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Abstract - -  Zusammenfassung 

Conjugate Gradient Algorithms in the Solution of Optimization Problems for Nonlinear Elliptic Partial 
Differential Equations. Several variants of the conjugate gradient algorithm are discussed with 
emphasis on determining the parameters without performing line searches and on using splitting 
techniques to accelerate convergence. The splittings used here ate related to the nonlinear SSOR 
algorithm. The behavior of the methods is illustrated on a discretization of a nonlinear elliptic 
partial differential boundary value problem, the minimal surface equation. A conjugate gradient 
algorithm with splittings is also developed for constrained minimization with upper and lower bounds 
on the variables, and the method is applied to the obstacle problem for the minimal surface equation. 

Konjugierte Gradienten-Algorithmen in der Liisung yon Optimierungsproblemen fiir nichtlineare eUip- 
tische partielle Randwertprobleme. Wir besprechen mehrere Varianten des konjugierten Gradienten- 
Algorithmus unter Hervorhebung der Parameterbestimmung ohne Minimierung entlang von Linien 
und der Konvergenzbeschleunigung dutch Zerlegung. Die hier verwendeten Zerlegungen sind dem 
nichtlinearen SSOR-Algorithmus verwandt. Das Verhalten der Methoden wird illustriert an der 
Diskretisierung eines nichtlinearen elliptischen partiellen Randwertproblems, n~imlich der Minimal- 
fl~ichen-Gleichung. Wit entwickeln auch einen konjugierten Gradienten-Algorithmus mit Zerlegungen 
fiir Minimierung mit von oben und unten besehr/inkten Variabeln; ferner zeigen wir eine Anwen- 
dung der Methode auf das Hindernisproblem bei der Minimalfl~ichen-Gleichung. 

1. Introduction 

We study in this paper the application of several variants of the conjugate gradient 
algorithm to the solution of large systems of nonlinear equations and certain 
optimization problems arising from discretization of nonlinear elliptic partial 
differential equations. 

The conjugate gradient algorithm is an iterative method for solving certain 
systems of linear or nonlinear equations 

g (u)= 0 
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or, alternatively, for finding a stationary point of a function f (u) with gradient 
g (u). Here u and g are n-vectors. The method was originally discussed [21] for 
convex quadratic functions: 

f ( u ) =  1/2 uT A u--uT b 

9(u)=Au-b, 

where A is an n x n symmetric positive definite matrix. The strategy is, given an 
initial approximation u (1), to take steps that produce a sequence of iterates 
{u (k)} for which {f(u(k))} is a monotonically decreasing sequence. Each step 
direction is the negative of the component of the current gradient that is A- 
conjugate to all previous directions, and the function is minimized in each of 
these directions in turn. This method has several desirable properties: it ter- 
minates (under exact arithmetic) in at most n steps with u*, the global mini- 
mizer of f ;  there are no arbitrary parameters to choose or extra information to 
provide; it requires only a few vectors of storage plus a means of forming the 
product of A with an arbitrary vector; and the convergence [10] is bounded as 

E (u(k))<4 ( . 1 -  ~ )  ~k-2 
1+ Klf~f E (u(1)) ' 

where tc is the condition number of A, defined to be its largest eigenvalue 
divided by its smallest eigenvalue, and E (u)= f (u)+ 1/2 (u*, b). Because of the first 
property, we could consider the conjugate gradient algorithm to be a direct 
method for solving linear systems, but its operation count is too high for it to be 
generally useful in this mode. The last three properties are the reasons it has 
become a popular iterative method for solving large sparse systems of linear 
equations. 

The algorithm has been generalized in many ways to solve nonlinear systems of 
equations. See, for example, [2, 10, 11, 13, 16, 17, 23, 26, 29, 30, 313. These 
algorithms differ in their choice of step directions and the accuracy of the 
minimization required at each step. Some require information such as function 
evaluation and Jacobian matrices while others do not. They are alternatives to 
Newton's method when it is impractical to solve linear systems involving the 
Jacobian matrix of g. They are used instead of variable metric (quasi-Newton) 
methods [4] when the number of unknowns precludes storage and updating of 
an approximation to the Jacobian or its inverse. Conjugate gradient algorithms 
share many desirable properties with variable metric methods; in particular, 
under certain conditions on f and the choice of parameters [3, 5, 22, 243, these 
algorithms can be shown to have an n step superlinear or n step quadratic 
convergence rate: i.e., 

II u ( k + " ) -  u* [I lim sup < c < 
k +  ~ II u (~ ) -  u*/I  0 - 

where 0> 1 or 0=2  respectively and c is a constant. Unfortunately, these con- 
vergence rate estimates are useless for our problems. The number of unknowns 
is so large that an algorithm must converge in much fewer than n iterations if it 
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is to be a feasible procedure for problems arising from discretization of partial 
differential equations. 

Our study of the conjugate gradient algorithm is a continuation of work 
reported by Concus, Golub, and O'Leary [9]. In that paper, several versions of 
the conjugate gradient algorithm for convex functions were considered and 
practical criteria were developed to ensure convergence of the algorithm without 
requiring accurate minimization along the step directions. Applications to dis- 
cretization of nonlinear elliptic differential equations were considered, and the 
nonlinear operators were split in order to improve convergence. These splittings 
were based on related elliptic operators, partial factorizations, or iterative methods 
such as symmetric successive overrelaxation (SSOR). Test results for the minimal 
surface equation and for a mildly nonlinear equation arising in the theory of 
semiconductor devices showed several conjugate gradient algorithms to be 
competitive with other algorithms on such problems. 

