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A BIDIAGONALIZATION-REGULARIZATION PROCEDURE
FOR LARGE SCALE DISCRETIZATIONS

OF ILL-POSED PROBLEMS*

DIANNE P. O’LEARY" AND JOHN A. SIMMONS$

Abstract. In this paper, we consider ill-posed problems which discretize to linear least squares problems
with matrices K of high dimensions. The algorithm proposed uses K only as an operator and does not
need to explicitly store or modify it. A method related to one of Lanczos is used to project the problem
onto a subspace for which K is bidiagonal. It is then an easy matter to solve the projected problem by
standard regularization techniques. These ideas are illustrated with some integral equations of the first
kind with convolution kernels, and sample numerical results are given.
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1. Introduction. In this paper we discuss techniques applicable to the solution
of those ill-posed problems which, upon discretization, give rise to large linear systems
of equations. In particular, our examples are drawn from integral equations of the
first kind,

b

k(s, t)f(t) g(s)dt

or

min
b 2

which discretize to the linear system

Kf g,

or to the minimization problem

K: mxn,

f:nxl,

g:ml

m n,

min IIKf
f

Such continuous problems are characterized by the fact that small changes in the
function g can cause large changes in f. This is reflected in the discrete problem by
ill-conditioning in the matrix K. Since such perturbations can be due to unavoidable
noise in measurements of g or to roundoff errors in the calculation, algorithms for
numerical solution of the discretized problem must be designed to minimize the effects
of these perturbations.

Various techniques for solving linear ill-posed problems are discussed in a good
survey paper by Bj6rck and Eld6n [3]. We do not attempt an exhaustive review of
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these techniques here, but note that two of the most popular methods are based on
the following techniques"

(1) Regularization. We use this term in a broad sense [3] to describe methods
which replace the original operator by a related one which diminishes the effects of
errors in the data. For example, the function to be minimized might be replaced by

min IIg- gll + IIIIL
where Ilfll=f*L*Lf for some full rank matrix L, y is a positive scalar parameter,
and the superscript * denotes complex conjugate transpose. This is equivalent to
solving the system of equations

(K*K + yL*L)[= K*g.

Thus the operator K*K of the normal equations for the original problem has been
replaced by an operator K*K + yL*L. The choices of y and L, guided by the physical
characteristics of the problem and of the noise, give a problem for which the operator
is better conditioned but which has a solution close, in some sense, to that of the
original problem.

(2) Pro]ection. The approximate solution [ is constrained to lie in a specified
subspace given by the columns of a matrix V. In this case we have a modified problem,

min IlgVh gll
h

or

V*K*KVh V*K*g, .f Vh.

The new operator, V*K*KV, is K*K restricted to a subspace upon which it is better
conditioned.

The technique we consider is a projeetion-regularization method. In the first step,
the problem is projected onto a subspaee defined by a bidiagonalization algorithm.
The restricted operator is typically still ill-conditioned. In the second step a regulariz-
ation is applied on the subspace. The reason for this approach is that regularization
of the restricted problem can be less expensive and, if the subspaee is chosen properly,
the final results are not significantly degraded. The algorithm and its properties are
presented in 2. Potential applications of the algorithm include:

(i) Problems for which n multiplications by the operator K are significantly less
expensive than faetorization of the matrix.

(ii) Problems for which storage does not permit regularization of the original
problem.
Thus, problems for which K is sparse or K is structured so that its storage and
matrix-vector multiplication time are both less than O(mn) are possible candidates for
this algorithm. Examples of such problems and sample computational results are given
in 4.

2. The bidiagonalization-regularization algorithm. The algorithm proceeds in
two steps. First the problem is reduced to one on a subspace which is computationally
much more economical. Then standard techniques of regularization can be used on
the reduced problem. The two steps are defined in 2.1 and 2.2, and properties of
the algorithm are discussed in 2.3. A different algorithm based on bidiagonalization
has been proposed independently in [2].
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2.1 The Lanczos bidiagonalization. The subspace chosen over which to solve the
problem is that generated by the "Lanczos" algorithm for bidiagonalization. This
algorithm was investigated by Paige [20], named and described in block form by
Golub, Luk and Overton [11] and used in a different context by Moler and Stewart
[19]. It is a specific computational implementation of the bidiagonalization procedure
of Golub and Kahan [10], proposed as the first step of computing the singular value
decomposition of a matrix. It is related to ideas of Lanczos [16] and [17].

