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ABSTRACT: In this article we develop some algorithms 
and tools for solving matrix problems on parallel processing 
computers. Operations are synchronized through data-flow 
alone, which makes global synchronization unnecessary and 
enables the algorithms to be implemented on machines with 
very simple operating systems and communication protocols. 
As examples, zve present algorithms that form the main 
modules for solving Liapounou matrix equations. We 
compare this approach to wave front array processors and 
systolic arrays, and note its advantages in handling missized 
problems, in evaluating variations of algorithms or 
architectures, in moving algorithms from system to system, 
and in debugging parallel algorithms on sequential 
machines. 

1. INTRODUCTION 
In this article we shall be concerned with algorithms 
partitioned into computational processes, called nodes, 
whose computations are triggered by the flow of data 
from neighboring nodes. Each node proceeds indepen- 
dently through cycles of waiting for data, computing, 
and sending data to other nodes. Such data-flow algo- 
rithms are well suited for parallel implementation on 
networks of processors, since they require no global 
control: once ;j data-flow algorithm is started, it contin- 
ues to completion without the need for external inter- 
vention. 

Our purpose is to describe how data-flow algorithms 
may be applied to the parallel solution of problems in 
numerical linear algebra. There are three reasons why 
such an article is timely. First. the data-flow paradigm 
places a large number of parallel matrix algorithms, 
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derived from different points of view, into a common 
framework. Second, these algorithms form a nontrivial 
test bed for general data-flow schemes. Here it is partic- 
ularly important that most of the algorithms are adapta- 
tions of existing sequential algorithins with well estab- 
lished numerical properties, so that one can ignore 
rounding error analysis and concentrate on data-flow 
properties. Finally, a detailed consideration of how 
data-flow algorithms for matrix computations might be 
implemented suggests architectural features that would 
be desirable in a data-flow computer for matrix compu.- 
tations. 

Because the term data-flow is used variously in the 
literature it is important that we specify at the outset 
what we mean by it. We shall essentially follow Tre- 
leaven, Brownbridge, and Hopkins [Zl] in regarding a 
data-flow algorithm as a collection of “instructions” in a 
directed graph that represents the flow of data between 
the instructions. Instructions execute only when the 
data they require have arrived. However, our “instruc- 
tions” can be rather complex algorithm segments that 
can vary their input requirements and can direct their 
outputs to different instructions at different times.’ To 
avoid confusion with the low-level instructions as- 
sumed in much of the data-flow literature, we shall call 
our instructions computational nodes (or, for short, sim- 
ply nodes) and the graphs in which they lie computa- 
tional networks. 

Parallel matrix algorithms are by no means new. 
Since the time of the ILLIAC IV, it has been recognized 
that many algorithms in numerical linear algebra have 

’ Formally. our model of computation is the same as the one described by 
Karp and Miller [YI. with the exception that an operation is allowed to change 
Ihe parameters r&led 10 the input queues and the quantity of the output. 
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a great deal of arithmetic parallelism (see [16] for an 
example of an implementation of a parallel algorithm 
on the ILLIAC IV). Heller [8] has surveyed some of this 
early work. More recently, a number of researchers 
have devised parallel matrix algorithms for systolic ar- 
rays, which were introduced by H. T. Kung [12, 131. In 
closely related work, S. Y. Kung [14, 151 has designed 
parallel matrix algorithms using computational wave 
fronts, a notion introduced by Kuck, Muraoka, and 
Chen [lo]. 

Although all these algorithms have data-flow formu- 
lations, the operations in the algorithms are tightly syn- 
chronized: they march, at least conceptually, to the 
beat of a single drum. In our data-flow approach, we 
step back from global synchronization and ask only 
what each node needs to do its job and what it must 
pass on to other nodes. This separates the problem of 
scheduling computations from the problem of program- 
ming them and makes the latter far easier. In fact, we 
shall see that data-flow algorithms may be coded in 
ordinary sequential programming languages which 
have been augmented by a few communication primi- 
tives. The chief drawback to our approach is that it is 
also easy to design and code bad algorithms, as we shall 
see in Section 4. 

illustrate the data-flow concepts with a relatively unso- 
phisticated algorithm. In the next section we begin by 
describing the parallelization of a particularly simple 
algorithm for computing the Cholesky decomposi- 
tion of a symmetric matrix. The ideas from this exam- 
ple are used in Section 3 to develop our general data- 
flow scheme for matrix computations. In Section 4, we 
consider less trivial examples that illustrate the fea- 
tures of our approach more fully. In Section 5. we de- 
scribe the simple operating system that supports the 
data-flow algorithms described in this article. A version 
of this system is currently running on the ZMOB, a 
research parallel computer under development at the 
University of Maryland [18]. The article ends with a 
summary and conclusions. 