In this paper we extend this work in several ways. In Section 2 we present the 
algorithms described in [9], adding a modification that reduces the necessity to 
restart those conjugate gradient algorithms in order to guarantee convergence. 
Numerical experiments applying this family of algorithms to the minimal surface 
equation are presented in Section 3. In Section 4 we discuss an algorithm 
applicable to minimization of a nonlinear function subject to upper and lower 
bounds on the variables, and in Section 5 present the results of numerical 
experiments on minimal surfaces with obstacles. 

We will use the notation 

= arg min h (~) 
~>'0 

when ~ > 0 and h (~) = rain h (cr 
~>0 

2. Various Forms of the Conjugate Gradient Algorithm 

The basic conjugate gradient algorithm for minimizing the convex function f(u) 
with gradient g (u) is as follows: Given an initial iterate U (1), se t  r(a)= = g (u (1)) and 
the initial direction p(1)= r(1), and for k=  1, 2 . . . .  , form 

u(k + 1)  : u(k) _~_ O~ k p(k) 

r(k + 1) = _ g (u(k + 1)) 

p(k + 1) = r(k + 1 ) _}_ flk p(k).  

The parameters % and flk are chosen, in the convex quadratic case, to minimize 
f along the direction p(k) and to make (p(k+ 1~ A p(J))= 0 for j < k: 

ak = arg min f (U (k) -Jr- (X l~(k)'~ - -  (r(k)' r(k)) (r(k), p(k)) 
> o r , - -  (p~5~, A - ~ ) )  - (p(k), A p(k)) ,  

(r(k+l),r(k+l)) (r(k+l),Ap(k)) (r(k+l),r(k+l)--r(k)) 
fik = (r(k) r(k)) : (p(k) A p(k)) --  (r(k), r(k)) 
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See [32] for derivations showing the equivalence of the various forms for the 
parameters. For  convex nonquadratic problems, flk is generally chosen by one of 
the three formulas above, where A is taken to be the Jacobian matrix J (u (k)) or 
J (u(k+l)). The parameter c~ k is usually obtained by a line search procedure to 
be a good approximation to 

~P' = arg min f (hi (k) "Or ~ p(k)). 
c t > 0  

A scaled version of the conjugate gradient algorithm [1, 8, 10, 15, 19, 20, 25, 34J 
can be obtained in the quadratic case by applying the iteration formulas to the 
equivalent problem 

min f ( w ) ,  where f ( w )  = 1/2 w T M -  1/2 A M -  t/2 w -  w T M -  1/2 b 
vr 

and M -1/2 is a symmetric positive definite matrix. If we then rewrite the 
formulas obtained in terms of the original variables u = M -  1/2 w, we obtain the 
algorithm: 

Given u ~ form r (1) = - g  (u(1)), z(1)--M - , r(1), and p(1)-- z(1), and for k =  1, 2, ... 
compute 

u(k+ 1) = u(k) _~_ ~k p(k) 

r(k+ 1) = _ g (u(k+ 1)), z(k+ 1) = M -  1 r(k+ 1) 

p(k + 1 ) = z(k + 1) q_ flk p(k). 

M is a positive definite matrix chosen to accelerate convergence. The parameters 
1 2 3 and flk = fl~ = f12 = fl~ where ek and flk are given by formulas ek = ek = C~k = C~k 

, (r z% (r ~), z ~+ ')) 
~ k - ( p % A p % ,  fl~= (r ' 

if(k), p(k)) ( z(k + a), A p(k)) (2.1) 
~ -  (p(~), Ap%' fl~ = (p% Ap% ' 

c~ = arg min f (u (k) + c~ p(k)), fi~ _ ( r(k + 1), z(k + a) _ z(k)) 
> 0 (r(k), z(k)) 

In the nonquadratic case, these formulas are no longer equivalent but yield 
distinct conjugate gradient algorithms. Instead of the matrix A we use the 
Jacobian matrix J k = J  (U (k)) in all parameters with subscript k. Fletcher and 
Reeves [16] proposed the parameter fi~, Daniel [-10] used fi2 with J (u (k+ x)) rather 
than J (u(k)), and fl~ was given by Polak and Ribiere [29]. 

We are interested in convex nonquadratic problems for which line searches are 
expensive but evaluation of the Jacobian matrix is feasible. In fact, for the 
discretization of nonlinear elliptic differential equations, it is desirable to avoid the 
need to calculate the function value f (u(k)). If f is convex then (p(k), g (u(k)+c~p(k))) 
is a monotone increasing function of e that is negative at e =  0 and is zero at 

3 the point at which f attains its minimum on the line u (k) + c~ p(k). AS long 
as our step underestimates ~3, we have guaranteed that f ( u ( k + l ) < f ( u  (k)) and 
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this is verified by checking that 

(p(k), g(k+ 1)) _<0. (2.2) 

We can define a conjugate gradient algorithm implementing this idea as fol- 
lows: 

Given u (1), the scaling operator M, a termination criterion e, the index q of the fl 
choice (q = 1, 2, or 3), and K, the maximum number of iterations, let r (1)= _ g  (u (1)), 
z (1) = M -  1 r and p(1) = z(1). 

