
Applications:
Engineering
and the

Data-Flow Algorithms for
Sciences

Edward Ng
Editor

Parallel Matrix Computations

DIANNE P. O’LEARY and G.W. STEWART

ABSTRACT: In this article we develop some algorithms
and tools for solving matrix problems on parallel processing
computers. Operations are synchronized through data-flow
alone, which makes global synchronization unnecessary and
enables the algorithms to be implemented on machines with
very simple operating systems and communication protocols.
As examples, zve present algorithms that form the main
modules for solving Liapounou matrix equations. We
compare this approach to wave front array processors and
systolic arrays, and note its advantages in handling missized
problems, in evaluating variations of algorithms or
architectures, in moving algorithms from system to system,
and in debugging parallel algorithms on sequential
machines.

1. INTRODUCTION
In this article we shall be concerned with algorithms
partitioned into computational processes, called nodes,
whose computations are triggered by the flow of data
from neighboring nodes. Each node proceeds indepen-
dently through cycles of waiting for data, computing,
and sending data to other nodes. Such data-flow algo-
rithms are well suited for parallel implementation on
networks of processors, since they require no global
control: once ;j data-flow algorithm is started, it contin-
ues to completion without the need for external inter-
vention.

Our purpose is to describe how data-flow algorithms
may be applied to the parallel solution of problems in
numerical linear algebra. There are three reasons why
such an article is timely. First. the data-flow paradigm
places a large number of parallel matrix algorithms,

0 1985 ACM ooo~-a782/a5/oaoo-oa40 75~.

derived from different points of view, into a common
framework. Second, these algorithms form a nontrivial
test bed for general data-flow schemes. Here it is partic-
ularly important that most of the algorithms are adapta-
tions of existing sequential algorithins with well estab-
lished numerical properties, so that one can ignore
rounding error analysis and concentrate on data-flow
properties. Finally, a detailed consideration of how
data-flow algorithms for matrix computations might be
implemented suggests architectural features that would
be desirable in a data-flow computer for matrix compu.-
tations.

Because the term data-flow is used variously in the
literature it is important that we specify at the outset
what we mean by it. We shall essentially follow Tre-
leaven, Brownbridge, and Hopkins [Zl] in regarding a
data-flow algorithm as a collection of “instructions” in a
directed graph that represents the flow of data between
the instructions. Instructions execute only when the
data they require have arrived. However, our “instruc-
tions” can be rather complex algorithm segments that
can vary their input requirements and can direct their
outputs to different instructions at different times.’ To
avoid confusion with the low-level instructions as-
sumed in much of the data-flow literature, we shall call
our instructions computational nodes (or, for short, sim-
ply nodes) and the graphs in which they lie computa-
tional networks.

Parallel matrix algorithms are by no means new.
Since the time of the ILLIAC IV, it has been recognized
that many algorithms in numerical linear algebra have

’ Formally. our model of computation is the same as the one described by
Karp and Miller [YI. with the exception that an operation is allowed to change
Ihe parameters r&led 10 the input queues and the quantity of the output.

840 Conlnlutlicafiorls of /he ACM August 1985 Volume 28 Number 8

a great deal of arithmetic parallelism (see [16] for an
example of an implementation of a parallel algorithm
on the ILLIAC IV). Heller [8] has surveyed some of this
early work. More recently, a number of researchers
have devised parallel matrix algorithms for systolic ar-
rays, which were introduced by H. T. Kung [12, 131. In
closely related work, S. Y. Kung [14, 151 has designed
parallel matrix algorithms using computational wave
fronts, a notion introduced by Kuck, Muraoka, and
Chen [lo].

Although all these algorithms have data-flow formu-
lations, the operations in the algorithms are tightly syn-
chronized: they march, at least conceptually, to the
beat of a single drum. In our data-flow approach, we
step back from global synchronization and ask only
what each node needs to do its job and what it must
pass on to other nodes. This separates the problem of
scheduling computations from the problem of program-
ming them and makes the latter far easier. In fact, we
shall see that data-flow algorithms may be coded in
ordinary sequential programming languages which
have been augmented by a few communication primi-
tives. The chief drawback to our approach is that it is
also easy to design and code bad algorithms, as we shall
see in Section 4.

illustrate the data-flow concepts with a relatively unso-
phisticated algorithm. In the next section we begin by
describing the parallelization of a particularly simple
algorithm for computing the Cholesky decomposi-
tion of a symmetric matrix. The ideas from this exam-
ple are used in Section 3 to develop our general data-
flow scheme for matrix computations. In Section 4, we
consider less trivial examples that illustrate the fea-
tures of our approach more fully. In Section 5. we de-
scribe the simple operating system that supports the
data-flow algorithms described in this article. A version
of this system is currently running on the ZMOB, a
research parallel computer under development at the
University of Maryland [18]. The article ends with a
summary and conclusions.

Our approach is not intended to replace systolic ar-
rays and other highly synchronized schemes. In fact,
the two approaches are complementary, with very dif-
ferent goals. The data-flow approach aims at the flexi-
bility that a programmable parallel matrix machine
would require, for which it sacrifices efficiency. Sys-
tolic arrays, on the other hand, are fine tuned for speed
at a prespecified task.

We shall also be concerned with the implementation
of data-flow algorithms on multiple-instruction/multi-
ple-data networks of processors. Briefly, we regard each
node in a computational network as a process residing
on a fixed member of a network of processors. We al-
low more than one node on a processor, which permits
the solution of oversized problems. Since many nodes
will be performing essentially the same functions, we
allow nodes that share a processor to also share pieces
of reentrant code, which we shall call node programs.
Each processor has a resident operating system to re-
ceive and transmit messages from other processors and
to awaken nodes when their data have arrived; for de-
tails, see Section 5.

2. THE CHOLESKY DECOMPOSITION
In this section we shall consider an algorithm for fac-
toring a symmetric positive definite matrix A of order n
into the product LLT of a lower triangular matrix and
its transpose. The sequential algorithm in Figure 1
overwrites the lower half of A with L and the upper
half with LT (for a derivation see [19, Ch. 21).

It is evident that this algorithm has a great deal of
arithmetic parallelism. For fixed k, each of the opera-
tions in the statements labeled cdiv and rdiv can be
performed in parallel, after which all the operations
labeled elim can be performed in parallel. This is sum-
marized in Figure 2, in which operations that can be
performed in parallel for k = 1 are in regions separated
by double bars. In general, at step k the (n - k)' elimi-
nations can be performed in parallel, and likewise the
2(n - k) divisions. Since k ranges from 1 to n, this
argument shows that the Cholesky algorithm can po-
tentially be implemented in such a way that it requires
only O(n) time.

