
Computing 22, 59--77 (1979) Computing
�9 by Springer-Verlag 1979

Conjugate Gradient Algorithms in the Solution of Optimization
Problems for Nonlinear Elliptic Partial Differential Equations

Dianne P. O'Leary*, Ann Arbor, Michigan

Received July 12, 1978

Abstract - - Zusammenfassung

Conjugate Gradient Algorithms in the Solution of Optimization Problems for Nonlinear Elliptic Partial
Differential Equations. Several variants of the conjugate gradient algorithm are discussed with
emphasis on determining the parameters without performing line searches and on using splitting
techniques to accelerate convergence. The splittings used here ate related to the nonlinear SSOR
algorithm. The behavior of the methods is illustrated on a discretization of a nonlinear elliptic
partial differential boundary value problem, the minimal surface equation. A conjugate gradient
algorithm with splittings is also developed for constrained minimization with upper and lower bounds
on the variables, and the method is applied to the obstacle problem for the minimal surface equation.

Konjugierte Gradienten-Algorithmen in der Liisung yon Optimierungsproblemen fiir nichtlineare eUip-
tische partielle Randwertprobleme. Wir besprechen mehrere Varianten des konjugierten Gradienten-
Algorithmus unter Hervorhebung der Parameterbestimmung ohne Minimierung entlang von Linien
und der Konvergenzbeschleunigung dutch Zerlegung. Die hier verwendeten Zerlegungen sind dem
nichtlinearen SSOR-Algorithmus verwandt. Das Verhalten der Methoden wird illustriert an der
Diskretisierung eines nichtlinearen elliptischen partiellen Randwertproblems, n~imlich der Minimal-
fl~ichen-Gleichung. Wit entwickeln auch einen konjugierten Gradienten-Algorithmus mit Zerlegungen
fiir Minimierung mit von oben und unten besehr/inkten Variabeln; ferner zeigen wir eine Anwen-
dung der Methode auf das Hindernisproblem bei der Minimalfl~ichen-Gleichung.

1. Introduction

We study in this paper the application of several variants of the conjugate gradient
algorithm to the solution of large systems of nonlinear equations and certain
optimization problems arising from discretization of nonlinear elliptic partial
differential equations.

The conjugate gradient algorithm is an iterative method for solving certain
systems of linear or nonlinear equations

g (u)= 0

* This work was supported by the National Science Foundation under Grant MCS 76-06595 at the
University of Michigan.

0010-485 X/79/0022/0059/$ 03.80

60 Dianne P. O'Leary:

or, alternatively, for finding a stationary point of a function f (u) with gradient
g (u). Here u and g are n-vectors. The method was originally discussed [21] for
convex quadratic functions:

f (u) = 1/2 uT A u--uT b

9(u)=Au-b,

where A is an n x n symmetric positive definite matrix. The strategy is, given an
initial approximation u (1), to take steps that produce a sequence of iterates
{u (k)} for which {f(u(k))} is a monotonically decreasing sequence. Each step
direction is the negative of the component of the current gradient that is A-
conjugate to all previous directions, and the function is minimized in each of
these directions in turn. This method has several desirable properties: it ter-
minates (under exact arithmetic) in at most n steps with u*, the global mini-
mizer of f ; there are no arbitrary parameters to choose or extra information to
provide; it requires only a few vectors of storage plus a means of forming the
product of A with an arbitrary vector; and the convergence [10] is bounded as

E (u(k))<4 (. 1 - ~) ~k-2
1+ Klf~f E (u(1)) '

where tc is the condition number of A, defined to be its largest eigenvalue
divided by its smallest eigenvalue, and E (u)= f (u)+ 1/2 (u*, b). Because of the first
property, we could consider the conjugate gradient algorithm to be a direct
method for solving linear systems, but its operation count is too high for it to be
generally useful in this mode. The last three properties are the reasons it has
become a popular iterative method for solving large sparse systems of linear
equations.

The algorithm has been generalized in many ways to solve nonlinear systems of
equations. See, for example, [2, 10, 11, 13, 16, 17, 23, 26, 29, 30, 313. These
algorithms differ in their choice of step directions and the accuracy of the
minimization required at each step. Some require information such as function
evaluation and Jacobian matrices while others do not. They are alternatives to
Newton's method when it is impractical to solve linear systems involving the
Jacobian matrix of g. They are used instead of variable metric (quasi-Newton)
methods [4] when the number of unknowns precludes storage and updating of
an approximation to the Jacobian or its inverse. Conjugate gradient algorithms
share many desirable properties with variable metric methods; in particular,
under certain conditions on f and the choice of parameters [3, 5, 22, 243, these
algorithms can be shown to have an n step superlinear or n step quadratic
convergence rate: i.e.,

II u (k + ") - u* [I lim sup < c <
k + ~ II u (~) - u*/I 0 -

where 0> 1 or 0=2 respectively and c is a constant. Unfortunately, these con-
vergence rate estimates are useless for our problems. The number of unknowns
is so large that an algorithm must converge in much fewer than n iterations if it

Conjugate Gradient Algorithms in the Solution of Optimization Problems 61

is to be a feasible procedure for problems arising from discretization of partial
differential equations.

Our study of the conjugate gradient algorithm is a continuation of work
reported by Concus, Golub, and O'Leary [9]. In that paper, several versions of
the conjugate gradient algorithm for convex functions were considered and
practical criteria were developed to ensure convergence of the algorithm without
requiring accurate minimization along the step directions. Applications to dis-
cretization of nonlinear elliptic differential equations were considered, and the
nonlinear operators were split in order to improve convergence. These splittings
were based on related elliptic operators, partial factorizations, or iterative methods
such as symmetric successive overrelaxation (SSOR). Test results for the minimal
surface equation and for a mildly nonlinear equation arising in the theory of
semiconductor devices showed several conjugate gradient algorithms to be
competitive with other algorithms on such problems.

