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TABLE II
OPTIMAL DISPATCHING FOR p = 0.1 AND p = 0.25

p=.1(ax=2.3) p=.25 (a=6.25)

ATCM FACILITY TO BE DISPATCHED FACILITY TO BE DISPATCHED

1 a a

2 a a

3 a c

4 b b

S b b

6 a a

7 c c

8 d d

9 S0% of the times b;50% of the times e t e
10 c c
11 b b
12 d d

13 c c

14 bor d bor d
15 d 25% of the times b; 75% of the times d
16 b b

7 ¢ (and o) b

18 d (and e) e

19 [ c

20 c c

21 c or d* c or d*
z b b

23 d d

24 e e

25 b or d* b or d*

*Choice can be done arbitrarily.
TOther optimal solutions exist where either 17 or 18 obtains mixed service.

facility b). Table II includes also the optimal solution for p = 25
percent.

V. SUMMARY

We have considered problems with two objectives, which are
quite typical to several service systems. The first objective took
into account the cost of operating the system whereas the second
one was a measure of “customers’ suffer” that is required to be
less than some unbearable level T.

Two closely related models were included. In one problem we
minimized the expected cost of operating the system subject to an
upper bound constraint on the percentage of customers that will
not be reached within time period T while in the second model
we did the opposite. An exact and fast algorithm (linear in the
dimensions of the problem) was presented for the first model.
For medium size problems the algorithms can even be solved
manually. The same algorithm can be used to solve the integer
version of the problem.
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An Optimization Approach to Edge Reinforcement

K. A. NARAYANAN, DIANNE P. O'LEARY, AND
AZRIEL ROSENFELD, FELLOW, 1EEE

Abstract—A steepest descent method is used to iteratively adjust edge
magnitudes and thereby enhance the distinction between edge and nonedge
pixels. The results appear to be better than those obtained from relaxation
methods based on edge probabilities, using either Bayesian probability
adjustment or optimization methods.

I. INTRODUCTION

During the past five years, a number of iterative methods of
edge reinforcement have been proposed. VanderBrug [1] used
iterative reinforcement of the magnitude responses obtained by a
local edge detection operation, based on the response magnitudes
(if any) at a set of neighbors depending on the edge direction; he
also iteratively adjusted the direction based on the directions of
the responses at these neighbors. Eberlein [2] used an iterative
competition process to thin edge responses, after first blurring
them to reduce gaps.

During the same period, the probabilistic relaxation approach
to pixel classification was developed and applied to various image
segmentation tasks, including edge detection. In this approach,
edge magnitudes are interpreted as probabilities, and are itera-
tively adjusted based on the probabilities at the neighbors. For
early examples of this approach see Schachter er al. [3] and
Hanson and Riseman [4]. The iterative probability adjustment
process is usually designed on the basis of conditional probability
arguments (e.g., Peleg [5]). An alternative basis for probability
adjustment is an optimization approach, investigated by Faugeras
and Berthod [6].

This correspondence investigates an optimization approach to
edge reinforcement that does not involve probabilistic concepts.
A cost function is defined, based on the local pattern of edge
responses, which is low for sharp, strong edges, and a steepest
descent method is used to adjust the edge magnitudes so as to
reduce the value of this cost function.! The edge reinforcement
results obtained in this way seem to be better than those obtained
by relaxation methods, whether based on conditional probability
or on optimization. For an analogous optimization approach to a
different segmentation task, namely thresholding, see Narayanan
et al. [8].
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ISuch a cost function can also be used to evaluate edge detector responses;
see Kitchen and Rosenfeld [7]. .
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II. METHOD

A. Initial Values

The initial edge magnitude and direction at each pixel are
obtained using the Sobel operator. In the neighborhood

A B C

D E F

G H 1
of pixel E, we define

=4[(4+2D+G)~ (C+2F+1)]

A, =i[(4+2B+C)—(G+2H+1I)].

The Sobel gradient magnitude and direction are then

and
tan_l(Ay/Ax),

respectively. The edge direction is at right angles to the gradient
direction. For brevity, we let m; and «; denote the magnitude and
direction of the edge response at the ith pixel.

B. Cost Function
The cost function is a linear combination of two components

C=(1-B)C +BGC,.

Here component C, measures the inconsistency between the edge
responses at the given pixel and its neighbors, while component
C, measures the ambiguity of the responses, giving low cost to
responses that are either high or low. The detailed definitions of
C, and G, are given in the following paragraphs.