However, an argument from arithmetic parallelism is
not in itself sufficient, since it fails to take into account
the cost of bringing data together. Let us assume that it
takes a unit of time to move a number from one block
in Figure 2 to a neighboring block in the same row or

From this description, it is seen that our implementa-
tion of data-flow algorithms differs considerably from
the kind of data-flow machines proposed by Dennis [7]
and others. There the basic operations are finer grained
and are distributed to any of several processing ele-
ments whenever a control system determines that they
are ready for execution. It is worth noting that the two
approaches serve different ends: ours to realize the par-
allelism known to exist in certain high-level algo-
rithms, theirs to extract parallelism automatically from
the precedence graph of an algorithm.

for k:=l to n loop
sqrt: a fk,kl := sqrt(a(k,kl);

for i:=k+l to n loop
cdiv : a Ii,kl := ali,k]/a fk,kl i

end loop ;
for j:=k+l to n loop

rdiv: a fk,jl := a[k,j]/a (k,k) i
end loop;
for i:=k+l to n loop

for j:=k+l to n loop
elim: a[i,jl := a[i,j] -

a(i,kl*a(k,jl;
end loop;

end loop;
end loop;

To keep this article accessible to those who are not
specialists in numerical linear algebra, we shall first FIGURE 1. The Cholesky Algorithm

August 1985 Volume 28 Number 8 Communications of the ACM

Research Coutributiorrs

841

Research Confribufims

FIGURE 2. Parallelism in the Cholesky Algorithm

column. As can be seen from Figure 2, to perform the
cdiv and rdiv operations. the element a[l, l] must
propagate down the first column and across the first
row. Moreover, to perform the elimination operations,
the elements a[i, I] must propagate across their rows
and the elements a[l, j] down their columns. Since,
under our assumptions, the time required to move data
down a column or across a row is proportional to the
length of the column or row, the computational scheme
in Figure 2 will require O(n) time to implement; and
the entire alg,orithm will require O(n’) time.

to illustrate parallelism in a matrix algorithm, (Similar
implementations of the Cholesky algorithm have ap-
peared in [3] and [12].) In Section 4 we shall show by
example that the approach illustrated here potentially
covers a large part of the usual computations done with
dense matrices. However, before we do this, we will
describe our approach in general terms.

The parallelism lost to data transfers can be restored
by considering what would happen if each computa-
tional node in Figure 2 were to perform its calculation
at the time that the necessary data became available.
This is illustrated in Figure 3. The letters s, d, and e
refer to a square root computation, a division step, and
an elimination step. The number associated with each
letter is the value of k in Figure 1.

3. THE DATA-FLOW APPROACH
In describing the parallel Cholesky algorithm, we have
used the language of wave fronts, which are global con
structs extending across the matrix. Let us now shift
our point of view and ask what an element of the ma-
trix A must do to transform itself into an element of the
Cholesky factor. For definiteness we shall consider the
element (3,4).

At the first step, the only computation that can be
performed is the square root for k equal to 1. The result
of this computation is passed along the first row
and column to the (1,2) and (2,l) nodes, where divisions
are performed. These nodes in turn pass information on
to the (3,1), (2,2), and (1,3) nodes, where two divisions
and one elimination are performed. It is thus seen that
the computational scheme of Figure 2 can be imple-
mented as a front of computations passing from the
northwest corner to the southeast corner of the matrix.

6.

sl - - -
- - - -
- - - -
- - - - 4

At first glance we do not appear to have accom-
plished much, since the front corresponding to k = 1
requires n steps to pass through the matrix. However,
at step four, after the first front has passed the (2,2)
node, a second front, corresponding to k = 2, can begin
and follow the first front through the matrix. At step
seven, the third front begins, and at step ten, the proc-
ess ends with the execution of a degenerate fourth
front. In general, it will require 2n - 2 steps for the first
front to reach the (n, n) node. Since the algorithm ter-
minates after n fronts have passed that node, the proc-
ess requires a total of 3n - 2 steps, which is the linear
time suggested by the arithmetic parallelism in the
Cholesky algorithm. The notion of a wave front in par-
allel computaiions is due to Kuck, Muraoka, and, Chen
[lo], although S. Y. Kung [14, 151 seems to be the first
to have applied it systematically to derive parallel ma-
trix algorithms. Kuhn [ll] has considered the com-
puter-aided extraction of wave fronts from ordinary se-
quential algorithms.

- - dt -
- el - -
dl’ _ - _
- - - -

- - - -
- - - -
- - - d3
- - d3 d2

4.
- - - dl
- s2 el -
- el - -
dl - - -

5.

9.

IO.

- - - -
- - - -
- - - -
- - - e3

? - - -
- - d2 el
- d2 el -
- el - -

- - - -

- - - -

- ‘- - -

- - - s4

We have deliberately chosen a very simple example FIGURE 3. Wave Front Implementation of the Cholesky Algorithm

842 Comn~unications of the ACM August 1985 Volume 28 Number 8

Research Contributions

Before (3,4) can do anything, it must receive the re-
sults of the divisions performed by (3,1) and (1,4). Since
(3,4) is not connected to (3.1), it must depend on (3.1).
(3,2), and (3.3) to pass this information on to it; and in
turn (3,4) will be responsible for passing this informa-
tion to (3.5). Similarly, it must receive information from
(1.4) via (2.4) and pass it on to (4.4).

The following is a list of the operations that (3,4)
must perform. The numbers preceding each item in the
list refer to the wave fronts in Figure 3.

1. Wait for numbers from (3.3) and (2,4). When they
arrive, use them to perform an elimination step, and
pass the numbers to (3.5) and (4.4). respectively.

2. Wait for numbers from (3,3) and (2,4). When they
arrive, use them to perform an elimination step, and
pass the numbers to (3,5) and (4,4), respectively.

3. Wait for a number from (3,3). When it arrives, use it
to perform a division step. Pass the number from
(3,3) to (3,5) and pass the result of the division step
to (4,4).

We see from this that the element (3,4) is in effect
performing an ordinary sequential algorithm with input
and output. From this point of view, the elements (3,3)
and (2,4) are input devices which (3,4) interrogates-
much as an interactive program might request input
from a terminal. When the necessary data arrive, (3.4)
performs a computation and passes data to the output
devices, in this case the elements (3,5) and (4,4).

This decomposition of a parallel algorithm into se-
quential algorithms that perform computations on the
basis of input that they themselves have requested is
the core of our approach. Formally, our model of com-
putation is a variant of a model developed by Karp and
Miller 191.’ Informally, our model is a directed graph,
called a computational network, with queues on its arcs.
At the vertices, which we shall call computational nodes,
lie sequential algorithms which can request informa-
tion from the queues on the entering arcs and send
information to the queues on the outgoing arcs.

We shall describe our algorithms in a sequential pro-
gramming language, augmented by two communication
primitives, send and await, that load and interrogate
the queues. The send statement has the following syn-
tax.

send((datalist.l):(nodeid.l)) . . .
((datalist.I):(nodeid.I));

The execution of this statement by a node ND causes
the data specified by the data lists (datalist _ i) to

be sent to the queues lying on the arcs between ND and
the nodes specified by the identifiers (node id. i).
Each destination node must be.a neighbor of ND in the
computational network.