In this paper we extend this work in several ways. In Section 2 we present the
algorithms described in [9], adding a modification that reduces the necessity to
restart those conjugate gradient algorithms in order to guarantee convergence.
Numerical experiments applying this family of algorithms to the minimal surface
equation are presented in Section 3. In Section 4 we discuss an algorithm
applicable to minimization of a nonlinear function subject to upper and lower
bounds on the variables, and in Section 5 present the results of numerical
experiments on minimal surfaces with obstacles.

We will use the notation

= arg min h (~)
~>'0

when ~ > 0 and h (~) = rain h (cr
~>0

2. Various Forms of the Conjugate Gradient Algorithm

The basic conjugate gradient algorithm for minimizing the convex function f(u)
with gradient g (u) is as follows: Given an initial iterate U (1), se t r(a)= = g (u (1)) and
the initial direction p(1)= r(1), and for k= 1, 2 , form

u(k + 1) : u(k) _~_ O~ k p(k)

r(k + 1) = _ g (u(k + 1))

p(k + 1) = r(k + 1) _}_ flk p(k).

The parameters % and flk are chosen, in the convex quadratic case, to minimize
f along the direction p(k) and to make (p(k+ 1~ A p(J))= 0 for j < k:

ak = arg min f (U (k) -Jr- (X l~(k)'~ - - (r(k)' r(k)) (r(k), p(k))
> o r , - - (p~5~, A - ~)) - (p(k), A p(k)) ,

(r(k+l),r(k+l)) (r(k+l),Ap(k)) (r(k+l),r(k+l)--r(k))
fik = (r(k) r(k)) : (p(k) A p(k)) -- (r(k), r(k))

62 Dianne P. O'Leary:

See [32] for derivations showing the equivalence of the various forms for the
parameters. For convex nonquadratic problems, flk is generally chosen by one of
the three formulas above, where A is taken to be the Jacobian matrix J (u (k)) or
J (u(k+l)). The parameter c~ k is usually obtained by a line search procedure to
be a good approximation to

~P' = arg min f (hi (k) "Or ~ p(k)).
c t > 0

A scaled version of the conjugate gradient algorithm [1, 8, 10, 15, 19, 20, 25, 34J
can be obtained in the quadratic case by applying the iteration formulas to the
equivalent problem

min f (w) , where f (w) = 1/2 w T M - 1/2 A M - t/2 w - w T M - 1/2 b
vr

and M -1/2 is a symmetric positive definite matrix. If we then rewrite the
formulas obtained in terms of the original variables u = M - 1/2 w, we obtain the
algorithm:

Given u ~ form r (1) = - g (u(1)), z(1)--M - , r(1), and p(1)-- z(1), and for k = 1, 2, ...
compute

u(k+ 1) = u(k) _~_ ~k p(k)

r(k+ 1) = _ g (u(k+ 1)), z(k+ 1) = M - 1 r(k+ 1)

p(k + 1) = z(k + 1) q_ flk p(k).

M is a positive definite matrix chosen to accelerate convergence. The parameters
1 2 3 and flk = fl~ = f12 = fl~ where ek and flk are given by formulas ek = ek = C~k = C~k

, (r z% (r ~), z ~+ '))
~ k - (p % A p % , fl~= (r '

if(k), p(k)) (z(k + a), A p(k)) (2.1)
~ - (p(~), Ap%' fl~ = (p% Ap% '

c~ = arg min f (u (k) + c~ p(k)), fi~ _ (r(k + 1), z(k + a) _ z(k))
> 0 (r(k), z(k))

In the nonquadratic case, these formulas are no longer equivalent but yield
distinct conjugate gradient algorithms. Instead of the matrix A we use the
Jacobian matrix J k = J (U (k)) in all parameters with subscript k. Fletcher and
Reeves [16] proposed the parameter fi~, Daniel [-10] used fi2 with J (u (k+ x)) rather
than J (u(k)), and fl~ was given by Polak and Ribiere [29].

We are interested in convex nonquadratic problems for which line searches are
expensive but evaluation of the Jacobian matrix is feasible. In fact, for the
discretization of nonlinear elliptic differential equations, it is desirable to avoid the
need to calculate the function value f (u(k)). If f is convex then (p(k), g (u(k)+c~p(k)))
is a monotone increasing function of e that is negative at e = 0 and is zero at

3 the point at which f attains its minimum on the line u (k) + c~ p(k). AS long
as our step underestimates ~3, we have guaranteed that f (u (k + l) < f (u (k)) and

Conjugate Gradient Algorithms in the Solution of Optimization Problems 63

this is verified by checking that

(p(k), g(k+ 1)) _<0. (2.2)

We can define a conjugate gradient algorithm implementing this idea as fol-
lows:

Given u (1), the scaling operator M, a termination criterion e, the index q of the fl
choice (q = 1, 2, or 3), and K, the maximum number of iterations, let r (1)= _ g (u (1)),
z (1) = M - 1 r and p(1) = z(1).

Then for k = 1, 2 K:

(1) C h o o s e ek and calculate the n e w iterate u(k+ l ~, the new residual r(k+ l~= --g(u(k+ l)),
and the scaled residual z (k+ 1) = M - 1 r(k+ 1)

(2) Test for satisfaction of the termination criterion. This is usually a test that
/I r (k§ 1) II < ~ for an appropriate norm.

(3) Update the direction to prepare for the next iteration:

p(k + 1) = z(k + 1) -b fl~ p(k)

where fl~ is defined by equation (2.1).

The algorithm is well defined except for Step (1). Here we modify the algorithm of
I-9]. The choice of c~ k can be made as follows: We test candidates for ek in turn

1 until the convergence test (equation (2.2)) is satisfied. We test in the order ~k
(or e~), then ~ (or e~). If both of these fail, a line search is performed until the test
is satisfied. In our experiments, bisection was used for the line search, and the algo-
rithm was restarted using the current vector u (k) as u (1) if two steps of bisection failed.

