lace  a u n i f o r m  m e s h  of  w id th  h o n  the  u n i t  squa re  a n d  d e n o t e  the  
a p p r o x i m a t i o n  to v (x, y) at  the  m e s h  p o i n t  x = i h, y = j  h by  ui, j. T h e n  at  
a n  i n t e r i o r  p o i n t  we o b t a i n ,  u s i n g  the  s t a n d a r d  f ive-po in t  d i sc re t iza t ion ,  

1( u, 
- . j - l - u i _ l , i + 4 u i j - u i + l , j - u ~ , j + O + ( 1 - e - S X ' ) e x p ( u i ,  j ) = l .  (16) 

22* 



336 P. Concus, G. H. Golub, and D. P. O'Leary: 

At the Neumann boundary points the difference equations specialize in the usual 
manner, as in section 4. 

We choose for M the equivalent discretization of the Helmholtz operator H 

H v - - Vxx - vyy + ~c v ,  

but with the boundary condition along y = 1 in (15) replaced by 

3v 
~y 0 on y = l  for 0 < x < l .  (17) 

This permits the use of standard fast direct methods for carrying out the nume- 
rical solution of M z = r. Also, we augment the system (16) with the equations 

~--s j + ( X - e - S x ' ) e x p ( u l ,  j ) =  - ~ -  + (1 - e-Sx') exp ( -  1) (18) 

for the Dirichlet points on y = 1, so that the Jacobian of the augmented system 
and M have the same rank. The constant tc is chosen to be 1, a value that is 
meant to approximate ( 1 -  e -5~) e v on the square, so that M approximates, 
in this manner, the Jacobian of the augmented system (16, 18). 

This choice for M does not approximate the Jacobian well in norm, because 
of the differing boundary conditions on y = 1. However, because the number 
of mesh points at which the boundary conditions differ is small, a corresponding 
linear p r o b l e m - -  say with (1 - e-  5 x) e v in (14) replaced by v 

- v~x - Vyy + v = 1, (t9) 

with corresponding replacements in (16) and (18), and with ~c = 1 in M - - w i l l  
converge completely in only a moderate number of iterations. At most 2 p + 3 
iterations are required in this (linear) case to reach the solution (in the absence 
of round-off errors), where p is the number of Dirichlet boundary points on 
y = 1, because of the finite termination property of cg [9]. For our test problem, 
our interest is in obtaining an indication of the degree to which the introduction 
of a mild nonlinearity alters the convergence rate from that for the corresponding 
linear problem (see also [4]). 

In table 4 are given the observed number of iterations at which the residual 
norm (r(k)r,z(k))l/2~-[Ir (k)[!M~ was first reduced to less than EPS, for the initial 
approximation u (~ = 0. The value of a was taken to be 5/16, and the problems 
were solved using a FORTRAN program on a CDC 7600 computer for mesh 
spacings h = 1/16, 1/32, 1/64. The parameters a m, b (1) were used, and there was 
no restarting. The solution of M z  = r was carried out at each iteration using 
either the program GMA with marching parameter K = 2 [2] or the program 
package from NCAR [283. (These two programs give slightly different rounding 
errors; we observed no important difference between them in their effect on the 
cg iterations.) The initial residual norms [[r176 1 were of the order of 102 
for h = 1/16 and 103 for h = 1/64. 

Problem I is the discretized linear problem (15, 19) augmented with the equations 
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4 4 
Ui, 3 q- Ui, J --  h 2 1 

for the Dirichlet boundary points on y = 1, with M as described above with 
~:= 1. Problem II is the discretized nonlinear equation (14) with the same 
boundary condition (17) on y = 1 as that for M and with the same M as for 
problem I. Problem III  combines the boundary condition of problem I with the 
nonlinearity of problem II;  it is the discretized nonlinear problem (14, 15, 18), 
again with the same M. 

The number p of special boundary points for problems I and III  is given in table 4 
for each of the mesh spacings. The finite termination behavior of cg for the linear 
problem was observed clearly in our experiments, most sharply for the coarsest 
mesh, for which contamination resulting from rounding errors had least oppor- 
tunity to accumulate. For  the finest mesh, a residual small enough for practical 
purposes occurred well before 2 p + 3 iterations had been carried out. 

Table 4. Comparisons for second test problem 

No. of iterations for Ilr]rM-~ <--EPS 

h Problem 2 p + 3 EPS = 10 - 8  10 - 7  10 - 6  10 - 5  10 -4. 10 -3 

I 13 12 12 11 11 9 8 
1/16 II - -  6 5 5 4 4 3 

III 13 20 20 18 16 13 13 

I 25 21 19 18 16 14 13 
1/32 II - -  6 5 5 4 4 3 

III 25 30 28 26 23 20 17 

I 49 34 30 28 23 22 19 
1/64 II - -  6 5 5 4 4 3 

III 49 49 43 39 35 31 26 

The results for problem II  indicate that convergence is rapid for this choice of 
M when the mild nonlinearity is present and the mixed boundary conditions on 
y - -  1 are absent. As one would expect for this case the number of iterations to 
reach a given residual is essentially independent of mesh size. The results for 
problem III  indicate that with the mixed boundary condition on y = 1, the con- 
vergence rate for the mildly nonlinear case is slowed moderately from that for the 
linear case, problem I. One could likely improve the results for problems I and III  
in terms of number of iterations by choosing ~c to be, instead of a constant, the sum 
of a function in x and one in y, which would still permit the use of fast direct 
methods. We did not include such choices in our experiments, however. We 
repeated some of our experiments for an initial approximation u (~ equal to 
pseudo-random numbers in [0, 1] and found no substantial difference from the 
results of table 4. 
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