ZSpecifically. in the notation of that paper. we allow the parameters T,, and UP,
which determine the amount of input and output. to vary as the result of an
operation. We also take TP = W,. However. these modifications do not affect
the detcrminacy of computations in the model: no matter what order the nodes
execute ill. each individual node receives the same input and generates the
same output in the same order. For details see 117).

sqrt: a := sqrt(a);
send(a:south) (a:east);
fjnis;

etsif' k=J then
cdiv : await(an:north);

a := a/an;
send(an:south) (a:east);
finis;

elsif k=I then
rdiv: await(aw:west);

a := a/aw;
send(aw:east) (a:south);
finis;

else
elim: await(an:north) (aw:west);

a := a - an*aw;
send(an:south) (aw:east);

end if;
end loop;

FIGURE 4. Cholesky Decomposition Node (I, J)

The syntax of await is

await((datalist.l):(nodeid.l)) . . .
((datalist.I):(nodeid.I));

Its execution by a node ND causes the data locations
specified in (datalist. i) to be filled with data
from the beginning of the queue on the arc between
(nodeid. i) and ND. If a nodeid appears more than
once in an await command, the data lists are filled
from the queue in the order in which they appear in
the command. The await command blocks further ex-
ecution of the node until all its requests are satisfied.

To allow several computational networks to use an-
other network as a subprogram, we shall allow the
usage

await((datalist) ,a)

where the asterisk indicates that the node will accept a
message from any queue on its entering arcs. If there is
more than one nonempty queue, the first data to arrive
are used to satisfy the request.3

We shall also use a finis statement, which causes
the node to stop computing. Although this statement
could be simulated by causing the node to request in-
put that will never arrive, the ability to say explicitly
where a node quits lends itself to clearer programming
and more efficient implementation.

The program in Figure 4 implements the computa-
tions of the (I , J) node in the Cholesky algorithm.
The names north, east, south, and west refer to

nodes (I - l,J), (1,J + I), (I + l,J),and

a This convention should be used with great care. since it can destroy deter-
minacy in the sense of Karp and Miller 191,

August 1985 Volume 28 Number 8 Communications of the ACM 843

Research Contributions

(I , J - 1), respectively. In studying this program,
the reader may find it helpful to compare its execution
for the node (3,~) with the list of operations given
above.

There are four comments to make about this algo-
rithm--two i.echnical points and two general observa-
tions. First, there is no exit from the control loop of the
algorithm except through the finis statements in the
sections labeled sqrt, cdiv, and rdiv. Every matrix
node will take one of those three exits. The other tech-
nical point is that we have placed dummy nodes, called
sinks, at the southern and eastern borders of the compu-
tational network. The progra:m for the sinks on the
south might read

loop
await(an:north);

end loop;

with a similar program for the eastern sinks. They sim-
plify the program by absorbing messages that are sent
by the boundary nodes. Without them the elimination
block would have to be coded

elim: await(an:north)(aw:west);
a := a - an*aw;
if I#n then send(an:south); fi;
if J#n then send(aw:east); fi;

with similar modifications for the other blocks. We
shall use sinks throughout the programs in this article
without providing explicit code for them.

The two general observations are central to our ap-
proach to parallel matrix computations. First, the algo-
rithm requires no external synchronization; the flow of
data alone is enough to ensure that the computations
get done in the proper order. This is of course the es-
sence of Treleaven, Brownbridge, and Hopkins’ defini-
tion of a data-flow algorithm [21], and what we have
shown with the Cholesky algorithm is that at least one
matrix computation can be so implemented. In particu-
lar, one need not arrange for items required by a node
to arrive at it synchronously, as one must do when
designing systolic arrays.

The second observation is that the algorithm could be
coded directl;y from the network in Figure 2 without
reference to fronts of computations as in Figure 3. This
means that once the data-flow pattern has been deter-
mined an algorithm may be coded independently of the
considerations that show it to be globally a good algo-
rithm. Although a parallel algorithm must ultimately
stand or fall on its ability to exploit the parallelism in a
process, the sl?paration of coding from the analysis of
the algorithm makes the former simpler (and some-
times the latter more difficult). The examples of the
next section will illustrate this point.

We shall di,scuss implementation issues more fully in
Section 5. However, we wish to point out here that
there are advantages to distinguishing between the
computational nodes and the processors on which they

reside. In our implementation, nodes are processes on a
network of processors (assumed to be general-purpose,
sequential processors of sufficient capacity to run pro-
grams like that in Figure 4). The arcs in the network
represent communication channels between the proces-
sors, and two processors so connected are said to be
adjacent.4 Nodes from the computational network may
be assigned arbitrarily to processors, subject only to the
restriction that connected nodes are assigned to adja-
cent processors.

The fact that more than one computational node may
be assigned to a processor gives us the flexibility to
handle problems in which there are more nodes than
processors. For example, consider the computational
network associated with the Cholesky decomposition,
and assume that a 6 X 6 network is to be implemented
on a 4 x 4 grid of processors. One way to assign nodes
to the processors is to partition the matrix in blocks. A
typical partitioning is given in Figure 5. Another way is,
to reflect the computational network off the southern
and eastern boundaries of the grid of processors. This
would lead to the assignments in Figure 6.

If the north and south boundaries of the grid of proc-
essors are connected and likewise the east and west, so
that the configuration becomes a torus, the assignments,
in Figure 7 are possible. Other topologies of processors
(e.g., a Klein’s bottle) will result in different node as-
signments. A very attractive feature of the data-flow
approach is that through all these changes of topology
and assignments, the node programs remain the same.

There is another important consequence of our abil-
ity to assign nodes to processors in any way that assigns
neighboring nodes to adjacent processors. Namely, it is
possible to assign the nodes of an arbitrary network to a.
single processor. This means that, given suitable sys-
tems support, preliminary debugging of data-flow algo-
rithms can be done on an ordinary sequential com-
puter.

The Cholesky algorithm also illustrates the econom-
ies that can result from distinguishing between nodes
and the programs that run them. It is evident that in
the parallel Cholesky algorithm the state of the pro-
gram is specified by the node identifier (I, J) and the
current value of the variables a and k. If the program is
compiled into reentrant code, this local information can
be saved whenever the node executes an await state-
ment, and other nodes can use the program. Thus, al-
though some processors in the above figures contain as
many as four nodes, no processor need contain more
than one node program.

4. THREE EXAMPLES
Data-flow techniques have wide applicability in matrix
computations. H. T. Kung [13] cites systolic algorithms
for matrix multiplication, the computation of LU and
QR factorizations, and the solution of triangular sys-
tems (see also [z]). Recently, new data-flow algorithms

‘By convention a processor is adjacent to itself.