Each tentative choice of ek involves computing

U(T k + 1) = u(k) -t- ~k p(k),

r~+ 1)= _ g (u~+ 1))

and calculating (r(r k+l), p(k)). For the successful step, however, this extra inner
product is essentially free, since (r (k+ 1), z(k+l)) and (r (k+ 1), p(k+l)) will be needed
to calculate 1 and 2 1, and from the definition of p(k+ 1) (Xk+ 1 ~k+

(r(k+ 1), p(k+ 1)) = (r(k+ 1), Z(k+ 1)) AC flq (r(k+ 1), p(k)). (2.3)

For our problems, K is generally quite small (K ~ 10 when n~400) and the
conjugate gradient cycle is restarted from the current u whenever bisection fails
or when more than K iterations have been performed in the current cycle. The
addition of an accurate line search when k= 1 would guarantee convergence for
certain classes of functions f . The choice of the scaling operator M will be dis-
cussed in Section 3.

The elimination of accurate line searches in most iterations can produce a large
savings in gradient calculations per iteration, but must be implemented carefully
in order to avoid greatly increasing the number of iterations and thus the
number of Jacobian evaluations.

64 Dianne P. O'Leary:

As noted above, in the quadratic case, all choices of the parameters c~ k and ilk
are equivalent. The question arises, if in the course of the computation on a non-
quadratic problem without line searches our calculated parameters agree (i.e.,

1 = ~2 and il~ 2 3 C~k = ilk = ilk), what can we conclude about the function ?

Theorem:

1 and 2 satisfy 1 2 (i) The parameters ek C~k C~ k = C~ k if and on(); if (p(k- 1), r(k)): O.

(ii) I f Ct~ is used, ill =il2 holds if and only if (z (k+l), r(k+l)+C~ Jkp(k))=O.

(iii) There holds 1 2 and 1 2 3 O~k=~ k i lk=ilk=ilk if and only if (p(k-1), r(k))=O,
1 J k p(k)) = O. (r(k+ 1), z(k)) =0, and (z (k+ 1), rtk+ 1~+ C~ k

Proof:
2 and equation (2.3). (i) This result follows from the definitions of c~ and c< k

(ii) This follows from the definition of e~ and the observation that

_ (z(k+ t), Jk p(k)) _ (z (k + 1), v(k+ 1)/~1 _~_ J k p(k)) At_ (r (k+ 1), z (k + 1)h/A,1 = t /~"k]t~k
(p(k), j~ p(k)) (p~k), j~ p(k))

(iii) This follows from parts (1) and (2).

Notice that r(g+l)+C~k Jk p(k) would be equal to r (k) if the function were qua-
dratic.

These algebraic properties give the answer to our question: the parameters
agree if and only if the line search at the previous step was exact and the new
residual is M-l -conjugate to the previous residual and to the approximation
to it given by the quadratic theory. If this occurs for a full cycle of conjugate
gradient steps and the size of the residual indicates that we are in the neighborhood
of the solution, it would be desirable to delay the restart and permit the length of a
cycle to be a full n or n + 1 steps. If n is large, we would expect convergence to
occur long before the cycle is complete.

3. Numerical Results

The various choices of parameters for the conjugate gradient algorithm were
tested on a minimal surface problem. Other solution techniques for this problem
can be found, for example, in I-6, 7, 12, 18, 331. The specific example used here is
found in 1-6] and [9]. This is the minimal surface equation over a rectangular
region:

d iv (?Vv)=0 on R

R = {(x, y) : O < x <2, 0 < y < l }

where 7 = (1 + [V v]2)- 1/2 and the boundary conditions are

v (0, y) = v (2, y) = v (x, 1) = 0

v (x, 0) = sin rc x/2.

Conjugate Gradient Algorithms in the Solution of Optimization Problems 65

The solution is symmetric about the line x = 1, so the problem was solved over
the unit square. A uniform mesh of size h (h-- l/s) is imposed on the domain. The
approximation to v (mh, ih) is denoted by u,,,i. The finite difference equations
are

gm, i = 7~.,y (2 l'lm, i--Um-l,i--Um, i-1) AI-

-t'- ~T- f ,T(2 Um, i--lAm+ l,l--Um, i-1)

"~- ~ , / ~ i - (2 Um, i--l.,lm- l,i--Um, i+ l)

+7~4T, i~r(2u,~,i--u,~+~,i-um, i+O=O r e = l , 2 , s - l , i = l , 2 s - 1 .

Here 7g,7 is 7 at the point ((m- 1/2) h, (i - 1/2) h) using the approximation

1
IV u [2 , . , i - 2h-f ((Um, l--Um-l,i)Z+(u,.,i--Um, i - O 2

~-(Um, i- 1 --Um-l,i-1)2-~-(blm- l,l--Um_ l,i_ l)2).

Appropriate modifications are made to the finite difference equation near the
Neumann boundary x = 1 (m = s). See [-9] for details. The equations are second
order accurate.

The finite difference equations have an alternate interpretation as the gradient of

f (u) =h2 i ~ V I+[VuI2 ,T
i=1 m=l

which is an approximation to the surface area

1 1

s(v)= I I (l+4+4)l 2dxdy.
0 0

The Jacobian matrix of g is sparse with at most 9 nonzero elements per row, so
multiplication of an arbitrary vector with it is rather inexpensive though solving
a linear system involving it would be costly.

Two scalings were used for the conjugate gradient algorithm; both are related to
relaxation methods discussed, for example, in [28]. Consider first the one-step
block successive overrelaxation-Newton (BSOR-Newton) algorithm. We partition
u, r, and J into blocks corresponding to columns of mesh points. Then the new
approximation to the i-th block of u, u i = (ul,i, u2,~ , u~, i), is obtained by the
formula

u7 ew = u~ + co J - 1 ~,i ri i = 1 , 2 s - 1 .

H e r e r and J are evaluated at the most recent u values and co is a scalar
parameter. A symmetrized version of this algorithm, which obtains the next u
vector by two steps of the algorithm, sweeping through the formulas from 1 to
s - 1 and then from s - 1 to !, will be called block symmetric successive over-
relaxation-Newton (BSSOR-Newton) algorithm. This algorithm requires two
Jacobian and gradient evaluations per iteration. When this method is used as a
scaling, we define the vector z (k) to be the change in u over one double sweep of
the algorithm starting from the guess u (k).