Let

m; = 2 m;Y,;/ 2 Yij»

JEN; JEN;

where N, is the neighborhood of the ith pixel, and

S

Here 9, is the direction from the ith plxel to the jth pixel. The
first factor in Y;; measures the similarity in the edge directions at
the ith and jth pixels, and is 1 when these directions are the
same. The second factor similarly measures the similarity be-
tween the direction to the jth pixel and the edge direction at the
ith pixel. 2 Thus vy, ;= 1if and only if the edges are collinear.
Hence m; is a linear combination of the edge magnitudes in the
nelghborhood of the ith pixel, weighted by their collinearities
with the edge direction at the i th pixel. We now define

C EZ(’".‘ - ’7.')2'

The ith term of C; measures the inconsistency between the edge
magnitude at the ith pixel and the edge magnitudes in its
neighborhood. In our experiments, a 3 X 3 neighborhood was
used.

Let ¢ be an edge detection threshold (i.e., we say that the ith
pixel is an edge pixel if and only if m; = ¢). Unambiguous edge
responses should be either much higher or much lower than ¢, not
close to t. We now define

C, = —Z(m,.— 1)’

2Squaring the factor gives it greater weight, which was found empirically to
give better results.
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The ith term of C, measures the ambiguity of the edge magnitude
m; (relative to the threshold ¢); it is highest (= 0) when m;, = ¢,
and is low for m; either much larger or much smaller
than ¢.

C. Optimization Procedure
We use a steepest descent procedure to minimize C:

9, _ =y — )l m
am, 2(m; — m;) jEENFZ(mJ- mj)[am,-mf]
— — Yji
=2(m; —m;) — .EENZ(mj—mj) EJY-k
JEN, -
ac, _
o, 2(m; —1t)

aC
m§k+l) — msk) _ A(k)__,
am;

where X%) is chosen so as to minimize C along the gradient
direction and such that the values of m, lie within range, and
where N, is the neighborhood of i.

III. RESULTS

Fig. 1 shows the input image (a portion of a Landsat scene)
used in most of our experiments, together with the initial edge
magnitudes. We used parameter values ¢ in the range 12-16 and
B in the range 0.5-0.9 in defining the cost function C. Higher
values of ¢ were found to eliminate too many edges, causing gaps
in the output, while lower values allow too many low-magnitude
edges and tend to thicken the reinforced edges. Higher values of
B make the results look too much like the thresholded output,
while lower values do more noise cleaning and increase the
convergence time.

Fig. 2 shows the results of 10 iterations of the steepest descent
procedure for ¢t = 12, 14, and 16, using B = 0.5 (top row), 0.7
(middle row), and 0.9 (bottom row). Fig. 3 shows the results of
iterations 1, 2, 3, 5, 7, and 10 for 8 = 0.5 and ¢ = 12.

Fig. 4 shows results using the relaxation process of [3], with
coefficients C1 = 0.866, C2 = C3 = 0.005,C4 = 0.124, w = 3
(see [3]), after iterations 1, 2, 3, 5, 7, and 10. Note that the edges
become thicker. The results are sensitive to the choice of the
coefficients (C’s). Fig. 5 shows results using the optimization
relaxation process of [6], with « = 0.2 and 0.8 (see [6]) after 10
iterations; the top row shows initial probabilities. The maximum
edge probability is displayed (as pixel brightness) if it is greater
than the no-edge probability; otherwise, the pixel is left black.
For obtaining the initial probabilities, a global threshold of 30
was used. An alternative (see [6]) is to use a local threshold, equal
to the (3 X 3) neighborhood average, for each pixel; this yields
the results shown in Fig. 6 (a = 0.2 and 0.8, 10 iterations, initial
probabilities at top), which are quite poor.

A second example, involving a different type of image (a
portion of a white blood cell), is shown in [9]; the results are
entirely analogous.

The question of how many times the optimization procedure
should be iterated is not addressed here, but as Fig. 3 shows,
there is little change after the first few iterations. One possibility
is to measure the rate of change at each iteration, and stop when
it drops below some fraction of the initial rate of change; see [10].

The computational cost of the optimization scheme used here
is relatively high, as compared to that of probabilistic relaxation;
but in many situations this cost would be justified by the superior
performance of the present method.

IV. CONCLUDING REMARKS

The results obtained by our method are visually at least as
good as those obtained using either of the two relaxation ap-
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7 W =
o H W

Fig. 6

proaches; this can be seen by comparing the results shown in the
figures. Moreover, our method does not involve the introduction
of probabilistic concepts. Further improvement could probably
be obtained by adjusting the edge direction as well as the edge
magnitude, but this was not done in order to avoid additional
computational cost.
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5 m Segmentation of FLIR Images: A Comparative Study
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Abstract— Several segmentation techniques were applied to a set of 51
FLIR (Forward-Looking InfraRed) images of four different types, and the
results were compared to hand segmentations. There were substantial
differences in performance, indicating that the choice of proper technique
is very important. The segmentation techniques used were “superslice,”
“pyramid spot detection,” two versions of “relaxation,” “pyramid linking,”
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