Our approach is not intended to replace systolic ar- 
rays and other highly synchronized schemes. In fact, 
the two approaches are complementary, with very dif- 
ferent goals. The data-flow approach aims at the flexi- 
bility that a programmable parallel matrix machine 
would require, for which it sacrifices efficiency. Sys- 
tolic arrays, on the other hand, are fine tuned for speed 
at a prespecified task. 

We shall also be concerned with the implementation 
of data-flow algorithms on multiple-instruction/multi- 
ple-data networks of processors. Briefly, we regard each 
node in a computational network as a process residing 
on a fixed member of a network of processors. We al- 
low more than one node on a processor, which permits 
the solution of oversized problems. Since many nodes 
will be performing essentially the same functions, we 
allow nodes that share a processor to also share pieces 
of reentrant code, which we shall call node programs. 
Each processor has a resident operating system to re- 
ceive and transmit messages from other processors and 
to awaken nodes when their data have arrived; for de- 
tails, see Section 5. 

2. THE CHOLESKY DECOMPOSITION 
In this section we shall consider an algorithm for fac- 
toring a symmetric positive definite matrix A of order n 
into the product LLT of a lower triangular matrix and 
its transpose. The sequential algorithm in Figure 1 
overwrites the lower half of A with L and the upper 
half with LT (for a derivation see [19, Ch. 21). 

It is evident that this algorithm has a great deal of 
arithmetic parallelism. For fixed k, each of the opera- 
tions in the statements labeled cdiv and rdiv can be 
performed in parallel, after which all the operations 
labeled elim can be performed in parallel. This is sum- 
marized in Figure 2, in which operations that can be 
performed in parallel for k = 1 are in regions separated 
by double bars. In general, at step k the (n - k)' elimi- 
nations can be performed in parallel, and likewise the 
2(n - k) divisions. Since k ranges from 1 to n, this 
argument shows that the Cholesky algorithm can po- 
tentially be implemented in such a way that it requires 
only O(n) time. 

However, an argument from arithmetic parallelism is 
not in itself sufficient, since it fails to take into account 
the cost of bringing data together. Let us assume that it 
takes a unit of time to move a number from one block 
in Figure 2 to a neighboring block in the same row or 

From this description, it is seen that our implementa- 
tion of data-flow algorithms differs considerably from 
the kind of data-flow machines proposed by Dennis [7] 
and others. There the basic operations are finer grained 
and are distributed to any of several processing ele- 
ments whenever a control system determines that they 
are ready for execution. It is worth noting that the two 
approaches serve different ends: ours to realize the par- 
allelism known to exist in certain high-level algo- 
rithms, theirs to extract parallelism automatically from 
the precedence graph of an algorithm. 

for k:=l to n loop 
sqrt: a fk,kl := sqrt(a(k,kl ); 

for i:=k+l to n loop 
cdiv : a Ii,kl := ali,k]/a fk,kl i 

end loop ; 
for j:=k+l to n loop 

rdiv: a fk,jl := a[k,j]/a (k,k) i 
end loop; 
for i:=k+l to n loop 

for j:=k+l to n loop 
elim: a[i,jl := a[i,j] - 

a(i,kl*a(k,jl; 
end loop; 

end loop; 
end loop; 

To keep this article accessible to those who are not 
specialists in numerical linear algebra, we shall first FIGURE 1. The Cholesky Algorithm 
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FIGURE 2. Parallelism in the Cholesky Algorithm 

column. As can be seen from Figure 2, to perform the 
cdiv and rdiv operations. the element a[l, l] must 
propagate down the first column and across the first 
row. Moreover, to perform the elimination operations, 
the elements a[i, I] must propagate across their rows 
and the elements a[l, j] down their columns. Since, 
under our assumptions, the time required to move data 
down a column or across a row is proportional to the 
length of the column or row, the computational scheme 
in Figure 2 will require O(n) time to implement; and 
the entire alg,orithm will require O(n’) time. 

to illustrate parallelism in a matrix algorithm, (Similar 
implementations of the Cholesky algorithm have ap- 
peared in [3] and [12].) In Section 4 we shall show by 
example that the approach illustrated here potentially 
covers a large part of the usual computations done with 
dense matrices. However, before we do this, we will 
describe our approach in general terms. 