5 Computing 22/1

66 Dianne P. O'Leary:

An alternate algorithm, the symmetric one-step Newton-BSSOR algorithm,
requires only one gradient and Jacobian evaluation per iteration. Used as a
scaling, this algorithm is defined by a forward and backward sweep as follows:

5}k)= CO Ji]-i t (r} k)- (Ls i = 1, 2 s - - 1

zl ~ = el ~ + CO J [i 1 (rl ~ - (L e(k~ + D ~k~ + U z~)~), i = s - 1, s - 2 ,2 , 1,

where J (u (k)) is partitioned as L + D + U, with D the block diagonal, L the block
strictly lower triangular part, and U the block strictly upper triangular part. J
and r in the formulas are evaluated at u (k).

See [9] for further description of the use of these algorithms as scalings.

In the tables we list the number of gradient and Jacobian evaluations necessary
to obtain a residual with infinity norm less than e for the various conjugate gra-
dient algorithms and for the BSOR-Newton method. The mesh size used in the
experiments was h= 1/20 (380 unknowns in the half domain) or h = 1/40 (1560
unknowns). The initial guess was I,/(1)= 0, giving 1[r(i) 1t~ = .31. The BgOR-Newton
algorithm requires one gradient and one Jacobian evaluation per iteration. The
conjugate gradient (CG) algorithm with Newton-BSSOR scaling takes one
gradient and one Jacobian evaluation per iteration, plus an additional gradient
evaluation for each extra c~. The CG algorithm with BSSOR-Newton scaling
requires three gradient and three Jacobian evaluations per iteration plus an
additional gradient for each extra c~. The test for an acceptable c~, equation (2.2),
was weakened slightly to require only that (p(k), g(k+ 1)) ~ e 11 9 (k+ 1) 11 2 .

Table 1 presents the results for the three algorithms using various values of CO.

For the CG algorithms, the parameters fi(2~, K-- 10, and a first choice of c~ (2~ were
used. The ranges and average amounts of work are summarized in Table 2. We
note that BSOR-Newton had the greatest variation in performance with CO,
while the CG algorithms were much less sensitive. For low accuracy, e_> 10 -2,
the BSOR-Newton algorithm was usually less expensive than the CG algorithms,
but for e_< 10-a the CG algorithms showed advantages. The CG algorithm with
Newton-BSSOR scaling required far fewer Jacobian evaluations and a comparable
or fewer number of gradient evaluations than BSOR-Newton. The BSSOR-
Newton scaled CG algorithm was also often less expensive than BSOR-Newton,
although the Newton-BSSOR scaling was clearly more effective. The various c~
and fl parameters quite often agreed for the BSSOR-Newton scaling, but less
often with the Newton-BSSOR scaling. Results presented in Table 3 indicate that
c~ (2~ is a poor choice of parameter, so we expect that the CG algorithm would be
even more effective using ~(~).

Table 3 presents the results of using the CG algorithm with Newton-BSSOR
scaling and co = 1.6 for various choices of the e,/3, and restart parameters. The
algorithm was relatively insensitive to restart values K between 5 and 15.
Experiments indicated that 9 was optimal, and it was better to underestimate
rather than overestimate this parameter. When using e(1), the number of gradient
and Jacobian evaluations was less than, or at worst 2 more than, the number when
using e(2). The choice of c~ had little effect on the number of Jacobian evaluations

Conjugate Gradient Algorithms in the Solution of Optimization Problems 67

Table 1. Number of gradient and Jacobian evaluations needed to attain a residual II r~k)l[~ <8 on test
problem with h= 1/20

Algorithm m 8 = 10- 6

BSOR-Newton 1.1 > 200, > 200
1.2 > 200, > 200
1.3 178, 178
1.4 141, 141
1.5 108, 108
1.6 79, 79
1.7 51, 51
1.8 52, 52
1.9 112, 112

CG + Newton-BSSOR
cd2), fit21 K = i0

C G + BSSOR-Newton
~2),/3~2), K = 10

1.1 74, 34
1.2 59, 30
1.3 60, 26
1.4 81, 31
1.5 64, 26
1.6 54, 23
1.7 75, 34
1.8 69, 33
1.9 113, 44

1.1 89, 75
1.2 121, 90
1.3 90, 72
1.4 78, 63
1.5 78, 60
1.6 101, 69
1.7 109, 78
1.8 85, 66
1.9 154, 117

8=10- '*

139, 139
113, 113
91, 91
72, 72
56, 56
43, 43
31,
31,
68,

57,
38,
49,
59,
42,
40,
54,
42,
67,

9,
31 9,
31 12,
68 21,

26 31,
18 29,
20 32,
23 29,
18 18,
17 27,
25 26,
20 33,
27 33,

57 30,
54 31,
51 31,
48 31,
48 24,
45 38,
57 28,
42 31,
87 93,

70,
72,
66,
58,
66,
66,
77,
52,

116,

8 = i0 -2

�9 14, 14
12, 12
11, 11
10, 10
9, 9

9
9

12
21

14
13
13
11

8
11
11
14
14

24
24
24
24
18
27
21
24
69

Table 2. Summary of number of gradient and Jacobian evaluations needed for the algorithms in Table 1

BSOR-Newton

minimum
maximum
average

CG + Newton-BSSOR

minimum
maximum
average

CG + BSSOR-Newton

minimum
maximum
average

8=10 -6

51, 51
> 200, > 200
> 125, > 125

54, 23
113, 44
72, 31

78,
154,
101,

60
117
77

8=10 -4

31, 31
139, 139
72, 72

38, 17
67, 27
50, 22

52, 42
116, 87
71, 54

8=10 -2

9, 9
21, 21
12, 12

18, 8
33, 14
29, 12

24, 18
93, 69
37, 28

5*

68 Dianne P. O'Leary:

(i. e,, the number of iterations), but the number of gradient evaluations was often
significantly lower with ct (~). Among the fl parameters, fl(3) seemed better than/~(~)
and/~(z), but when K was small there was not much difference in performance.
On this problem, the combination e(*) and /~(3) gave a number of Jacobian
evaluations within 1 o f the minimum for each set of experiments. The combi-
nation e(~),/~(~) was always within 2 of the minimum for gradient evaluations,
while cd ~), fi(2) was competitive but usually not as effective as using fi(~) or fl(~).