044 Communications of the ACM August 1985 Volume 28 Number 8

Research Contributions

(1,1H1,2) (1,3H1,4) (13) (176)
@,lM2,2) 63)(.W) cz5) GG)
(3,WG’) (3,3H3,4) (3,5) (396)
(4,1M4,2) (4,3N4,4) (495) (496)

(5,1M5,2) (5,3N5,4) (5s) W)
(fLlN62) 1’364 (6.5) em

FIGURE 5. Assigment by Blocks

(f,V (12) (13X1 $1 (1,4X1 !5)

(ZV Fv) (2,3X2,6) GYPS)

(3vll (321 (3,3M3,6) (3,4U3,5)
(691) (62) WXS,S) 6WS5)

(4,V (42) WM46) (4,4X4,5)
(5.1) (5.21 15.3N5.61 (5.4X5.51

FIGURE 6. Assignment by Reflection

(l>lX1,5) (1,2X1 96) (1831 (1*4)
(5,1X5,5) WYW (593) (594)

P,w3 (2,2N2,6) (2,3) e4)
(6,WW GWW (6,3) (694) _

(3,1M3,5) KWW) (393) (3,4)

(4,vl4,5) KW,6) (4,3) (4,4)

FIGURE 7. TONS Assignments

have been developed for the solution of Toeplitz sys-
tems [5], the solution of the symmetric eigenvalue
problem [4], and the computation of the singular value
decomposition [6]. The purpose of this section is to give
three other nontrivial examples of data-flow algo-
rithms-algorithms for the solution of a triangular ma-
trix Liapounov equation, the computation of a congru-
ence transformation, and the iterative triangularization
of a non-Hermitian matrix by Schur transformations.
Taken together these algorithms furnish most of the
wherewithal to implement a well-known, numerically
stable method [l] for the solution of a general matrix
Liapounov equation. Individually, the algorithms exem-
plify different aspects of data-flow methods in numeri-
cal linear algebra. The first algorithm illustrates the use
of multiple networks and the delayed use of arriving
data; the second, the use of communication networks to
simulate missing connections between processors; the
third, how computational nodes need not necessarily be
associated with individual matrix elements.

The computational networks for the first two exam-
ples will turn out to be square grids or toruses. As in
Section 2, a node will be identified by its position
(I , J) in the network. We adopt the convention, intro-

duced in Section 3, that north, east, south, and
west, used in the node program for node (I, J), are
abbreviationsfornodes (I - l,J), (1,J + l),
(I + l,J),and (1,J - l).Node (1,J) itselfwill
be denoted by home. Comments in programs will be
surrounded by the delimiters /* and */.

In principle, a data-flow algorithm is represented by a
single computational network. In practice, as we shall
see in the first example, certain subnetworks may per-
form such diverse functions that it is convenient to
regard them as separate networks, with distinct names,
which are linked by send and await commands. We
shall adopt the convention that a node in one such
network may reference another in a different network
by the notation (net. name). (nodeid).

4.1 Solution of a Triangular
Matrix Liapunov Equation
In this example, we develop a data-flow algorithm for
solving the matrix equation

AX + XB = C, (1)

where A is a lower triangular matrix and B is an upper
triangular matrix, both nonsingular of order n. The ele-
ment Ci, computed from (1) is

Clj = Jk aikxkl + i bljxil,
k=l I=1

(2)

from which it follows that

i-l j-1

~1, - zl aikxkj - z, bljxil

xi, =
a;i + bj, (3)

Because Xii depends only on Xkj(k < i) and Xi/ (I < j) the
x’s can be computed sequentially from (3), say in the
order x I,, x21. x127 x31, x22, x13. . .

A data-flow algorithm implementing (3) may be de-
rived by considering the information required by node
(I, J) to compute xll. For I > J this is

all! . . , al,/-I: alIs aJ./+l, , aJ,J-1, all

h/, . . , 4-w b,\

Xl/, f 1 X/-l./, X//Y x/+1./* . . . 3 Xl-1.1

x11. . . 9 q-1.

(41

On the other hand if I <J the information required is

afl, . . , al,I-1, alI
bl,, . . , bl-1.1: h\, br+l.,, . . . , b/-l.,, bn
Xl/, . . . , Xl-l.1

(5)

x11. f 7 XJ,J-1, XII, xJ.J+l, . , Xl./-1.

The x’s present no problems; once an x has been com-
puted, it may be passed east and south, where in due
course it will end up at the nodes that require it. On
the other hand, the a’s in (4) are not as easily dealt
with; for those which precede al, in the list are west of
node (I, J), while those which follow are to the east.

August 1985 Volunle 28 Number 8 Communications of the ACM 645

Research Contributions

Node pass-e.(I,J) Node pass+s.(I,J)

for k:=l to min(I,J-?l hop for k:=l to min{I-1,J) hop
await(aw:west); await(bn:north);
s&d(aw:solve.hogne) send(bn:sol&.home)

(aw:east); (bn.south);
end loop; ‘j, __),. (4nd~ loop;
if x,2 J then ‘aL ,:,;.b~~n-1,2-- I, .if I S J then ’ n

send{ a i east) ;
nl ...‘si.J,5,‘ ”
1 ~‘c .p P::“,~ ~ ‘, ;;.I send(b:south);

end if; s -._ ,.,:;; I) I'VE*,. j .. end if ;
.finis; n,_^b n.l .',,,, ‘/ .' _'b , , finis;

n (
‘Node pass-w.(T,J) _" :,.,..;,‘:li' Node passln.(I,J)

:n ," :,* if ISJthen
send(b:solve.pame)

(a : w&#st) ; (b:aorth)j :
for k:=f+l to! J, loop

await(bs:soiith);
send(bs:sol@e.home)

(ae:west) ; (bs:north);
and laopi (- .s ,n end loop;

end ‘If;
,,,

I- +,_.,j _nI. n._ eqd: if i
finis;

-# ; : .I,,;) ; : ('_.‘ ~ *, - _ _'i. finis ; ji :en ' /',

FIGURE 8. Solution of a Triangular Liapounov Equation

Similarly, the b’s which precede bll in (5) are to the
north of node (I , J) , while those which follow are to
the south. In (either case, data must converge on node
(I , J) from three different directions.

One way to circumvent the difficulty is to construct
four networks to move the a’s and b’s around. Node
programs for the node (I , J) are given in Figure 8.
Initially, the nodes pass-e. (I, J) and pass-
w. (I, J) contain the value aIl, and the nodes pass-
n . (I , J) and pas s-s. (I , J) contain the value bl,.
The node program for pass-e passes along all the a’s
to the west of it before passing on its own value. As it
receives each a it also passes it to the (I, J) node of
the solve network, which implements (3). The node
program for pass-w passes to the west; but this time it
passes its own a first, so that it will arrive in the proper
order. The programs pass-s and pass-n pass b’s
south and north in a similar manner.

The actual computation is done in the network solve,
whose nodes contain the cl/. The node program for
solve. (I , J) is given in Figure 9. The first loop for
the case I L J computes

I-1
Cl1 - c hkxkl + bkJXlk). (6)

k=l

The values of a and b come from the networks pass-e
and pass-s, respectively. In the second loop, values of
a from pass-w are used to subtract cL:i aI&/ from the
current value of x. The final value of x is computed by
dividing by all + b/t and is sent east and south to be
used by other nodes. The colon in (4) indicates where
the a’s come from: those to the left from pass-e, the

rest from pass-w. The computation for the case
I < J is analogous.