The parallelism lost to data transfers can be restored 
by considering what would happen if each computa- 
tional node in Figure 2 were to perform its calculation 
at the time that the necessary data became available. 
This is illustrated in Figure 3. The letters s, d, and e 
refer to a square root computation, a division step, and 
an elimination step. The number associated with each 
letter is the value of k in Figure 1. 

3. THE DATA-FLOW APPROACH 
In describing the parallel Cholesky algorithm, we have 
used the language of wave fronts, which are global con 
structs extending across the matrix. Let us now shift 
our point of view and ask what an element of the ma- 
trix A must do to transform itself into an element of the 
Cholesky factor. For definiteness we shall consider the 
element (3,4). 

At the first step, the only computation that can be 
performed is the square root for k equal to 1. The result 
of this computation is passed along the first row 
and column to the (1,2) and (2,l) nodes, where divisions 
are performed. These nodes in turn pass information on 
to the (3,1), (2,2), and (1,3) nodes, where two divisions 
and one elimination are performed. It is thus seen that 
the computational scheme of Figure 2 can be imple- 
mented as a front of computations passing from the 
northwest corner to the southeast corner of the matrix. 

6. 

sl - - - 
- - - - 
- - - - 
- - - - 4 

At first glance we do not appear to have accom- 
plished much, since the front corresponding to k = 1 
requires n steps to pass through the matrix. However, 
at step four, after the first front has passed the (2,2) 
node, a second front, corresponding to k = 2, can begin 
and follow the first front through the matrix. At step 
seven, the third front begins, and at step ten, the proc- 
ess ends with the execution of a degenerate fourth 
front. In general, it will require 2n - 2 steps for the first 
front to reach the (n, n) node. Since the algorithm ter- 
minates after n fronts have passed that node, the proc- 
ess requires a total of 3n - 2 steps, which is the linear 
time suggested by the arithmetic parallelism in the 
Cholesky algorithm. The notion of a wave front in par- 
allel computaiions is due to Kuck, Muraoka, and, Chen 
[lo], although S. Y. Kung [14, 151 seems to be the first 
to have applied it systematically to derive parallel ma- 
trix algorithms. Kuhn [ll] has considered the com- 
puter-aided extraction of wave fronts from ordinary se- 
quential algorithms. 

- - dt - 
- el - - 
dl’ _ - _ 
- - - - 

- - - - 
- - - - 
- - - d3 
- - d3 d2 

4. 
- - - dl 
- s2 el - 
- el - - 
dl - - - 

5. 

9. 

IO. 

- - - - 
- - - - 
- - - - 
- - - e3 

? - - - 
- - d2 el 
- d2 el - 
- el - - 

- - - - 

- - - - 

- ‘- - - 

- - - s4 

We have deliberately chosen a very simple example FIGURE 3. Wave Front Implementation of the Cholesky Algorithm 
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Before (3,4) can do anything, it must receive the re- 
sults of the divisions performed by (3,1) and (1,4). Since 
(3,4) is not connected to (3.1), it must depend on (3.1). 
(3,2), and (3.3) to pass this information on to it; and in 
turn (3,4) will be responsible for passing this informa- 
tion to (3.5). Similarly, it must receive information from 
(1.4) via (2.4) and pass it on to (4.4). 

The following is a list of the operations that (3,4) 
must perform. The numbers preceding each item in the 
list refer to the wave fronts in Figure 3. 

1. Wait for numbers from (3.3) and (2,4). When they 
arrive, use them to perform an elimination step, and 
pass the numbers to (3.5) and (4.4). respectively. 

2. Wait for numbers from (3,3) and (2,4). When they 
arrive, use them to perform an elimination step, and 
pass the numbers to (3,5) and (4,4), respectively. 