Then for k = 1, 2 . . . . .  K: 

(1) C h o o s e  ek and  calculate the  n e w  iterate u(k+ l ~, the new  residual  r(k+ l~= --g(u(k+ l )), 
and the scaled residual z (k+ 1) = M -  1 r(k+ 1) 

(2) Test for satisfaction of the termination criterion. This is usually a test that 
/I r (k§ 1) II < ~ for an appropriate norm. 

(3) Update the direction to prepare for the next iteration: 

p(k + 1) = z(k + 1) -b fl~ p(k) 

where fl~ is defined by equation (2.1). 

The algorithm is well defined except for Step (1). Here we modify the algorithm of 
I-9]. The choice of c~ k can be made as follows: We test candidates for ek in turn 

1 until the convergence test (equation (2.2)) is satisfied. We test in the order ~k 
(or e~), then ~ (or e~). If both of these fail, a line search is performed until the test 
is satisfied. In our experiments, bisection was used for the line search, and the algo- 
rithm was restarted using the current vector u (k) as u (1) if two steps of bisection failed. 

Each tentative choice of ek involves computing 

U(T k + 1) = u(k) -t- ~k p(k), 

r~+ 1)=  _ g (u~+ 1)) 

and calculating (r(r k+l), p(k)). For the successful step, however, this extra inner 
product is essentially free, since (r (k+ 1), z(k+l)) and (r (k+ 1), p(k+l)) will be needed 
to calculate 1 and 2 1, and from the definition of p(k+ 1) (Xk+ 1 ~k+ 

(r(k+ 1), p(k+ 1)) = (r(k+ 1), Z(k+ 1)) AC flq (r(k+ 1), p(k)). (2.3) 

For  our problems, K is generally quite small ( K ~  10 when n~400) and the 
conjugate gradient cycle is restarted from the current u whenever bisection fails 
or when more than K iterations have been performed in the current cycle. The 
addition of an accurate line search when k= 1 would guarantee convergence for 
certain classes of functions f .  The choice of the scaling operator M will be dis- 
cussed in Section 3. 

The elimination of accurate line searches in most iterations can produce a large 
savings in gradient calculations per iteration, but must be implemented carefully 
in order to avoid greatly increasing the number of iterations and thus the 
number of Jacobian evaluations. 
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As noted above, in the quadratic case, all choices of the parameters c~ k and ilk 
are equivalent. The question arises, if in the course of the computation on a non- 
quadratic problem without line searches our calculated parameters agree (i.e., 

1 = ~2 and il~ 2 3 C~k = ilk = ilk), what can we conclude about the function ? 

Theorem: 

1 and 2 satisfy 1 2 (i) The parameters ek C~k C~ k = C~ k if and on(); if (p(k- 1), r(k)): O. 

(ii) I f  Ct~ is used, ill =il2 holds if and only if (z (k+l), r(k+l)+C~ Jkp(k))=O. 

(iii) There holds 1 2 and 1 2 3 O~k=~ k i lk=ilk=ilk  if and only if  (p(k-1), r(k))=O, 
1 J k  p(k)) = O. (r(k+ 1), z(k)) =0, and (z (k+ 1), rtk+ 1~+ C~ k 

Proof: 
2 and equation (2.3). (i) This result follows from the definitions of c~ and c< k 

(ii) This follows from the definition of e~ and the observation that 

_ (z(k+ t), Jk p(k)) _ ( z ( k +  1), v(k+ 1)/~1 _~_ J k  p(k)) At_ ( r (k+  1), z ( k +  1)h/A,1 = t /~"k ]t~k 
(p(k), j~ p(k)) (p~k), j~ p(k)) 

(iii) This follows from parts (1) and (2). 

Notice that r(g+l)+C~k Jk p(k) would be equal to r (k) if the function were qua- 
dratic. 

These algebraic properties give the answer to our question: the parameters 
agree if and only if the line search at the previous step was exact and the new 
residual is M-l -conjugate  to the previous residual and to the approximation 
to it given by the quadratic theory. If this occurs for a full cycle of conjugate 
gradient steps and the size of the residual indicates that we are in the neighborhood 
of the solution, it would be desirable to delay the restart and permit the length of a 
cycle to be a full n or n + 1 steps. If n is large, we would expect convergence to 
occur long before the cycle is complete. 

3. Numerical Results 

The various choices of parameters for the conjugate gradient algorithm were 
tested on a minimal surface problem. Other solution techniques for this problem 
can be found, for example, in I-6, 7, 12, 18, 331. The specific example used here is 
found in 1-6] and [9]. This is the minimal surface equation over a rectangular 
region: 

d iv (?Vv)=0  on R 

R =  {(x, y ) : O < x  <2, 0 < y < l }  

where 7 = (1 + [ V v ]2)- 1/2 and the boundary conditions are 

v (0, y)  = v (2, y)  = v (x,  1) = 0 

v (x, 0) = sin rc x/2. 
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The solution is symmetric about the line x =  1, so the problem was solved over 
the unit square. A uniform mesh of size h (h-- l/s) is imposed on the domain. The 
approximation to v (mh, ih) is denoted by u,,,i. The finite difference equations 
are 

gm, i = 7~.,y (2 l'lm, i--Um-l,i--Um, i-1) AI- 

-t'- ~T- f ,T(2  Um, i--lAm+ l,l--Um, i-1) 

"~- ~ , / ~ i -  (2 Um, i--l.,lm- l,i--Um, i+ l) 

+7~4T, i~r(2u,~,i--u,~+~,i-um, i+O=O r e = l , 2  . . . .  , s - l , i = l , 2  . . . . .  s - 1 .  