When c~ (a) was used, the line search was invoked very little, and then usually only
at the first iterations. The first choice of cd 2) failed more often and when it did, c~ (*)
usually did, too. When this happened there were at least 3 trial c(s, driving up the
number of gradient evaluations.

Table 3 also presents data for co= 1.2, K = 10, and various choices of ct and/3.
This shows that the conclusions regarding the best choices of ~ and fi are valid
for a range of co values.

Further experiments indicated that the CG algorithm with Newton-BSSOR
scaling was almost always more expensive than the BSSOR-Newton scaling in
number of gradient and Jacobian evaluations. Both algorithms were insensitive
to the magnitude of the boundary conditions.

Table 3. Number of 9radient and aacobian evaluations needed for the CG algorithm with Newton-BSSOR
scaling, h= 1/20

~= 10 -6 g= 10 -4 e= 10 -2

00=1.6, K = 5

co= 1.6, K = 10

co= 1.6, K = 15

co = 1.2, K = 10

~(2), fl(1)

~(2) ~3)
~(1) ~(I)
~(I) fl(2)

~(2) ~(1)
~(2) fl(2)

(~(1) fl(1)

~(1) fl(3)

~(2) fl(1)
~(2) fl(2)

~(2) fl(1)
5(2), fl(2)
~(2) fl(3)
~(1) fl(1)
~(1), fl(2)
5(11 fl(3)

67, 32
57, 23
56, 24
27, 23
46, 24
45, 22

47, 30
54, 23
62, 24
31, 27
44, 23
40, 23

64, 36
57, 24
77, 30
39, 35
51, 24
38, 20

I 63, 36
59, 30
42, 21
39, 35
48, 27
37, 21

45, 21
44, 18
42, 18
21, 17
40, 18
37, 18

38, 24
40, 17
48, 19
27, 23
35, 17
34, 17

42, 26
47, 19
56, 22
27, 25
46, 19
33, 15

46, 26
38, 18
37, 18
29, 27
37, 20
31, 17

25, 12
24, 10
25, 11
14, 12
24, 10
25, 11

27, 15
27, 11
27, 11
19, 15
27, 11
26, 11

35, 20
25, 11
27, 11
20, 18
26, 11
26, 11

25, 14
29, 13
24, 11
12, 12
30, 13
22, 11

Conjugate Gradient Algorithms in the Solution of Optimization Problems

Table 4. Number of gradient and Jacobian evaluations on test problem with h= 1/40

69

Algorithm

BSOR-Newton

CG + Newton-BSSOR
x~21,/3~2~, K = 10

CG + BSSOR-Newton
t(2) fl(2) K = 10

e= 10 -6

1.2 >400, >400
1.3 >400, >400
1.4 >400, >400
1.5 377, 377
1.6 281, 281
1.7 196, 196
1.8 120, 120
1.9 118, 118

1.2 126, 58
�9 1.3 132, 55

1.4 126, 54
1.5 117, 53
1.6 117, 49
1.7 100, 43
1.8 86, 38
1.9 84, 38

1.2 171, 135
1.3 212, 153
1.4 169, 129
1.5 148, 117
1.6 205. 150
1.7 144, 102
1.8 131, 87
1.9 >400, >400

e = 10 -4

321, 321
259, 259
206, 206
160, 160
120, 120
86, 86
58, 58
74, 74

90, 41
100, 39
69, 31
83, 35
87, 36
75, 33
72, 30
67, 29

120, 93
124, 93
122, 93
103, 81

134, 99
110, 78
107, 69

>400, >400

~= 10 -2

5, 5
4, 4
4, 4
4, 4
5, 5
6, 6
7, 7

28, 28

39, 18
17, 6
10, 6
22, 10

6, 4
24, 11
27, 12
42, 18

50, 39
40, 30
75, 57
49, 42
83, 66
46, 33
51, 33

>400, >400

Table 5. Summary of number of gradient and Jacobian evaluations needed for the algorithms in Table 4

BSOR-Newton

minimum
maximum
average

CG + Newton-BSSOR

minimum
maximum
average

CG + BSSOR-Newton

minimum
maximum
average

e= 10 -6

118, 118
> 400, > 400
>287, >287

84, 38
132, 58
111, 49

131, 87

e= 10 -4

58, 58
321, 321
161, 161

67, 29
100, 41
80, 34

103, 69
> 400, >400
> 176, > 141

> 4 0 0 , > 400
>136, >112

e= 10 -z

4, 4
28, 28

8, 8

6, 4
42, 18
23, 11

40, 30
>400, >400

>88, >78

70 Dianne P. O'Leary:

Table 6. Number of gradient and Jaeobian evaluations needed for the CG algorithm with Newton-BSSOR
scaling, h = 1/40

co= 1.6, K = 5

co = 1.6, K = 15

co= 1.4, K = 10

co= 1.8, K = 10

~(2), 8 (1)
~(2), 8(2)
~(2), 8(3)
~(1), 8(1)
~(1) 8(2)

~(2)
~(2)
~(2),
~(1),
~(1)
~(1)

N(2)
~(2)
N(2),
~(1)
~(1),
~(1)

8(,
8 (2)
8(3)
8-)

8(3)

8(1)
8~2)
8~3)
8(1)

8~3)

~(2), fl(1)
CZ(2), 8 (2)
C~(2), fl(3)
~(1), fl(1)