Although the computations in this algorithm are
forced to occur in their proper order, the arrival of data
for a node is not synchronized with its use in the com-
putation. For example, if I 2 J, the number ajl arrives
at node solve. (I, J) almost immediately; however,
it is not used until after (6) is computed in the first loop.
This illustrates the importance of queueing data in a
node in the order of its arrival. In this computation, it is
obvious that the length of the queue is bounded by n.
However, in more complicated algorithms, the memory
requirements of a node may not be obvious.

4.2 Congruence Transformations
The problem here is to compute a congruence transfor-
mation of a matrix A; that is, given two n x n matrices
A and Q, compute C = QAQT. We will break the com-
putation into two parts: B = QAT and C = QBT. The
computation will be done by a network named tong
with nodes labeled (I , J) as usual. We shall assume
that node tong . (I, J) contains the numbers 911 and
all and construct a subroutine, called qat, to compute b,,
and store it in the same node. A second call to the
subroutine with the data 911 and b,t will then produce
Cl\.

The congruence algorithm may be derived by consid-
ering the equation

hk = ,$ 911aW (7l

If we generate each b,k by updating partial sums slk, the

846 Communications of the ACM August 1985 Volume 28 Number 8

Research Contributions

-‘ \p, :
X :e c; j .,n .,.. j

2.

if I L J then ,, -5, _* &se :I~: L*sU; */
for k:= 1 to J-1 loop jor.k:& Co I-1 loop

await(a:pass,e.home) await(a:pass,e.home)
(xa:&orth) (x’a:north)
(b:pass-s.home) (b:pass-s.home)
(xb:west); (xb: west);

X := x - a*xa - b*xb X := x - arxa - b*xb;
send(xa:so:th) send(xa:south)

(xb:east); (xb:east);
end loop; end JOOpi
for k:=J to I--l loop for k:=I to J-l loop

await(a:pass-w.home) await(b:pass,n.home)
(xa:north); (xb:west);

X := x - a*xa; X := x - b*xb;
send(xa:south); send(xb:east);

end loop; end loop;
await(a:pass,w.home); await(a:pass,e.home)
if I = J then (b:pass_n.home);

await(b:pass-n.home); X := x/(a + b)j
else send(x:east)

await(b:pass-s.home); (x:south);
end if; end if;
X := x/(a -t b); finis;
send(x:east)

(x:south);

FIGURE 9. Solution of a Triangular Liapounov Equation Node solve (I, J)

result is a series of updates of the form

Slk := Slk + @JakJ. (8)

This formula suggests that the updates be performed by
streaming the Ith row of partial sums and the]th col-
umn of a’s past node tong . (I , J) and performing up-
dates according to (8). Since each node must see all the
s’s in its row and all the a’s in its column, it is natural
to configure the network,as a torus and allow the s’s
and a’s to move cyclically around the torus.

Figure 10 contains an implementation of this scheme,
with provisions for starting and storing partial sums.
The subroutine qat is driven by a loop whose index k
assumes values

I + 1, 1+2, n, 1, I. (9)

The algorithm has four phases, depending on where k
is in the sequence (9).5

k=I+l,...,J-1
await and update partial sums ~11, . . , ~1.1-2.
k=J
start partial sum so.!-I.
k=J+l
await and store partial sum SI/.
k = J + 2, . . . , I
await and update partial sums SI,~+I, . . , SI.I-~.

’ Expressions like I- 1 or / + 1 are to be interpreted as the entry before or after
1 in (9).

The computations in a node proceed in bursts. In
phase one above, the node (I, J) must wait roughly
J - I steps for SII to arrive, after which it processes
Sll, 51.1-2 and then sI,l-1 in phase two. In phase

subroutine qat(q,a,b)
for kk:=I to n+I-1 loop

k := mod(kk,n) -I- 1;
if k#J then /* update */

awaitwest(
S := s + q+a;

else /*start a partial sum */
S := q*a;

end if;
if k=mod(J,n)+l then

/* store completed partial sum */
b := s;

else /t transmit partial sum */
sendeast(

end if;
sendnorth(
if k#I then awaitsouth(

end loop

end qat;

qat(q,a,b);
wt(q,b,c);

FIGURE 10. Congwnce Transformation Node Cong (I, J)

August 1985 Volume 28 Number 8 Communications of the ACM 047

Research Contributions

loop
if J=x-I than

await(x,net:*);
else

await(x,,net:east) j .
end if
if J=l then .

send (X net. home)
else

send (X net : west)
end if

end 104pj

FIGURE 11. Nude torus-east (I, J)

three, the node must wait II steps for sq, which is gener-
ated in the node just east of it, to get around the torus,
after which the rest of the partial sums are processed in
phase four. The total number of time steps on a torus-
connected grid of n2 processors would be 3n - 2.

While a node is hung up waiting for a partial sum, it
cannot transmit the elements of A. This suggests that
the algorithm may perform badly, as nodes await data
not immediat’ely forthcoming or that the algorithm
could even deadlock. In fact neither happens, but this
is not obvious either from the derivation of the algo-
rithm or from the code in Figure 10.

For communication we have used subroutines, like
sendeast and .awaitwest. instead of the primitives send
and await. The reason for this is that the subrou-
tines make it easy to implement the algorithm on pro-
cessor networks that are grid-connected but not torus-
connected. For example, on a grid-connected set of
processors we would create a second computational
network, torus-east, that t.akes a data item from a
node in another network at the eastern boundary of the
grid, passes it west until it arrives at the western
boundary of the grid, and then sends it back to the
corresponding node of the original network. A node
program for tlorus-east _ (I , J) is given in Figure
11. Both the data and the name of the network are
passed to torus-east, the latter so that torus-
east can pass the information back when it has ar-
rived at the western boundary. Note the use of “*‘I to
indicate that the message can come from any network.

Given the torus-east network, the sendeast sub-
routine can be coded as

subroutine sendeast
if Jr% then

send(x:east);
else

send(x,cong:torus-east.home);
end if;

end sendeast;

Programs for awaitwest. sendnorth, awaitsouth, and
node torus-north. (I , J) on a grid of processors
are similar.

4.3 Iterative Reduction to Triangular Form
In this example, we discuss the data-flow implementa-
tion of an algorithm for reducing a square matrix of
order n to upper triangular form by means of Schur
rotations [20]. Since the derivation of the algorithm is
not germane to this article, we shall give only an over-
view of the operations involved.

The basic operators are Schur rotations, which are
specified by two complex numbers c and s satisfying

ICI2 + ISI’ = 1. IW

The rotations originate in 2 X 2 diagonal blocks of the
matrix, say in

[,p::, UEj. (11)

Once generated, a rotation must be applied to the rows
and columns associated with the submatrix that gener-
ated it. For the rotation generated by (ll), the opera-
tions are

1.
Uik := C&k + SUi,k+l

ai.k+l := -S&k + h&,k+l
i = 1, 2, . . , n,

(12)
2, aki := cak, + sak+lvj

ak+i,j := -sakj + Cak+lj
j = 1, 2, . . . , n.