Here 7g,7 is 7 at the point ( (m-  1/2) h, ( i -  1/2) h) using the approximation 

1 
IV u [2 , . , i -  2h-f ((Um, l--Um-l,i)Z+(u,.,i--Um, i - O  2 

~-(Um, i-  1 --Um-l,i-1)2-~-(blm- l,l--Um_ l,i_ l)2). 

Appropriate modifications are made to the finite difference equation near the 
Neumann boundary x =  1 (m = s). See [-9] for details. The equations are second 
order accurate. 

The finite difference equations have an alternate interpretation as the gradient of 

f ( u )  =h2 i ~ V I+[VuI2 ,T  
i=1 m=l  

which is an approximation to the surface area 

1 1 

s(v)= I I (l+4+4)l 2dxdy. 
0 0 

The Jacobian matrix of g is sparse with at most 9 nonzero elements per row, so 
multiplication of an arbitrary vector with it is rather inexpensive though solving 
a linear system involving it would be costly. 

Two scalings were used for the conjugate gradient algorithm; both are related to 
relaxation methods discussed, for example, in [28]. Consider first the one-step 
block successive overrelaxation-Newton (BSOR-Newton) algorithm. We partition 
u, r, and J into blocks corresponding to columns of mesh points. Then the new 
approximation to the i-th block of u, u i = (ul,i, u2,~ . . . .  , u~, i), is obtained by the 
formula 

u7 ew = u~ + co J -  1 ~,i ri i = 1 , 2  . . . . .  s - 1 .  

H e r e  r and J are evaluated at the most recent u values and co is a scalar 
parameter. A symmetrized version of this algorithm, which obtains the next u 
vector by two steps of the algorithm, sweeping through the formulas from 1 to 
s - 1  and then from s - 1  to !, will be called block symmetric successive over- 
relaxation-Newton (BSSOR-Newton) algorithm. This algorithm requires two 
Jacobian and gradient evaluations per iteration. When this method is used as a 
scaling, we define the vector z (k) to be the change in u over one double sweep of 
the algorithm starting from the guess u (k). 

5 Computing 22/1 
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An alternate algorithm, the symmetric one-step Newton-BSSOR algorithm, 
requires only one gradient and Jacobian evaluation per iteration. Used as a 
scaling, this algorithm is defined by a forward and backward sweep as follows: 

5}k)= CO Ji]-i t (r} k)-  (Ls i =  1, 2 . . . . .  s - -  1 

zl ~ = el ~ + CO J [ i  1 (rl ~ -  (L e(k~ + D ~k~ + U z~)~), i =  s -  1, s -  2 . . . .  ,2 ,  1, 

where J (u (k)) is partitioned as L +  D + U, with D the block diagonal, L the block 
strictly lower triangular part, and U the block strictly upper triangular part. J 
and r in the formulas are evaluated at u (k). 

See [9] for further description of the use of these algorithms as scalings. 

In the tables we list the number of gradient and Jacobian evaluations necessary 
to obtain a residual with infinity norm less than e for the various conjugate gra- 
dient algorithms and for the BSOR-Newton method. The mesh size used in the 
experiments was h=  1/20 (380 unknowns in the half domain) or h = 1/40 (1560 
unknowns). The initial guess was  I,/(1)= 0, giving 1[ r(i) 1t~ = .31. The BgOR-Newton 
algorithm requires one gradient and one Jacobian evaluation per iteration. The 
conjugate gradient (CG) algorithm with Newton-BSSOR scaling takes one 
gradient and one Jacobian evaluation per iteration, plus an additional gradient 
evaluation for each extra c~. The CG algorithm with BSSOR-Newton scaling 
requires three gradient and three Jacobian evaluations per iteration plus an 
additional gradient for each extra c~. The test for an acceptable c~, equation (2.2), 
was weakened slightly to require only that (p(k), g(k+ 1)) ~ e 11 9 (k+ 1) 11 2 .  

Table 1 presents the results for the three algorithms using various values of CO. 

For  the CG algorithms, the parameters fi(2~, K--  10, and a first choice of c~ (2~ were 
used. The ranges and average amounts of work are summarized in Table 2. We 
note that BSOR-Newton had the greatest variation in performance with CO, 
while the CG algorithms were much less sensitive. For  low accuracy, e_> 10 -2, 
the BSOR-Newton algorithm was usually less expensive than the CG algorithms, 
but for e_< 10-a the CG algorithms showed advantages. The CG algorithm with 
Newton-BSSOR scaling required far fewer Jacobian evaluations and a comparable 
or fewer number of gradient evaluations than BSOR-Newton. The BSSOR- 
Newton scaled CG algorithm was also often less expensive than BSOR-Newton, 
although the Newton-BSSOR scaling was clearly more effective. The various c~ 
and fl parameters quite often agreed for the BSSOR-Newton scaling, but less 
often with the Newton-BSSOR scaling. Results presented in Table 3 indicate that 
c~ (2~ is a poor choice of parameter, so we expect that the CG algorithm would be 
even more effective using ~(~). 