F c~(i), fl(2)
[~"', 8,3,

g= 10 -6 ~= 10 -4 z= 10 -2

95, 46
99, 42
93, 42
51, 41
85, 44
81, 40

89, 54
77, 38
79, 37
64, 54
85, 43
74, 39

100, 54
134, 59
100, 49

60, 50
87, 48
71, 42

93, 49
90, 40
93, 38
77, 59
78, 37
78, 36

61, 30
78, 33
72, 31
38, 30
72, 33
61, 26

80, 46
67, 30
63, 29
57, 47
76, 34
60, 29

75, 40
93, 41
63, 33
46, 38
68, 34
63, 34

80, 42
75, 32
79, 30
65, 49
67, 30
71, 29

13, 7
6, 4

16, 8
24, 18

7, 4
26, 11

35, 17
6, 4

44, 18
47, 37

7, 4
31, 13

51, 27
10, 6
41, 19
11, 11
11, 6
19, 8

64, 31
27, 12
28, 11
52, 38
29, 12
52, 21

An advantage of the CG algorithms over BSOR-Newton is that, because of
their ability to incorporate adaptively a line search when necessary, they have
better behavior when far away from the solution. This is not observed in the current
implementation because of the relaxed condition for the downhiU test, eqn. (2.2).
With appropriate modification of this, however, the CG algorithms would
exhibit a much larger practical radius of convergence than BSOR-Newton.

Tables 4 ~ 6 give results for a smaller mesh size, h = 1/40.

The trends in the first three tables are continued here. The CG algorithm with
BSSOR-Newton scaling was superior to most BSOR-Newton runs for e < 10 -3.
Performance was not very sensitive to the choice of co or K. For e___ 10 - 4 , ~(i) , ~(3)
always gave results within 2 of the minimum for Jacobian evaluations, and e(1),
13 (1) was within 2 of the minimum for gradient evaluations. The performance of
e(1),/~(2) was variable.

Comparing Tables 2 and 5 for e < 10 . 4 we see that the number of BSOR-Newton
gradient and Jacobian evaluations for the best co doubled as h went from 1/20
to 1/40, and for CG with Newton-BSSOR scaling the growth factor was
between 1.6 and 1.8.

Conjugate Gradient Algorithms in the Solution of Optimization Problems 71

From this limited data it would seem that e(x), fi(a~ and ~(~), tim give the most
effective CG algorithms, and that a choice between these would depend on the
relative costs of gradient and Jacobian evaluations.

4. Algorithms for Constrained Problems

In this section we consider the solution of a convex minimization problem

min f (u)

c<_u<_d.

We use the same notation as in Section 2, and modify the algorithms given there
to solve this problem. The basic framework we use is due to Polyak [30].

The optimality conditions for the solution to the problem are

If u~ = c~ then r~_< 0.

If u i = di then r~ >__ 0.

If c~ < u~ < d~ then r~ = 0.

Our strategy will be to start with a u (1) such that c<_u(1)<_d, and maintain
feasibility, c_< u(k)_< d, while iterating to satisfy the sign conditions on r. At each
outer iteration we will choose a subset of the variables which are at their bounds
and whose r components have the proper sign. We keep these u variables fixed
while adjusting the others in an inner iteration.

In the algorithm, I is the index set for the fixed variables. For any vector w we
denote by ~ the vector obtained by setting the components of w corresponding
to elements in the set I to zero:

w i if i ~ I
wi= 0 if i ~ I .

We present the algorithm and then make several comments on its relation to
other algorithms and its convergence.

Given an initial feasible u (1), c<_u(1)<_d, a scaling operator M, a termination
criterion e, the index q of the fl choice, and K, the number of iterations in a cycle,
set r(~)=-g(u(~)), and initialize I = { 1 , 2 ,n} so that the first termination
test works.

(1) Let I = {i:u~l)<ci-ke and rl l)<0} w {i:ull)>di-e and rla)>0}. If I has not
changed from the previous iteration and [17 (x) I[<e then terminate with the
solution. Otherwise, we will solve a subprobtem keeping the elements of u
corresponding to indices in I constant.

(2) Set z(1)=P (1), p(1)=z (~), k l = l , and begin Step 4. This initializes a steepest
descent step followed by a scaled conjugate gradient cycle.

(3) Set u(Z)=u (k), ?z)= r(k), z (2) = ~ , p(2)=Z(2) ' and k I =2. This initializes
a scaled conjugate gradient cycle.

72 Dianne P. O'Leary:

(4) For k= k 1 K.

(a) If][7 k) II<~ then set u(1)=u (k), r (1)=r (k), and go to Step (1). We have
successfully solved a subproblem.

1 and 2 defined in Sec t ion 2, and the maximum feasible step (b) Calculate ~k ~k
length in direction p(k):

/ d~ ui" (k) C i _ ulk) ~
C~ma x = min lmin \~I ~'~~ plk) , min

pl~,<o plk) J

Choose the step length c~ k as in Section 2, but consider candidates only if
they are less than ~max' If k= 1, continue the line search until success as
defined by equation (2.2). If k = 2 and the search fails, set u(1)=u (2),
r(1)=r (2), and go to Step (2). Otherwise, if the search fails, go to Step (3).
If a successful c~ k is found, set

U(k + 1) = u(k) -I- Ot k p(k)

r(k + 1) .= _ g (u(k + t))

(c) Set I = { i : u l k + l) < c i + e } • { i : u l k + l) > d i - - e } . If I = { 1 , 2 n} then go to
Step (1) with u(1)=u (k+l), r(1)=r (k+l). If I has changed, then replace k by
k+ 1 and go to Step (3) to restart the scaled algorithm.

(d) Calculate z (k+~)=(M -~ r(k+~)). Update the direction to prepare for the
next iteration:

p(k + 1) = Z(k + t) + flq p(k)

where/~, k=p 1, is defined in equation (2.1) and /~ = O.

(5) Go to Step (2) to continue the solution process for the subproblem with
u(1) = u(K+ 1) and r (1) = r (K+ 1).