The parallel implementation of this algorithm goes as
follows. The rotations for all diagonal blocks (11) with k
odd are generated simultaneously. These rotations are
then passed to the four points of the compass. The rota-
tions moving east and north will intersect in 2 x 2
blocks of the form

(13)

where i and j are odd and i c j. The two rotations are
applied to this block, the northbound rotation according,
to (12.1) and the eastbound according to (12.2). Simi-
larly, the rotations moving west and south will inter-
sect in 2 X 2 blocks of the form (13) with i and j odd
andi>j.

The progress of the rotations away from the diagonal
of the matrix is illustrated in Figure 12. In the first
matrix, the rotations are generated in the 2 x 2 blocks
labeled with a 1; in the second, the rotations are ap-
plied to the blocks adjacent to the diagonal; and in the
third, to the blocks two elements farther out. At this
point, it is possible to generate rotations in the even
blocks; that is, blocks of the form (11) where k is even.
These rotations, designated 2 in Figure 12 follow the
first batch of rotations away from the diagonal of the
matrix, until at the fifth step a third batch of rotations
can be generated in the odd diagonal blocks. Note that
there are places on the boundary where the single even
rotations are applied to only two elements.

A data-flow algorithm for this procedure is rather
easy to write. It is natural to associate nodes with 2 x 2
blocks of the matrix as in Figure 13, where the ele-
ments of the matrix are denoted by X. To allow rota-

648 Communications #of the ACM August 1985 Volume 28 Number 8

l.llxxxxxx 4.~22~~~11
llxxxxxx 2xx22xll
xxllxxxx 2xx22xxx
xxllxxxx x22xx22x
xxxxllxx x22xx22x
xxxxllxx xxx22xx2
xxxxxxll llx22xx2
xxxxxxll llXXX22X

2.xxllxxxx 5.33x22xXx
xxtlxxxx 33~~x22~
Ilxxllxx ~~33x22~
lfxxllxx 2x33~~~2
xxllxxll 2~~x33~2
xxllxxll ~22x33~~
xxxxllxx ~22~~x33
xxxxllxx ~~~22x33

3. xxxxllxx 6. ~~33x22~
x22xllxx ~~33~~x2
x22xxxll 33~x33~2
xxx22xll 33xx33xx
11x22xxx xx33xx33
llxxx22x 2x33~~33
xxllx22x 2~~x33~~
xxllxxxx ~22x33~~

FIGURE 12. Propagation of the Rotations

the odd nodes. Code for an odd node is displayed in
Figure 14. In it 1 * r * 1 is used as a generic symbol for a
rotation, and ne, se, SW, and nw denote the nodes to
the northeast, southeast, southwest, and northwest. The
core of the computation is In the cases 1 I I <
J < Nandll J < I < N. Herethenodewaitsfor
matrix elements from the even nodes and rotations
from its neighboring odd nodes, applies the rotations,
and passes the matrix elements back to the odd nodes
and the rotations on to the even nodes. The other cases
take care of diagonal nodes, where rotations must
be generated, or boundary nodes that must be treated
specially.

This example differs from its predecessors in several
respects. In the first place, the algorithm requires a
more highly (though still locally] connected network of
nodes than the algorithms for the Liapounov equation
and congruence transformations. The nodes are associ-
ated with a computation (the application of a rotation to
a z x 2 block) rather than an element within a matrix.
Finally, the computations are tightly synchronized-so
much so that the algorithm could easily be imple-
mented as a systolic array.

5. IMPLEMENTATION

tions to pass from node to node, the nodes with even
indices are connected in a grid, as are the nodes with
odd indices. Even nodes are connected diagonally to
odd nodes to allow the matrix element that is between
them to pass back and forth.

The data-flow algorithm consists of two computa-
tional networks, one for the odd nodes and another for
the even nodes. It is assumed that initially the even
nodes contain the matrix elements that surround them
and start the computation by sending the elements to

One advantage of data-flow algorithms is that they re-
quire little systems support. The purpose of this section
is to sketch a node communication and control system
(NCC) that sequences the execution of nodes on a proc-
essor and mediates communications between nodes. A
version of this system has been implemented on the
ZMOB [18], a parallel computer under development at
the University of Maryland.

A copy of NCC resides on each processor of the net-
work that implements the data-flow algorithm. The
processors are assumed to be general purpose, sequen-
tial processors with their own, unshared memory (on
the ZMOB a processor board contains a Z80 micropro-
cessor, 64K bytes of memory, an Intel 8232 floating-
point processor, and serial and parallel ports). As in

(0,s) (0,4) (0,6)
x X

I x X I x X I x

Research Contributions

FIGURE 13. Computational Network for the Jacobi-Schur Algorithm

August 1985 Volume 28 Number 8 Communications of the ACM 049

Research Contributions

loop elsif J=N then
if I,(I<J.<N then

await(ane:even.nej
awaft(anw:eyen.nw)

(asw:eyen.sw)
(ase:even.se) (rw:west);
(asw:even.sw) apply.the r~,tation;
(anw:even.nw) send(anw:ev&n.nw)
(rw: west) (atiW:eVCin.sw)j

(rS:SOUth)i ./ e ‘3 elsif l<I=J then
apply t:he rotati&&~;b r>;:;q, ""1. ge await(ane:even.ne)
send (ane : even . ne 1 ;~“‘3*~~:~:~-~,’ ‘:;,:, (ase:even.se)

(ase:even.se),. -:~ ,‘,:“,~‘.“. (asw:even.sw)
(asw:even.ew))*’ ” ::
(anw:even.nw) x .;‘

(anW:e~en.nw)j
generate and dpply the

(rw:east)
n, -.

FIGURE 14. Jacobi-Schur Reduction Node odd (I, J)

Section 3, we say that processors that can communicate
directly with one another are adjacent and assume that
the computational nodes for the algorithm in question
have been mapped onto processors in such a way that
adjacent nodes. lie on adjacent processors.

NCC is composed of a number of pieces, which are
shown in Figure 15. We shall discuss each of them in
turn.

Structures
Node Structtwes. A node in NCC is specified by

three items:
1. A node identifier, which must be globally unique.
2. A pointer to a program that implements the node.
3. An auxiliary structure containing variables local

to the node.

The node programs are reentrant, so that they can be
used by several. nodes. The auxiliary structures are

necessary to prevent variables local to a node from
being overwritten by other nodes using the program.

The Node Table. The node table is an array contain-
ing the node structures for all nodes resident on the
processor.

The Arrival List. This is a queue of all data that
have arrived at the processor as a result of send com-
mands. Each message is accompanied by a source-node
identifier and a destination-node identifier.

The Want List. This is a list of pending await re-
quests for data by nodes on the processor. Each entry
consists of a source-node identifier, a destination-node
identifier, and a pointer indicating where the data are
to be placed.