The Lanczos bidiagonalization algorithm takes an m x n matrix K and factors it
as

U*KQ =B, U: m xrn,

B’mxn,

Q’nxn

or

where U and Q are orthonormal,

K UBQ*,

and B is bidiagonal,

U*U =L O*O=I,

This is done using very elementary manipulations: we need to form the product of K
and K* with various vectors and to take linear combinations and inner products of
vectors. Furthermore, rather than carrying out the full algorithm, it can be terminated
early to give a factorization of K as an operator over a subspace’

where

U’KQk Bk,

[31

Uk" m Xk,

Qk’nXk,

Bk’kxk,

u,, =i, =I.
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The matrix B has the same singular values as K, and the singular values of Bk can
be shown to be close to certain of K’s, typically its largest and smallest [11].

The algorithm can be derived from the relations KQ UB and U*K BQ*. It
proceeds as follows [11].

Given K" m x n and zx" n x 1 an arbitrary nonzero vector, set

z Ylq -x y Kq ,=llyxll, u=--.,,1
For i= 1, 2,. , k-l,

Zi+l K*ui otiqi,

Zi+l
qi+l

Yi+I Kqi+l-iui,

Ui+l
Oi+1

The vector qi(u) is the/th column of the matrix Q(U).
Operations counts and properties of the algorithm will be discussed in 2.3.

2.2 Regularization of the bidiagonai problem. Our original discretized problem
was to solve

min IIK- gllzz
f

If we decide to consider only those vectors f contained in the subspace spanned by
the columns of Qk, i.e.,

f=Okh for someh’kxl,

and try to minimize the residual only in the directions spanned by the columns of Uk,
we have the reduced problem

min IIu (KOkh g)ll min IIn,h Ugll.
h h

This problem is typically still highly ill-conditioned, because while the matrix Bk
usually contains very good approximations to the large singular values of K [11], it
also has singular values which are rough approximations to the small ones. Thus
forming and solving the normal equations

B*Bkh BUg

will probably not give an acceptable solution. On the other hand, we have reduced
our problem to one of smaller dimension having a matrix that is bidiagonal. Thus,
any of the standard regularization or projection procedures [3] will be economical.
For example, we can use a truncated singular value decomposition, (SVD) expressing

Bk VXW*, W*W I, V* V I,

X diag (trx, 0"2," O’k), 0"1 > 0"2 =>" - O’k - O,
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defining a truncated pseudo-inverse for

and then setting

E=diag( 1 1 )0"1 O’r

v*iUg
h WY-,r+ V* U’g wi,

i= O’i

where wi(vi) is the ith column of W(V), Y--r diag (o’1,’’’, rr, 0," ’, 0), O"r > 0, and
the superscript "+" denotes the pseudo-inverse. This method might be considered
either a regularization method or a projection method.

As another alternative we could take a damped SVD approach, substituting a/
for 1/i in the above expression for h, where the ai form a sequence of decreasing
positive numbers. The damping factors might be determined using generalized cross
validation techniques [9], [28].

These SVD approaches are O(k3) processes. Even more efficient methods have
been suggested by Eld6n [6] [7] and Gander [8], basing the regularized solution
directly on the bidiagonal form and producing a solution in O(k) operations.

2.3 Properties and extensions of the algorithm. For definiteness in the discussion,
we assume in this section that a truncated singular value regularization is performed.

(A) The operations count for the Lanczos bidiagonalization is 3(n + m)k multipli-
cations plus 2(n + m)k additions plus k matrix-vector multiplications involving K and
k- 1 involving K*. The SVD, as mentioned above, is O(k3), and the final solution
is calculated in (n + m)k additions and multiplications. Thus if k is small compared
with n, significant savings can be realized with respect to the cost of the full singular
value decomposition algorithm, an O(nm) process.

(B) The Lanczos bidiagonalization can easily be implemented with 2n + 2m + 3k
storage locations in fast store (q, K’u, u, Kq, , , U’g), with the vectors q saved in
auxiliary storage as they are computed. For the singular value decomposition, 2k + k
locations are required for V, W and . To compute the solution, these three matrices
are used to form h, and then f is formed in O(nk) operations with access to the
vectors q. Thus, for efficient implementation, the storage requirement is that required
for K plus max (2n +2m + 3k, 2kZ+ 2k) in main storage, plus nk in auxiliary to be
written and read once sequentially. (By rearranging the algorithm slightly the storage
of V could be avoided.)

(C) If several problems are to be solved involving the same operator K, it can
be more economical to also save the u vectors. In this way, the Lanczos iteration and
the singular value decomposition need to be performed only once.