Note first that if c = - oo and d = o% i.e., if the problem is unconstrained, then
I--q~ after Step (1) and the algorithm reduces to that of Section 2 modified to
include occasional steepest descent steps.

Polyak considered the algorithm with M equal to the identity matrix and Step (2)
omitted. If M is not the identity it is necessary to follow each definition of I in
Step (1) by an unscaled steepest descent step in order to assure that the step
direction is feasible. Although r (z) points away from the boundary, the scaled
gradient z (x) may not. For suitable classes of functions f , if a more restrictive
downhill test is used as in 1-22] or [24], the algorithm can be shown to converge.
Each inner iteration (2)--(5) is just a restarted scaled conjugate gradient algorithm
applied to a convex function with steepest descent steps interspersed. The
algorithm proceeds in the normal way unless a constraint is encountered, in which
case the number of variables is reduced and a new inner iteration is begun. The
function f decreases at each iteration.

The use of this algorithm for quadratic objective functions is discussed in [27].
For constrained problems, the scaled vectors z are often truncated. For the
Newton-BSSOR algorithm, for example, as ~ and z are computed, they are
modified if necessary so that u (k) + ~(k) and u (k) + z (k) are feasible points.

Conjugate Gradient Algorithms in the Solution of Optimization Problems 73

In practice, the solution process is often more effective if a relatively large
value of e is used throughout the course of the iteration and then the algorithm
is restarted with the desired smaller e.

5. Numerical Results

The algorithms of Section 4 were applied to the minimal surface problem with
obstacles:

min S (v)

c (x, y) < v _< d (x, y)

where S was defined in Section 3. Alternate approaches to this problem are
given, for example, in [-14]. The test problem was the same as in Section 3 with
d = oe and various lower obstacles.

For the first set of tests, a lower obstacle was constructed that had a peak of C
along the line (�89 �89 to (1�89 �89 and rectangular contours decreasing to zero at the
boundary of the region R. The algebraic definition is

c (x, y)= 2 C min (x, 1 / 2 - l Y - 1/2 [)

for O__x< 1 and O _ y < 1. The solution u for C= 1 is shown in Fig. 1. For clarity
of display, the origin was taken in the right foreground and the region was
reflected around the y axis.

The one step BSSOR-Newton algorithm was used as the scaling algorithm for
this problem.

Fig. 1. Minimal surface for the first obstacle

74 Dianne P. O'Leary:

Table 7. Number of gradient and Jacobian evaluations
needed for the constrained problem

co C = .3 C= 1.0

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

192, 126
190, 126
186, 124
187, 125
181, 121
181, 119
182, 128
202, 136
233, 161

245, 163
232, 157
227, 153
242, 161
236, 157
237, 160
223, 157
241, 175
294, 216

Table 7 shows the results of running the algorithm with various co values using
u = c as the starting guess and a mesh size of h= 1/20. The parameters c~ (1) and fl(1)
were used and e was taken to be 10 -a for initial convergence, with subsequent
refinement to 10 -6. The performance was sensitive to the initial e but not to the
final one.

The counts of gradient and Jacobian evaluations shown in the table are a mis-
leading estimate of the work, since in the course of the iteration, many variables
were in the index set I and thus not all elements of u, g, and J need to be
evaluated. For C=.3 , for example, the number of variables in I stepped down
monotonically from 238 to 11 over the course of 34--38 outer iterations. For
C = 1, the number of variables decreased monotonically from 167 to 29 over
35--38 iterations.

Other examples were designed to test the use of a starting guess more suitable than
u = c. The problem was solved with C-- 1 and this solution was used as a starting
guess for the problem with C = .5. Using co= 1.6, 45 gradient and 39 Jacobian
evaluations were needed for the second problem, rather than 183 and 131
respectively when starting from u--c. A series with C increasing from 0 to .3 in
steps of .1 exhibited similar behavior. Thus significant saving can be expected if a
parametric series of problems is to be solved.

Other experiments were performed with h--1/20 and point obstacles at the
locations (�89189 and (1�89189 The parameters el, ill, and e were the same as in the
previous run, and co = 1.6. When the height of the obstacle was C = .5, the algorithm
took 21 outer iterations with 190 gradient evaluations and 140 Jacobian evaluations
from an initial guess of u = 0. The height was then increased in steps of .5 up to 5,
and the iteration was restarted from the previous solution with the value at
(�89 �89 adjusted. In each case the new solution was found within 9--13 gradient
and Jacobian evaluations. However, the surface did not change much in this
example as the height of the obstacle was changed. The solution for C = 1 is
shown in Fig. 2.

If a solution on a fine mesh is required, it is far more efficient to obtain a solution
on a coarse mesh and interpolate to obtain a starting guess, rather than solving

Conjugate Gradient Algorithms in the Solution of Optimization Problems 75

the fine mesh problem directly. In this way a good approximation to the correct
set I is obtained and many restarts are avoided.

Fig. 2. Minimal surface for the second obstacle

6. Conclusions

The conjugate gradient algorithms described in this paper, scaled using relaxation
methods, are practical and robust techniques for the solution of nonlinear
equations and constrained minimization problems arising from discretization
of nonlinear elliptic partial differential equations. In using these algorithms, the
minimized function f never needs to be evaluated. The algorithms are simple to
program, requiring less than 250 lines of FORTRAN code to implement the
constrained algorithm and the scaling, plus code to evaluate the gradient and
multiply the Jacobian times a given vector. On the basis of limited experimen-
tation, in order to avoid line searches, the parameter of choice seems to be ~(1>
used with either/~(1) or/~(3) depending on the relative expense of gradient and
Jacobian evaluations. Constrained problems are, of course, more expensive to
solve, but theconjugate gradient method is an effective approach.

Acknowledgements

Special thanks go to Dr. Paul Concus for his careful reading of the manuscript and his vei N helpful
advice.

References

[1] Axelsson, O.: Solution of linear systems of equations: iterative methods. Sparse Matrix
Techniques (Lecture Notes, Vol. 572), pp. 1--11. Berlin-Heidelberg-New York: Springer 1977.