Table 3 presents the results of using the CG algorithm with Newton-BSSOR 
scaling and co = 1.6 for various choices of the e,/3, and restart parameters. The 
algorithm was relatively insensitive to restart values K between 5 and 15. 
Experiments indicated that 9 was optimal, and it was better to underestimate 
rather than overestimate this parameter. When using e(1), the number of gradient 
and Jacobian evaluations was less than, or at worst 2 more than, the number when 
using e(2). The choice of c~ had little effect on the number of Jacobian evaluations 



Conjugate Gradient Algorithms in the Solution of  Optimization Problems 67 

Table 1. Number of gradient and Jacobian evaluations needed to attain a residual II r~k)l[~ <8 on test 
problem with h= 1/20 

Algorithm m 8 = 10- 6 

BSOR-Newton 1.1 > 200, > 200 
1.2 > 200, > 200 
1.3 178, 178 
1.4 141, 141 
1.5 108, 108 
1.6 79, 79 
1.7 51, 51 
1.8 52, 52 
1.9 112, 112 

CG + Newton-BSSOR 
cd2), fit21 K = i0 

C G + BSSOR-Newton 
~2),/3~2), K = 10 

1.1 74, 34 
1.2 59, 30 
1.3 60, 26 
1.4 81, 31 
1.5 64, 26 
1.6 54, 23 
1.7 75, 34 
1.8 69, 33 
1.9 113, 44 

1.1 89, 75 
1.2 121, 90 
1.3 90, 72 
1.4 78, 63 
1.5 78, 60 
1.6 101, 69 
1.7 109, 78 
1.8 85, 66 
1.9 154, 117 

8=10- '* 

139, 139 
113, 113 
91, 91 
72, 72 
56, 56 
43, 43 
31, 
31, 
68, 

57, 
38, 
49, 
59, 
42, 
40, 
54, 
42, 
67, 

9, 
31 9, 
31 12, 
68 21, 

26 31, 
18 29, 
20 32, 
23 29, 
18 18, 
17 27, 
25 26, 
20 33, 
27 33, 

57 30, 
54 31, 
51 31, 
48 31, 
48 24, 
45 38, 
57 28, 
42 31, 
87 93, 

70, 
72, 
66, 
58, 
66, 
66, 
77, 
52, 

116, 

8 =  i0 -2 

�9 14, 14 
12, 12 
11, 11 
10, 10 
9, 9 

9 
9 

12 
21 

14 
13 
13 
11 

8 
11 
11 
14 
14 

24 
24 
24 
24 
18 
27 
21 
24 
69 

Table 2. Summary of number of  gradient and Jacobian evaluations needed for the algorithms in Table 1 

BSOR-Newton 

minimum 
maximum 
average 

CG + Newton-BSSOR 

minimum 
maximum 
average 

CG + BSSOR-Newton 

minimum 
maximum 
average 

8=10 -6 

51, 51 
> 200, > 200 
> 125, > 125 

54, 23 
113, 44 
72, 31 

78, 
154, 
101, 

60 
117 
77 

8=10 -4 

31, 31 
139, 139 
72, 72 

38, 17 
67, 27 
50, 22 

52, 42 
116, 87 
71, 54 

8=10 -2 

9, 9 
21, 21 
12, 12 

18, 8 
33, 14 
29, 12 

24, 18 
93, 69 
37, 28 

5* 
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(i. e,, the number of iterations), but the number of gradient evaluations was often 
significantly lower with ct (~). Among the fl parameters, fl(3) seemed better than/~(~) 
and/~(z), but when K was small there was not much difference in performance. 
On this problem, the combination e(*) and /~(3) gave a number of Jacobian 
evaluations within 1 o f  the minimum for each set of experiments. The combi- 
nation e(~),/~(~) was always within 2 of the minimum for gradient evaluations, 
while cd ~), fi(2) was competitive but usually not as effective as using fi(~) or fl(~). 

When c~ (a) was used, the line search was invoked very little, and then usually only 
at the first iterations. The first choice of cd 2) failed more often and when it did, c~ (*) 
usually did, too. When this happened there were at least 3 trial c(s, driving up the 
number of gradient evaluations. 

Table 3 also presents data for co= 1.2, K =  10, and various choices of ct and/3. 
This shows that the conclusions regarding the best choices of ~ and fi are valid 
for a range of co values. 

Further experiments indicated that the CG algorithm with Newton-BSSOR 
scaling was almost always more expensive than the BSSOR-Newton scaling in 
number of gradient and Jacobian evaluations. Both algorithms were insensitive 
to the magnitude of the boundary conditions. 

Table 3. Number of 9radient and aacobian evaluations needed for the CG algorithm with Newton-BSSOR 
scaling, h= 1/20 

~= 10 -6 g= 10 -4 e= 10 -2 

00=1.6, K = 5  

co= 1.6, K =  10 

co= 1.6, K =  15 

co = 1.2, K = 10 

~(2), fl(1) 

~(2) ~3) 
~(1) ~(I) 
~(I) fl(2) 

~(2) ~(1) 
~(2) fl(2) 

(~(1) fl(1) 

~(1) fl(3) 

~(2) fl(1) 
~(2) fl(2) 

~(2) fl(1) 
5(2), fl(2) 
~(2) fl(3) 
~(1) fl(1) 
~(1), fl(2) 
5(11 fl(3) 