Primitive Functions
equal. This function takes two node identifiers as

arguments and returns true if they are the same.

850 Communications of the ACM August 1985 Volume 28 Number 8

Research Contributions

Otherwise it returns false. The function is used to
match messages with their destinations.

address. This function takes a node identifier as
an argument and returns the address of the processor
on which it resides. It is used by the output process to
direct messages to the appropriate processors.

send. This function is used by a node to transmit
data to other nodes. Its syntax was described in Section
3. The function communicates with other processors
via the output process.

await. This function is used by a node to request
data. Its syntax was described in Section 3. It causes the
request to be entered onto the want list and the node to
return control to NCC.

finis. This function is used by nodes to an-
nounce to the system that they are finished executing.
It causes control to return to NCC, after which the node
is ignored by the control process. The finis function
is included for efficiency. As we pointed out in Section
3, its effect can be simulated by executing an await
with data that will never arrive, but this does not re-
lieve the control process of the overhead of monitoring
the node.

Processes
Nodes. These are the raison dZtre for NCC.
The Output Process. This process is invoked by the

send command. It determines the destination proces-
sor for each message, establishes communication with
the input process on that processor, and transmits the
message.

The Znpuf Process. This process accepts messages
from other processors and places them on the arrival
list.

The Control Process. This is the heart of the system.
Its operation is sketched in Figure 16. Essentially, the
control process on each processor loops endlessly trying
to satisfy the requests on the want list with itemsin the
arrival list. If it finds a node that has no requests pend-
ing, then it awakens the node by calling its node pro-

I. Structures
a. Node structures
b. The node table
c. The arrival queue
d. The want list

II. Primitive functions
a. equal
b. address
c. send
d. await
e. finis

Ill. Processes
a. Nodes
b. The output process
c.The input process
d. The control process

FIGURE 15. Components of NCC

loop cyci.icaIly through the node
table
r;itisfied := true;
loop thrbugh the want list

need: if the current entry in want
list is from the
current node then

loop through the arrival
list

if the current arrival
entry matches the
want entry then

transfer data from the
arrival queue and
remove the entries from
the want list and the
arrival queue;
leave need;

end If;
end loop;
satisfied := false;

need: end if;
end loop;
if satisfied then

awaken the current node;
end if;

end loop;

FIGURE 16. The Control Process

gram at the point where the node last relinquished
control.

There are several points to be made about this sys-
tem. In outline it is quite simple, and in our experience
it remains simple when one descends to the details.
Our implementation of NCC is in the programming lan-
guage C, which allows a natural description of the
structures in the system. The fleshing out of Figure 16
requires little more than standard techniques for ma-
nipulating the lists involved. The details of the input
and output processes will depend on the way the net-
work of processors communicate; for the ZMOB they
were relatively easy to code. The major difficulties con-
cern global problems of initialization (assigning nodes
to processors and defining the address function), moni-
toring algorithms (taking snapshots of processor activi-
ties to identify bottlenecks), and collecting results. We
are currently designing a table-driven loader, which
will sit on a single processor and perform some of these
functions.

In a software implementation of NCC, communica-
tion overhead will dominate the calculations in the
short node programs presented in this article. Fortu-
nately, NCC itself has a great deal of inherent parallel-
ism, which can be used to speed up the system. In
particular, the input, output, and control processes

August 1985 Volume 28 Number 8 Communications of the ACM 851

Research Contributions

could reside on a triad of separate, dedicated processors
that communicate by a shared memory. Moreover, if
these processors are sufficiently fast, one incarnation of
NCC could serve several slower processors that are de-
voted solely 1.0 executing nodes. The precise features of
an efficient hardware implementation must remain ob-
scure until experiments with real algorithms show
where the bottlenecks and tradeoffs lie; but we believe
that the software version of hJCC has already laid the
ground for informed speculation.

There are rnany possible extensions to NCC. One that
we feel will be essential for computations with large
dense matrices is the ability to broadcast data to several
processors. For example, if a matrix is stored one col-
umn to a proc;essor, then the implementation of many
common matrix algorithms will require that a single
column be transferred to a set of different columns.
Technically, this can be done by a network whose
nodes pass on the column one element at a time; how-
ever, the cost to a node is a full NCC communication
cycle for each element. The alternative is to define a
path along which all the nodes shake hands before
passing the column from node to node in burst mode.

6. CONCLUSIONS
In this article, we have presented a way of organizing
parallel matrix computations so that complicated algo-
rithms can be implemented with comparatively simple
programs and little global control. We have shown by
citation and example that the set of matrix algorithms
that can be so implemented is nontrivial and important.
We have also made a case for the practicality of the
approach by describing a simple system that supports
data-flow algorithms on a network of processors. In this
last section, we will make some general observations
about the data3low approach.

Regarding programming languages, our data-flow
algorithms req-uire little more ihan a standard language
for their imple-mentation. This is surprising in view of
the current interest in languages for parallel computa-
tion; but the paradox can be resolved by observing that
a node program is a description of a local computation,
not of a global (algorithm. In Section 4, we leaned heav-
ily on verbal descriptions to communicate our
algorithms, and it is difficult (though not impossible) to
reconstruct the algorithms from the node programs.
Thus, the data-flow approach does not obviate the need
for research into systematic ways to describe parallel
algorithms. However, we feel that an attempt to devise
a formal language for parallel matrix computations may
well be premature; too few matrix algorithms have ac-
tually been cast in parallel form to provide a suitable
base for general izing.

The main drawbacks of the data-flow approach are
that it makes it easy to design bad algorithms and diffi-
cult to analyze igood ones, This is clear from our exam-
ples, where the potential for deadlock or data conges-
tion cannot be lightly dismissed. Against this must be
set the fact that data-flow algorithms lend themselves
to an experimental approach; since node programs are

852 Communications of the ACM

easy to write, one can code an algorithm and see how i-:
runs.

Another problem arises from the fact that we have
effectively been multitasking nodes on processors. In a
processor-rich environment, where only a few nodes
reside on any one processor, scheduling presents few
problems. However, with greatly oversized problems,
which cause many nodes to be assigned to each proces-
sor, some attention must be paid to the order in which
nodes are inspected by the NCC control process. Al-
though preliminary investigation of the Cholesky algo-
rithm of Section 13 suggests that it runs well under a
variety of scheduling algorithms, this is an open re-
search area.

The main advantages of the data-flow approach are
that the node programs are independent of the relation
between the size of the problem and the number of
processors, are independent of the precise assignment
of nodes to processors, and are independent of the pre-
cise physical adjacencies and physical communication
structures between processors. Thus, it is easy to inves-
tigate the impact of changes in parallel machine archi-
tectures on a given algorithm, or to study the perform-
ance of an algorithm as the ratio of problem size to
number of processors varies. The fact that the same
node program can be used in a variety of situations also
means that it is relatively easy to transfer algorithms
from one system to another.