(D) If there is not enough storage available to store the q sequence, the q vectors
can be regenerated by running the Lanczos algorithm again using the same starting
vector.

(E) For very ill-conditioned problems, reorthogalization of the q and u vectors
may be necessary to preserve computational stability [22], [5], [24]; although in theory
qqi uui =0, , in practice this may be far from being satisfied. In this case it
may be necessary to perform modified Gram-Schmidt orthogonalization on the sequen-
ces. As each z is calculated, we would perform the iteration

For ] l, 2, 1, Zi Zi (z qi)qi,
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before normalizing zi. A similar process would be performed on the y sequence. This
reorthogonalization can be done in a selective manner, depending on the magnitude
of the inner product of the ith and jth vectors, or by running the loop from i- 1 to
i-s for some s < i. In the case of full reorthogonalization the added cost is (n + rn)ka.

(F) There are two arbitrary parameters in the method: the number o Lanczos
steps (k) and the number of retained singular values (r). The choice of these is problem
dependent, and needs further investigation. Limited computational experience is
summarized in 4.

(G) For certain singular value distributions, it may be advantageous to use the
block Lanczos algorithm of Palmer [23] or Golub, Luk and Overton [11]. This can
improve the convergence by reducing the number of vectors q and u necessary for
an acceptable solution. The number of accesses to K and K* is reduced by forming
their products with several vectors at once; thus the method is also useful, regardless
of the singular value distribution, if K is stored in secondary memory and if there is
room for one or more extra pairs of vectors of dimension n and m in main memory.

(H) "Preconditioning" techniques can be incorporated either to accelerate con-
vergence or to change the character of the approximate solution. These two uses of
preconditioning are described below.

(i) The problem

min ILK/’- gll@

is equivalent to

min IIKN - gll ,

where N is any nonsingular n x n matrix and f Nf. If the singular value spectrum
of KN has better clustering of the singular values than does K, the number of Lanczos
steps necessary can be significantly reduced. The price paid is an extra matrix-vector
multiplication byN and byN* at each iteration. This idea has been exploited previously
in the solution of linear systems (e.g., [1], [4]) and certain least squares problems [26].

(ii) A common technique in many of these problems is "filtering" [13]. In this
case K and g are both preconditioned by some operator M, changing the problem to

min IIMK- Mgl122.

Again the convergence rate is improved if the spectrum of MK has good clustering
properties. The regularized solution ]’ will be different from the ]’ above. The operator
M should be chosen to filter out undesirable components of K and g, for example,
highly oscillatory modes which are due to random errors in the measurements.

3. A time series deconvolution problem. We consider a special class of problems
for which the algorithm in the previous section is applicable. In the case of interest,
the integral equation

b

k(s, t)[(t) g(s)dt

has a kernel of convolution type

k (s, t) k (s t)

and b s.
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Upon discretization, our problem becomes Kf g, where

ao
al ao

n-1 an-2 ao

Thus K is lower triangular and Toeplitz. The time series involved are "causal,"
meaning that k(t), [(t) and g(t) are zero for negative values of their arguments. If k
is continuous, then aj is small or small values of ], and these small numbers near the
main diagonal o K cause ill-conditioning and prevent us rom solving the system
accurately by a simple forward substitution algorithm or by the aster algorithms for
solving Toeplitz systems (e.g., [12]).

To understand the nature of this ill-conditioning, it is convenient to study a
permuted version of the system, formed by reordering the equations from last to first:

$n--2

We denote this reordered system by K’f= g* and note that K PK, where P is
the permutation matrix formed by writing the rows of the identity matrix from last
to first. K* is a Hankel matrix and is indefinite.

Now K is a defective matrix; it has n eigenvalues equal to a0 but only one
eigenvector, the last unit vector e, [0, , 0, 1]r. But K* is symmetric and thus has
a full set of orthonormal real eigenvectors wi with eigenvalues

K* wi o’iwi i=l, 2,...,n

or

where

K*= wr.w,

Thus K PK*= (PW)2,Wr and this, aside from the signs of the tr and those of the
columns of PW, is the singular value decomposition of K. Therefore, we have a
representation of K as a sum of n rank one matrices:

K= thwwS, w’*, =Pwi.
i=1

If K is nonsingular (ao 0), its inverse is

w wT.
i=10"i
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If K is singular (a0 0), we have the pseudo-inverse