67, 32 
57, 23 
56, 24 
27, 23 
46, 24 
45, 22 

47, 30 
54, 23 
62, 24 
31, 27 
44, 23 
40, 23 

64, 36 
57, 24 
77, 30 
39, 35 
51, 24 
38, 20 

I 63, 36 
59, 30 
42, 21 
39, 35 
48, 27 
37, 21 

45, 21 
44, 18 
42, 18 
21, 17 
40, 18 
37, 18 

38, 24 
40, 17 
48, 19 
27, 23 
35, 17 
34, 17 

42, 26 
47, 19 
56, 22 
27, 25 
46, 19 
33, 15 

46, 26 
38, 18 
37, 18 
29, 27 
37, 20 
31, 17 

25, 12 
24, 10 
25, 11 
14, 12 
24, 10 
25, 11 

27, 15 
27, 11 
27, 11 
19, 15 
27, 11 
26, 11 

35, 20 
25, 11 
27, 11 
20, 18 
26, 11 
26, 11 

25, 14 
29, 13 
24, 11 
12, 12 
30, 13 
22, 11 
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Table 4. Number of gradient and Jacobian evaluations on test problem with h= 1/40 

69 

Algorithm 

BSOR-Newton 

CG + Newton-BSSOR 
x~21,/3~2~, K = 10 

CG + BSSOR-Newton 
t(2) fl(2) K = 10 

e=  10 -6 

1.2 >400, >400 
1.3 >400, >400 
1.4 >400, >400 
1.5 377, 377 
1.6 281, 281 
1.7 196, 196 
1.8 120, 120 
1.9 118, 118 

1.2 126, 58 
�9 1.3 132, 55 

1.4 126, 54 
1.5 117, 53 
1.6 117, 49 
1.7 100, 43 
1.8 86, 38 
1.9 84, 38 

1.2 171, 135 
1.3 212, 153 
1.4 169, 129 
1.5 148, 117 
1.6 205. 150 
1.7 144, 102 
1.8 131, 87 
1.9 >400, >400 

e =  10 -4 

321, 321 
259, 259 
206, 206 
160, 160 
120, 120 
86, 86 
58, 58 
74, 74 

90, 41 
100, 39 
69, 31 
83, 35 
87, 36 
75, 33 
72, 30 
67, 29 

120, 93 
124, 93 
122, 93 
103, 81 

134, 99 
110, 78 
107, 69 

>400, >400 

~= 10 -2 

5, 5 
4, 4 
4, 4 
4, 4 
5, 5 
6, 6 
7, 7 

28, 28 

39, 18 
17, 6 
10, 6 
22, 10 

6, 4 
24, 11 
27, 12 
42, 18 

50, 39 
40, 30 
75, 57 
49, 42 
83, 66 
46, 33 
51, 33 

>400, >400 

Table 5. Summary of number of gradient and Jacobian evaluations needed for the algorithms in Table 4 

BSOR-Newton 

minimum 
maximum 
average 

CG + Newton-BSSOR 

minimum 
maximum 
average 

CG + BSSOR-Newton 

minimum 
maximum 
average 

e=  10 -6 

118, 118 
> 400, > 400 
>287, >287 

84, 38 
132, 58 
111, 49 

131, 87 

e=  10 -4 

58, 58 
321, 321 
161, 161 

67, 29 
100, 41 
80, 34 

103, 69 
> 400, >400 
> 176, > 141 

> 4 0 0 ,  > 400 
>136, >112 

e= 10 -z 

4, 4 
28, 28 

8, 8 

6, 4 
42, 18 
23, 11 

40, 30 
>400, >400 

>88, >78 
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Table 6. Number of gradient and Jaeobian evaluations needed for the CG algorithm with Newton-BSSOR 
scaling, h = 1/40 

co= 1.6, K = 5  

co = 1.6, K =  15 

co= 1.4, K =  10 

co= 1.8, K =  10 

~(2), 8 (1) 
~(2), 8(2) 
~(2), 8(3) 
~(1), 8(1) 
~(1) 8(2) 

~(2) 
~(2) 
~(2), 
~(1), 
~(1) 
~(1) 

N(2) 
~(2) 
N(2), 
~(1) 
~(1), 
~(1) 

8(, 
8 (2) 
8(3) 
8-) 

8(3) 

8(1) 
8~2) 
8~3) 
8(1) 

8~3) 

~(2), fl(1) 
CZ(2), 8 (2) 
C~(2), fl(3) 
~(1), fl(1) 

F c~(i), fl(2) 
[ ~"', 8,3, 

g= 10 -6 ~= 10 -4 z= 10 -2 

95, 46 
99, 42 
93, 42 
51, 41 
85, 44 
81, 40 

89, 54 
77, 38 
79, 37 
64, 54 
85, 43 
74, 39 

100, 54 
134, 59 
100, 49 

60, 50 
87, 48 
71, 42 

93, 49 
90, 40 
93, 38 
77, 59 
78, 37 
78, 36 

61, 30 
78, 33 
72, 31 
38, 30 
72, 33 
61, 26 

80, 46 
67, 30 
63, 29 
57, 47 
76, 34 
60, 29 

75, 40 
93, 41 
63, 33 
46, 38 
68, 34 
63, 34 

80, 42 
75, 32 
79, 30 
65, 49 
67, 30 
71, 29 

13, 7 
6, 4 

16, 8 
24, 18 

7, 4 
26, 11 

35, 17 
6, 4 

44, 18 
47, 37 

7, 4 
31, 13 

51, 27 
10, 6 
41, 19 
11, 11 
11, 6 
19, 8 

64, 31 
27, 12 
28, 11 
52, 38 
29, 12 
52, 21 

An advantage of the CG algorithms over BSOR-Newton  is that, because of 
their ability to incorporate adaptively a line search when necessary, they have 
better behavior when far away from the solution. This is not observed in the current 
implementation because of the relaxed condition for the downhiU test, eqn. (2.2). 
With appropriate modification of this, however, the CG algorithms would 
exhibit a much larger practical radius of convergence than BSOR-Newton.  