It is hard to overstress the convenience of being able
to debug data-flow algorithms on sequential computers.
We first brought up the node communication and con-
trol system, running the Cholesky algorithm on a single
processor, before the multiple processor ZMOB system
was available. All that was needed to make the system
and the algorithm work on the ZMOB was to rewrite
the NCC input and output processes to interface with
the communication devices of the ZMOB.

Although we have been concerned in this article
with algorithms from numerical linear algebra, the
data-flow approach is not restricted to them. In describ-
ing the node communication and control system, we
made no references to matrices or matrix algorithms.
Thus, the system can be used to implement parallel
algorithms for other tasks.

REFERENCES
1. Bartels. R.. and Stewart. G.W. Algorithm 432: The solution of the

matrix equation AX - BX = C. Commun. ACM 15, (1972). 820-826.
2. Bojanczyk, A., Brent, R.P., and Kung, H.T. Numerically stable solu-

tion of dense systems of linear equations using mesh-connected
processors. SIAM. J. Sci. Stat. Cornput. 3. (1984) 95-104.

3. Brent. R.P.. and Luk, F.T. Comoutine the Choleskv factorization
. I

using a systolic architecture. In Proceedings of the 6th Australian
Compufer Science Conference, 1982, 295-302.
Brent, R.P.. and Luk, F.T. A systolic architecture for almost linear-
time solution of the symmetric eigenvalue problem. Tech. Rep. TR
82-525, Dept. of Computer Science, Cornell University. Ithaca, NY,
1982.
Brent, R.P.. and Luk. F.T. A systolic array for the linear-time solu-
tion of Toeplitz systems of equations. J VLSI Ccmput. Sysf. I, (1983).
l-22.

Brent, R.P., Luk. F.T., and Van Loan. C. Computation of the singular
value decomposition using mesh-connected processors. Tech. Rep.
TR 82-528. Dept. of Computer Science, Cornell University, Ithaca,
NY, 1983.

August 1985 Volume 28 Number 8

Research Contributions

7. Dennis, 1. Data flow supercomputers. IEEE Comput. 13, (1980). 48-56.
6. Heller, D. A survey of parallel algorithms in numerical linear alge-

bra. SlAM Rev. 20, (1978), 740-777.
9. Karp, R., and Miller, R. Properties of a model for parallel computa-

tions: Determinacy, termination, queuing. SIAM 1. Appl. Math. 24,
(1966), 1390-1411.

10. Kuck, D.J., Muraoka. Y., and Chen, S-C. On the number of opera-
tions simultaneously executable in Fortran-like programs and their
resulting speedup. lEEE Trans. Comput. C-21, (19721, 1293-1310.

11. Kuhn. R.H. Optimization and interconnection complexity for: Paral-
lel processors, single-stage networks, and decision trees. Rep.
UIUCDCS-R-80-1009, Computer Science Dept., University of Illinois
at Urbana-Champaign, 1980.

12. Kung. H.T.. and Leiserson. C.E. Algorithms for VLSI processor ar-
rays. In Introduction to VLSI Systems (by C. Mead and L. Conway).
Addison-Wesley, Reading, Mass.. 1980. pp. 271-292.

13. Kung. H.T. Why systolic architectures? IEEE Comput. 15, (1982),
37-46.

14. Kung. S.Y. VLSI array processors for signal processing. In MIT Con-
ference on Advanced Resenrch on I. C., Cambridge, Mass., 1980. Cited
in [15].

15. Kung, S.Y.. Arun, K.S.. Bhaskar Rae. D.V.. Hu. Y.H. A matrix data
flow language/architecture for parallel matrix operations based on
computational wavefront concept. In VLSI Systems and Computntion.
H.T. Kung. B. Sproull, and G. Steele, Eds. Computer Science Press.
Rockville, Md.. 1981, pp. 235-244.

16. Luk. F. Computing the singular-value decomposition on the ILLIAC
IV. ACM Trans. Math. Softw. 6, (1980), 524-539.

17. O’Leary. D.P.. and Stewart, G.W. A proof of determinacy for a model
of data-flow computation. Tech. Rep. TR-1456. Dept. of Computer
Science, University of Maryland, 1984.

16. Rieger, C. ZMOB: Hardware from a user’s viewpoint. In Proceedings
of the 1EEE Computer Society, Conference on Pattern Recognition and
Image Processing, 1981, pp. 399-408.

19.

20.

21.

Stewart, G.W. Introduction to Matrix Computations. Academic Press,
New York, 1974.
Stewart, G.W. A Jacobi-like algorithm for computing the Schur de-
composition of a non-Hermitian matrix. Computer Science Tech.
Rep. TR-1321, University of Maryland, 1983, SIAM 1. Sci. Stat. Com-
put. to appear.
Treleaven, PC. Brownbridge. D.R.. and Hopkins, R.P. Data-driven
and demand-driven computer architecture. Comput. Surv. 14, (1982),
93-143.

CR Categories and Subject Descriptors: G.l.O[Numerical Analysis]:
General--par&-l algorithms; G.1.3[Numerical Analysis]: Numerical
Linear Algebra; Cl.2 [Processor Architectures]: Multiple Data-Stream
Architectures (Multiprocessors)-parallel processors; D.4.l[Operating
Systems]: Process Management-concurrency

General Terms: Algorithms
Additional Key Words and Phrases: parallel algorithms, matrix algo-

rithms, data-flow synchronization. MIME networks

Received Z/84; revised 10/84; accepted Z/85

Authors’ Present Addresses: Dianne P. O’Leary and G.W. Stewart, De-
partment of Computer Science, University of Maryland, College Park,
MD 20742.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

SUBSCRIBE TO ACM PUBLICATIONS
Whether you are a computing novice or a master of your
craft, ACM has G publication that can meet your individual
needs. Do you want broad-gauge, high quality, highly read-
able articles on key issues and major developments and
trends in computer science? Read Communications of the
ACM. Do you want to read comprehensive surveys, tutorials,
and overview articles on topics of current and emerging
importance: Computing Surveys is right for you. Are you
interested in a publication that offers a range of
scientific research designed to keep you abreast
of the latest issues and developments? Read
Journal of the ACM. What specific topics are
worth exploring further? The various ACM
transactions cover research and applications

in-depth-ACM Transactions on Mathematical Software,
ACM Transactions on Database Systems, ACM Transac-
tions on Programming Languages and Systems, ACM
Transactions on Graphics, ACM Transactions on Office
Information Systems, and ACM Transactions on Computer
Systems. Do you need additional references on computing?
Computing Reviews contains original reviews and abstracts
of current books and journals. The ACM Guide to Comput-
ing Literature is an important bibliographic guide to

ing literature. Collected Algorithms from ACM is
a collection of ACM algorithms available in

printed version, on microfiche, or machine-
readable tape.

For more information about ACM publications,
write for your free copy of the ACM Publications
Catalog to: The Publications Department, The
Association for Computing Machinery, 11 West
42nd Street, New York, NY 10036.

August 1985 Volume 28 Number 8 Communications of the ACM 853