K+=, 1

i=l O"

where Itrrl > 0, trr+l tr, 0.
From the decomposition above we can isolate the source of trouble in solving

the linear system K*f g*. (A similar analysis could be performed for the continuous
problem.) Suppose that ao," , a_ are zero. Then

This matrix has n-s eigenvalues equal to those of A, with eigenvectors of the form

0
#’(n-s)xl

and s zero eigenvalues equal to those of A, with eigenvectors

where the e are s x 1 unit vectors. I ao,’", a_ are small rather than zero, the
eigenstructure will be similar, but all of the zeros will be perturbed slightly [29]. The
unregularized solution to the problem is given by

1 T @f= E--wg w.
i=1 i

Thus there will be large contributions to the solution from the small singular values
if g# has any components in a direction [0, e] 1,..., s. This means that noise
in the first part of the vector g will be magnified by large factors and added to the
last part of the solution vector fi

In some of these problems it was observed that the Fourier vectors are approximate
eigenvectors for K*. This can be explained by considering the problem in the frequency
domain rather than the time domain. Let the matrix F be defined by

Then F*F I. Suppose the sequence (a,-1, , a0) is band-limited; i.e.,

where J is an index set of cardinality m, small compared with n. Then if the norm of
the vector [a,-l,’", a0] is small compared with the norm of the full vector
[a,-1,’’’, ao], the columns of F corresponding to indices in J are an approximate
invariant subspace of K; i.e., there is a subset of eigenvectors of K whose span is
approximately that of those columns. To see this we form

F.K.F [ C1 C2] Cl" m x m
C3 C4’
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(where F is reordered if necessary to put the columns with indices/"J first) and
show that IIC311 is small. Then, by [27, Thm. 4.11], the desired result follows. Now

where 8 (81,’", 8,, 0,..., 0)r and the vectors ui are m 1. Now, the norms of
the first few vectors Ixi are small because the first few columns of K* differ from its
first column by small perturbation terms. The norms of later vectors Ixg are small
because the norm of 8 r +[uT, ix/T] is equal to the norm of the ith column of K, which
is small compared with the norm of the first column. Thus F*K * has small entries
in all rows not indexed by J, and therefore F*K*F is also small in those rows.

This Fourier property of the eigenvectors means that a truncated singular value
decomposition often gives results indistinguishable from filtering.

In using the algorithm of 2, we can take advantage of three simplifications"
(1) Since K * is symmetric, we can use the Lanczos tridiagonalization procedure

[17], [21] rather than bidiagonalization. This requires approximately half of the work
and storage, since the u sequence is redundant, and only one matrix multiplication
is needed per step. The. resulting algorithm is"

Given K* and 2’1" n x 1, an arbitrary nonzero vector, set

For i= 1,2,...,k-1

Z1
ql IIz,ll’

’kil 1.

Zi+ Kqi Oiqi xttiqi-1,

Oi q fKqi,

Zi+l
qi+l

Iti+

The algorithm performs better numerically if 0 is calculated as q(K*q--xIiqi_l).
(2) Since the resulting B is symmetric tridiagonal rather than bidiagonal, we can

compute its eigendecomposition rather than its singular value decomposition. This
cuts the storage required from 2k2+ k to k2+ k, and also involves less computation.

(3) There exist fast algorithms for forming the product of K * with an arbitrary
vector. This arises from the relation of K to a circulant matrix. Let

-ao
al ao

an-1 an-2

an-1

ao

an-1 al

ao
an-1

an-1 ao
Then Kc is a square circulant matrix of dimension p -_> 2n 1. The eigenvectors of any
circulant matrix are the Fourier vectors, the columns of the p p matrix F defined
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above. The eigenvalues are given by the components of the Fourier transform of its
first column’

an-1F
0

0

Thus, Kc FAF* where A =diag (hi,’’ ", hp). Note that to form the product of K
with an arbitrary vector x, we can form the product of Kc with the vector x padded
by zeros, and take the first n components of the result. To do this, the vector

X

is calculated in three steps"

(b) Yi Iii, 1, 2, , p,

(c) z Fy.

Then Kx is given by the first n components of z. Step (b) costs p operations, while
(a) and (c) are Fourier transforms of p-vectors and cost O(p log2 p), for example, if
p is chosen to be a power of 2.

4. Numerical examples. Two sample problems were chosen in order to demon-
strate the algorithms of 2. The experiments were run in single precision on a Univac
1108 computer. In each case the initial Lanczos vector Zl was taken to be g. Machine
storage limited the number of Lanczos vectors for the largest problem to be less than
or equal to 40, so k 25 and 40 were taken as representative values. The number of
singular values to be dropped was guided by the uncertainty in the data, but further
investigation would be needed to make the procedure automatic.