3. Wait for a number from (3,3). When it arrives, use it 
to perform a division step. Pass the number from 
(3,3) to (3,5) and pass the result of the division step 
to (4,4). 

We see from this that the element (3,4) is in effect 
performing an ordinary sequential algorithm with input 
and output. From this point of view, the elements (3,3) 
and (2,4) are input devices which (3,4) interrogates- 
much as an interactive program might request input 
from a terminal. When the necessary data arrive, (3.4) 
performs a computation and passes data to the output 
devices, in this case the elements (3,5) and (4,4). 

This decomposition of a parallel algorithm into se- 
quential algorithms that perform computations on the 
basis of input that they themselves have requested is 
the core of our approach. Formally, our model of com- 
putation is a variant of a model developed by Karp and 
Miller 191.’ Informally, our model is a directed graph, 
called a computational network, with queues on its arcs. 
At the vertices, which we shall call computational nodes, 
lie sequential algorithms which can request informa- 
tion from the queues on the entering arcs and send 
information to the queues on the outgoing arcs. 

We shall describe our algorithms in a sequential pro- 
gramming language, augmented by two communication 
primitives, send and await, that load and interrogate 
the queues. The send statement has the following syn- 
tax. 

send((datalist.l):(nodeid.l)) . . . 
((datalist.I):(nodeid.I)); 

The execution of this statement by a node ND causes 
the data specified by the data lists (datalist _ i) to 

be sent to the queues lying on the arcs between ND and 
the nodes specified by the identifiers ( node id. i ). 
Each destination node must be.a neighbor of ND in the 
computational network. 

ZSpecifically. in the notation of that paper. we allow the parameters T,, and UP, 
which determine the amount of input and output. to vary as the result of an 
operation. We also take TP = W,. However. these modifications do not affect 
the detcrminacy of computations in the model: no matter what order the nodes 
execute ill. each individual node receives the same input and generates the 
same output in the same order. For details see 117). 

sqrt: a := sqrt(a); 
send(a:south) (a:east); 
fjnis; 

etsif' k=J then 
cdiv : await(an:north); 

a := a/an; 
send(an:south) (a:east); 
finis; 

elsif k=I then 
rdiv: await(aw:west); 

a := a/aw; 
send(aw:east) (a:south); 
finis; 

else 
elim: await(an:north) (aw:west); 

a := a - an*aw; 
send(an:south) (aw:east); 

end if; 
end loop; 

FIGURE 4. Cholesky Decomposition Node (I, J) 

The syntax of await is 

await((datalist.l):(nodeid.l)) . . . 
((datalist.I):(nodeid.I)); 

Its execution by a node ND causes the data locations 
specified in (datalist. i) to be filled with data 
from the beginning of the queue on the arc between 
(nodeid. i) and ND. If a nodeid appears more than 
once in an await command, the data lists are filled 
from the queue in the order in which they appear in 
the command. The await command blocks further ex- 
ecution of the node until all its requests are satisfied. 

To allow several computational networks to use an- 
other network as a subprogram, we shall allow the 
usage 

await( (datalist) ,a) 

where the asterisk indicates that the node will accept a 
message from any queue on its entering arcs. If there is 
more than one nonempty queue, the first data to arrive 
are used to satisfy the request.3 

We shall also use a finis statement, which causes 
the node to stop computing. Although this statement 
could be simulated by causing the node to request in- 
put that will never arrive, the ability to say explicitly 
where a node quits lends itself to clearer programming 
and more efficient implementation. 

The program in Figure 4 implements the computa- 
tions of the ( I , J ) node in the Cholesky algorithm. 
The names north, east, south, and west refer to 

nodes (I - l,J), (1,J + I), (I + l,J),and 

a This convention should be used with great care. since it can destroy deter- 
minacy in the sense of Karp and Miller 191, 
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( I , J - 1 ), respectively. In studying this program, 
the reader may find it helpful to compare its execution 
for the node (3,~) with the list of operations given 
above. 