[2] Bartels, R., Daniel, J. W. : A conjugate gradient approach to nonlinear elliptic voundary value
problems in irregular regions. Proc. Conf. on Numerical Solution of Differential Equations
(Lecture Notes, Vol. 363), pp. 1--11. Berlin-Heidelberg-New York: Springer 1974.

76 Dianne P. O'Leary:

[3] Bertsekas, D. : Partial conjugate gradient methods for a class of optimal control problems.
IEEE Trans. Automat. Control AC-19, 209--217 (1974).

[4] Broyden, C. G. : Quasi-Newton methods, in: Numerical methods for unconstrained optimization
(Murray, W., ed.), pp. 87--106. New York: Academic Press 1972.

[5] Cohen, A. I. : Rate of convergence of several conjugate gradient algorithms. SIAM J. Numer.
Anal. 9, 248--259 (1972).

[61 Concus, P. : Numerical solution of the minimal surface equation. Math. Comp. 2i, 340--350
(1967).

[7] Concus, P.: Numerical solution of the minimal surface equation by block nonlinear successive
overrelaxation. Information Processing 68, Proc. IFIP Congress 1968, pp. 153--158. Amsterdam:
North-Holland 1969.

[8] Concus, P., Golub, G. H., O'Leary, D. P. : A generalized conjugate gradient method for the
numerical solution of elliptic partial differential equations, in: Sparse matrix computations
(Bunch, J. R., Rose, D. J., eds.), pp. 309--332. New York: Academic Press 1976.

[9] Concus, P., Golub, G. H., O'Leary, D. P. : Numerical solution of nonlinear elliptic partial
differential equations by a generalized conjugate gradient method. Cbmputing 19, 321--339
(t978).

[10] Daniel, J. W. : The conjugate gradient method for linear and nonlinear operator equations.
Ph .D . Thesis, Stanford University, and SIAM J. Numer. Anal. 4, 10--26 (1967).

[11] Dixon, L. C. W. : Conjugate gradient algorithms: quadratic termination without linear searches.
J. Inst. Maths. Applics. 15, 9--18 (1975).

[12] Douglas, Jesse: A method of numerical solution of the problem of Plateau. Ann. Math. 29,
180--187 (1928).

[13] Douglas, J., jr., Dupont, T.: Preconditional conjugate gradient iteration applied to Galerkin
methods for a mildly nonlinear Dirichlet problem, in: Sparse matrix computations (Bunch,
J. R., Rose, D. J., eds.), pp. 333--349. New York: Academic Press I976.

[14] Eckhardt, U. : On an optimization problem related to minimal surfaces with obstacles. Technical
Report, Jfilich (1975).

[15] Ehrlich, L. W.: On some experience using matrix splitting and conjugate gradient (abstract).
SIAM Review 18, 801 (1976).

[16] Fletcher, R., Reeves, C. M.: Function minimization by conjugate gradients. Computer J. 7,
149--154 (1964).

[17] Goldfarb, D. : A conjugate gradient method for nonlinear programming. Princeton University
Press, Thesis, 1966.

[18] Greenspan, D. : On approximating extremals of functionals part 1. ICC Bull. 4, 99--120 (1965).
[19] Hayes, L., Young, D. M., Sohleicher, E.: The use of the accelerated SSOR method to solve

large linear systems (abstract). SIAM Review 18, 808 (1976).
[20] Hestenes, M. R. : The conjugate gradient method for solving linear systems. Proc. Symp.

in Appl. Math. 6, 83--102 (1956).
[21] Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res.

Nat. Bur. Stand. 49, 409--436 (1952).
[22] Klessig, R., Potak, E. : Efficient implementation of the Polak-Ribiere conjugate gradient

algorithm. SIAM J. Control 10, 524--549 (1972).
[23] Lenard, M. L. : Convergence conditions for restarted conjugate gradient methods with in-

accurate line searches. Math. Prog. IO, 32--51 (1976).
[24] McCormick, G. P., Ritter, K. : Alternative proofs of the convergence properties of the con-

jugate gradient method. J. Opt. Th. Applic. 13, 497--518 (1974).
[25] Meijerink, J. A., van der Vorst, H. A. : An iterative solution method for linear systems of

which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148--162 (1977).
[26] Nazareth, L. : A conjugate direction algorithm without line searches. J. Opt. Th. Applic. 23,

373--388 (1977).
[27] O'Leary, D. P. : A generalized conjugate gradient algorithm for solving a class of quadratic

programming problems. Report STAN-CS-77-638, Stanford University (1977).
[28] Ortega, J. M., Rheinboldt, W. C. : Iterative Solution of Nonlinear Equations in Several

Variables. New York: Academic Press 1970.
[29] Polak, E., Ribiere, G. : Note sur la convergence de m6thodes de directions conjug6es. Rev.

Franqaise Informat. Recherche Operationnelle 16-R1, 3 5 4 3 (1969).

Conjugate Gradient Algorithms in the Solution of Optimization Problems 77

[30] Polyak, B. T. : Conjugate gradient method in extremal problems. USSR Comput. Math. and
Math. Phys. 9, 809--821 (1969).

[31] Powell, M. J. D.: Restart procedures for the conjugate gradient method. Math. Prog. 12,
241--254 (t977).

[32] Reid, J. K. : On the method of conjugate gradients for the solution of large sparse systems of
linear equations, in: Large sparse sets of linear equations (Reid, J. K., ed.), pp. 231--254.
New York: Academic Press 1971.

[33] Schecter, S. : Relaxation methods for convex problems. SIAM J. Numer. Anal. 5, 601--612
(1968).

[34] Wang, H. H. : The application of the symmetric SOR and the symmetric SIP methods for
the numerical solution of the neutron diffusion equation. Report G 320-3358, IBM Palo Alto
Scientific Center (1977).

Dr. Dianne P. O'Leary
Computer Science Department
University of Maryland
College Park, MD 20742, U.S.A.