Example 1. The following integral equation has been studied, for example, in
[8], [5]:

6

k(s, t)f(t) g(s), Isl--< 6,dt
6

(t-s)r
k(s,t)= l+cos

3
0, otherwise,

Isl=<6,

( 1 sr) 9 Islet, Isl <-- 6,g(s)=/(6-1sl) +eos- +--sin 30, otherwise,

Solution: f(s)- k(s, 0).

The right-hand side g and the solution f are plotted in Fig. 1. The integral equation
was discretized using the trapezoidal rule with steplength 12/(n- 1). This yields a
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FIG. I. Example 1, functions f and g.

symmetric banded Toeplitz matrix if the first and last unknowns are replaced by their
values divided by 2; see [18] for details. The discretization of f does not satisfy the
linear system exactly, but this discretization was taken as the "true" solution to the
problem. The Lanczos algorithm with truncated singular value regularization was run
with no reorthogonalization of the Lanczos vectors.

This problem is only mildly ill-conditioned. For n 25 the calculated condition
number (the ratio of the largest and smallest nonzero singular values) was O(102),
and the maximum error after one singular value was dropped was less than 3 x 10-3.
For n 49, the estimated condition number based on k 40 Lanczos steps was also
of this order. In this case, best results for the. solution (giving maximum error less
than 10-3) were obtained by dropping no .singular values.

Figure 2 shows the results for n 97 with k 25 and 40. The condition number
for k 40 was O(103). One singular value was dropped for k =40, none for k 25.

Example 2. This is a time series problem drawn from the field of acoustic emission.
The kernel, plotted in Fig. 3, is the theoretical displacement response of a certain
horizontal elastic plate [14] to a vertical step function force term applied at a point
on one of the faces. The response is measured directly below the force, on the opposite
face of the plate. The kernel was sampled at n 512 points, and convolved numerically
with a discretization of the function shown in Fig. 7. The resulting function, truncated
to eight bits, was used as g. Elements in g ranged from 0 to 53, and the residual norm
ILK/-gll was 10-. Figure 4 shows the results of using forward substitution on the
linear system Kf g to solve the time series deconvolution problem. This demonstrates
the need for regularization of the solution.
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.o-.s.o-4.0 -d.o-Lo o.o ;to .o S.O3.D

SOLID: k"O,r"39
DFISHED: k"25, r-’2S

:’II
’|

i/

,, .,,,I.

il I

II

FIG. 2. Example 1, error in computed solution, n 97.

0.o O-’.i o’.,- o’.: o’., o.s" o: 1.00.90.7 0.8

FIG. 3. Example 2, kernel function.
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FIG. 4. Example 2, lorward substitution solution.

:3LID= NLt,h Ror-t,hogonaLLzat,Lon, r’-22
DR$1"IF.D Ho Ror-t,hogona Lzat,Lon,

o., d. o’. o., o. .o0.6

FIG. 5. Example 2, error in computed solution, k 25.
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FIG. 6. Example 2, error in computed solution, k 40.

SOLID= k"O SoLut,Lon, No Reor,thogonaLLzot,Lon
Df:ISI’tED= 7r-ue SoLu’t,Lon

;\

’+"
;I

/-

o’.o o. o.,- o’.: g.+ o’.s o’., o’.,,I),7 o.g

FIG. 7. Example 2, sample solution.
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The results in Fig. 5 were obtained using k 25 steps of the Lanczos algorithm
with and without complete reorthogonalization. Three singular values were dropped
in the calculation with reorthogonalization, two without. The estimated condition
numbers were O(104).

Analogous results for k 40 are shown in Fig. 6, dropping 18 singular values
when reorthogonalization is performed, and 2 without reorthogonalization. Figure 7
is a comparison of the true and computed solutions without reorthogonalization. By
this stage, significant roundoff error has entered into the nonreorthogonalized process,
as evidenced by the appearance of spurious copies of several singular values. See [5],
[15] for an explanation of this phenomenon. This meant that ewer small singular
values appeared, but despite the complete loss of orthogonality of the Lanczos vectors,
a good solution vector could still be reconstructed.

Acknowledgment. We are grateful to Martin R. Cordes for very helpful dis-
cussions, for expert assistance with mathematical software and for his careful reading
of the manuscript. Helpful comments were made by G. W. Stewart and Jane Cullum.
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