Tables 4 ~ 6  give results for a smaller mesh size, h = 1/40. 

The trends in the first three tables are continued here. The CG algorithm with 
BSSOR-Newton  scaling was superior to most BSOR-Newton  runs for e <  10 -3. 
Performance was not very sensitive to the choice of co or K. For e___ 10 - 4 ,  ~( i) ,  ~(3) 
always gave results within 2 of the minimum for Jacobian evaluations, and e(1), 
13 (1) was within 2 of  the minimum for gradient evaluations. The performance of 
e(1),/~(2) was variable. 

Comparing Tables 2 and 5 for e < 10 . 4  we see that the number of BSOR-Newton  
gradient and Jacobian evaluations for the best co doubled as h went from 1/20 
to 1/40, and for CG with Newton-BSSOR scaling the growth factor was 
between 1.6 and 1.8. 
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From this limited data it would seem that e(x), fi(a~ and ~(~), tim give the most 
effective CG algorithms, and that a choice between these would depend on the 
relative costs of gradient and Jacobian evaluations. 

4. Algorithms for Constrained Problems 

In this section we consider the solution of a convex minimization problem 

min f (u) 

c<_u<_d. 

We use the same notation as in Section 2, and modify the algorithms given there 
to solve this problem. The basic framework we use is due to Polyak [30]. 

The optimality conditions for the solution to the problem are 

If u~ = c~ then r~_< 0. 

If u i = di then r~ >__ 0. 

If c~ < u~ < d~ then r~ = 0. 

Our strategy will be to start with a u (1) such that c<_u(1)<_d, and maintain 
feasibility, c_< u(k)_< d, while iterating to satisfy the sign conditions on r. At each 
outer iteration we will choose a subset of the variables which are at their bounds 
and whose r components have the proper sign. We keep these u variables fixed 
while adjusting the others in an inner iteration. 

In the algorithm, I is the index set for the fixed variables. For  any vector w we 
denote by ~ the vector obtained by setting the components of w corresponding 
to elements in the set I to zero: 

w i if i ~ I  
wi= 0 if i ~ I .  

We present the algorithm and then make several comments on its relation to 
other algorithms and its convergence. 

Given an initial feasible u (1), c<_u(1)<_d, a scaling operator M, a termination 
criterion e, the index q of the fl choice, and K, the number of iterations in a cycle, 
set r(~)=-g(u(~)), and initialize I = { 1 , 2  . . . .  ,n} so that the first termination 
test works. 

(1) Let I =  {i:u~l)<ci-ke and rl l)<0} w {i:ull)>di-e and rla)>0}. If I has not 
changed from the previous iteration and [17 (x) I[ <e  then terminate with the 
solution. Otherwise, we will solve a subprobtem keeping the elements of u 
corresponding to indices in I constant. 

(2) Set z(1)=P (1), p(1)=z (~), k l = l ,  and begin Step 4. This initializes a steepest 
descent step followed by a scaled conjugate gradient cycle. 

(3) Set u(Z)=u (k), ?z)= r(k), z ( 2 ) = ~ ,  p(2)=Z(2)  ' and k I =2. This initializes 
a scaled conjugate gradient cycle. 
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(4) For k=  k 1 . . . . .  K. 

(a) If ][ 7 k) II<~ then set u(1)=u (k), r (1)=r (k), and go to Step (1). We have 
successfully solved a subproblem. 

1 and 2 defined in Sec t ion  2, and the maximum feasible step (b) Calculate ~k ~k 
length in direction p(k): 

/ d~ ui" (k) C i _  ulk) ~ 
C~ma x = min lmin  \~I ~'~~ plk) , min 

pl~,<o plk) J 

Choose the step length c~ k as in Section 2, but consider candidates only if 
they are less than ~max' If k= 1, continue the line search until success as 
defined by equation (2.2). If k = 2  and the search fails, set u(1)=u (2), 
r(1)=r (2), and go to Step (2). Otherwise, if the search fails, go to Step (3). 
If a successful c~ k is found, set 

U(k + 1) = u(k) -I- Ot k p(k) 

r(k + 1) .= _ g (u(k + t))  

(c) Set I =  { i : u l k + l ) < c i + e }  • { i : u l k + l ) > d i - - e } .  If I = { 1 , 2  . . . . .  n} then go to 
Step (1) with u(1)=u (k+l), r(1)=r (k+l). If I has changed, then replace k by 
k+ 1 and go to Step (3) to restart the scaled algorithm. 

(d) Calculate z ( k+~)=(M -~ r(k+~)). Update the direction to prepare for the 
next iteration: 

p(k + 1) = Z(k + t)  + flq p(k) 

where/~, k=p 1, is defined in equation (2.1) and /~  = O. 

(5) Go to Step (2) to continue the solution process for the subproblem with 
u(1) = u(K+ 1) and r (1) = r (K+ 1). 

Note first that if c = - oo and d = o% i.e., if the problem is unconstrained, then 
I--q~ after Step (1) and the algorithm reduces to that of Section 2 modified to 
include occasional steepest descent steps. 

Polyak considered the algorithm with M equal to the identity matrix and Step (2) 
omitted. If M is not the identity it is necessary to follow each definition of I in 
Step (1) by an unscaled steepest descent step in order to assure that the step 
direction is feasible. Although r (z) points away from the boundary, the scaled 
gradient z (x) may not. For  suitable classes of functions f ,  if a more restrictive 
downhill test is used as in 1-22] or [24], the algorithm can be shown to converge. 
Each inner iteration (2)--(5) is just a restarted scaled conjugate gradient algorithm 
applied to a convex function with steepest descent steps interspersed. The 
algorithm proceeds in the normal way unless a constraint is encountered, in which 
case the number of variables is reduced and a new inner iteration is begun. The 
function f decreases at each iteration. 

The use of this algorithm for quadratic objective functions is discussed in [27]. 
For constrained problems, the scaled vectors z are often truncated. For the 
Newton-BSSOR algorithm, for example, as ~ and z are computed, they are 
modified if necessary so that u (k) + ~(k) and u (k) + z (k) are feasible points. 
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In practice, the solution process is often more effective if a relatively large 
value of e is used throughout the course of the iteration and then the algorithm 
is restarted with the desired smaller e. 

5. Numerical Results 

The algorithms of Section 4 were applied to the minimal surface problem with 
obstacles: 

min S (v) 

c (x, y) < v _< d (x, y) 

where S was defined in Section 3. Alternate approaches to this problem are 
given, for example, in [-14]. The test problem was the same as in Section 3 with 
d = oe and various lower obstacles. 

For the first set of tests, a lower obstacle was constructed that had a peak of C 
along the line (�89 �89 to (1�89 �89 and rectangular contours decreasing to zero at the 
boundary of the region R. The algebraic definition is 

c (x, y)= 2 C min (x, 1 / 2 - l Y -  1/2 [) 

for O__x< 1 and O _ y <  1. The solution u for C=  1 is shown in Fig. 1. For clarity 
of display, the origin was taken in the right foreground and the region was 
reflected around the y axis. 

The one step BSSOR-Newton algorithm was used as the scaling algorithm for 
this problem. 

Fig. 1. Minimal surface for the first obstacle 
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Table 7. Number of gradient and Jacobian evaluations 
needed for the constrained problem 

co C = .3 C=  1.0 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

192, 126 
190, 126 
186, 124 
187, 125 
181, 121 
181, 119 
182, 128 
202, 136 
233, 161 

245, 163 
232, 157 
227, 153 
242, 161 
236, 157 
237, 160 
223, 157 
241, 175 
294, 216 

Table 7 shows the results of running the algorithm with various co values using 
u = c as the starting guess and a mesh size of h=  1/20. The parameters c~ (1) and fl(1) 
were used and e was taken to be 10 -a for initial convergence, with subsequent 
refinement to 10 -6. The performance was sensitive to the initial e but not to the 
final one. 

The counts of gradient and Jacobian evaluations shown in the table are a mis- 
leading estimate of the work, since in the course of the iteration, many variables 
were in the index set I and thus not all elements of u, g, and J need to be 
evaluated. For  C=.3 ,  for example, the number  of variables in I stepped down 
monotonically from 238 to 11 over the course of 34--38 outer iterations. For  
C =  1, the number  of variables decreased monotonically from 167 to 29 over 
35--38 iterations. 

Other examples were designed to test the use of a starting guess more suitable than 
u = c. The problem was solved with C--  1 and this solution was used as a starting 
guess for the problem with C =  .5. Using co= 1.6, 45 gradient and 39 Jacobian 
evaluations were needed for the second problem, rather than 183 and 131 
respectively when starting from u--c.  A series with C increasing from 0 to .3 in 
steps of .1 exhibited similar behavior. Thus significant saving can be expected if a 
parametric series of problems is to be solved. 

Other experiments were performed with h--1/20 and point obstacles at the 
locations (�89189 and (1�89189 The parameters el, ill, and e were the same as in the 
previous run, and co = 1.6. When the height of the obstacle was C = .5, the algorithm 
took 21 outer iterations with 190 gradient evaluations and 140 Jacobian evaluations 
from an initial guess of u = 0. The height was then increased in steps of .5 up to 5, 
and the iteration was restarted from the previous solution with the value at 
(�89 �89 adjusted. In each case the new solution was found within 9--13 gradient 
and Jacobian evaluations. However, the surface did not change much in this 
example as the height of the obstacle was changed. The solution for C =  1 is 
shown in Fig. 2. 

If a solution on a fine mesh is required, it is far more efficient to obtain a solution 
on a coarse mesh and interpolate to obtain a starting guess, rather than solving 
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the fine mesh problem directly. In this way a good approximation to the correct 
set I is obtained and many restarts are avoided. 

Fig. 2. Minimal surface for the second obstacle 

6. Conclusions 

The conjugate gradient algorithms described in this paper, scaled using relaxation 
methods, are practical and robust techniques for the solution of nonlinear 
equations and constrained minimization problems arising from discretization 
of nonlinear elliptic partial differential equations. In using these algorithms, the 
minimized function f never needs to be evaluated. The algorithms are simple to 
program, requiring less than 250 lines of FORTRAN code to implement the 
constrained algorithm and the scaling, plus code to evaluate the gradient and 
multiply the Jacobian times a given vector. On the basis of limited experimen- 
tation, in order to avoid line searches, the parameter of choice seems to be ~(1> 
used with either/~(1) or/~(3) depending on the relative expense of gradient and 
Jacobian evaluations. Constrained problems are, of course, more expensive to 
solve, but theconjugate gradient method is an effective approach. 
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