There are four comments to make about this algo- 
rithm--two i.echnical points and two general observa- 
tions. First, there is no exit from the control loop of the 
algorithm except through the finis statements in the 
sections labeled sqrt, cdiv, and rdiv. Every matrix 
node will take one of those three exits. The other tech- 
nical point is that we have placed dummy nodes, called 
sinks, at the southern and eastern borders of the compu- 
tational network. The progra:m for the sinks on the 
south might read 

loop 
await(an:north); 

end loop; 

with a similar program for the eastern sinks. They sim- 
plify the program by absorbing messages that are sent 
by the boundary nodes. Without them the elimination 
block would have to be coded 

elim: await(an:north)(aw:west); 
a := a - an*aw; 
if I#n then send(an:south); fi; 
if J#n then send(aw:east); fi; 

with similar modifications for the other blocks. We 
shall use sinks throughout the programs in this article 
without providing explicit code for them. 

The two general observations are central to our ap- 
proach to parallel matrix computations. First, the algo- 
rithm requires no external synchronization; the flow of 
data alone is enough to ensure that the computations 
get done in the proper order. This is of course the es- 
sence of Treleaven, Brownbridge, and Hopkins’ defini- 
tion of a data-flow algorithm [21], and what we have 
shown with the Cholesky algorithm is that at least one 
matrix computation can be so implemented. In particu- 
lar, one need not arrange for items required by a node 
to arrive at it synchronously, as one must do when 
designing systolic arrays. 

The second observation is that the algorithm could be 
coded directl;y from the network in Figure 2 without 
reference to fronts of computations as in Figure 3. This 
means that once the data-flow pattern has been deter- 
mined an algorithm may be coded independently of the 
considerations that show it to be globally a good algo- 
rithm. Although a parallel algorithm must ultimately 
stand or fall on its ability to exploit the parallelism in a 
process, the sl?paration of coding from the analysis of 
the algorithm makes the former simpler (and some- 
times the latter more difficult). The examples of the 
next section will illustrate this point. 

We shall di,scuss implementation issues more fully in 
Section 5. However, we wish to point out here that 
there are advantages to distinguishing between the 
computational nodes and the processors on which they 

reside. In our implementation, nodes are processes on a 
network of processors (assumed to be general-purpose, 
sequential processors of sufficient capacity to run pro- 
grams like that in Figure 4). The arcs in the network 
represent communication channels between the proces- 
sors, and two processors so connected are said to be 
adjacent.4 Nodes from the computational network may 
be assigned arbitrarily to processors, subject only to the 
restriction that connected nodes are assigned to adja- 
cent processors. 

The fact that more than one computational node may 
be assigned to a processor gives us the flexibility to 
handle problems in which there are more nodes than 
processors. For example, consider the computational 
network associated with the Cholesky decomposition, 
and assume that a 6 X 6 network is to be implemented 
on a 4 x 4 grid of processors. One way to assign nodes 
to the processors is to partition the matrix in blocks. A 
typical partitioning is given in Figure 5. Another way is, 
to reflect the computational network off the southern 
and eastern boundaries of the grid of processors. This 
would lead to the assignments in Figure 6. 

If the north and south boundaries of the grid of proc- 
essors are connected and likewise the east and west, so 
that the configuration becomes a torus, the assignments, 
in Figure 7 are possible. Other topologies of processors 
(e.g., a Klein’s bottle) will result in different node as- 
signments. A very attractive feature of the data-flow 
approach is that through all these changes of topology 
and assignments, the node programs remain the same. 

There is another important consequence of our abil- 
ity to assign nodes to processors in any way that assigns 
neighboring nodes to adjacent processors. Namely, it is 
possible to assign the nodes of an arbitrary network to a. 
single processor. This means that, given suitable sys- 
tems support, preliminary debugging of data-flow algo- 
rithms can be done on an ordinary sequential com- 
puter. 

The Cholesky algorithm also illustrates the econom- 
ies that can result from distinguishing between nodes 
and the programs that run them. It is evident that in 
the parallel Cholesky algorithm the state of the pro- 
gram is specified by the node identifier ( I, J ) and the 
current value of the variables a and k. If the program is 
compiled into reentrant code, this local information can 
be saved whenever the node executes an await state- 
ment, and other nodes can use the program. Thus, al- 
though some processors in the above figures contain as 
many as four nodes, no processor need contain more 
than one node program. 

4. THREE EXAMPLES 
Data-flow techniques have wide applicability in matrix 
computations. H. T. Kung [13] cites systolic algorithms 
for matrix multiplication, the computation of LU and 
QR factorizations, and the solution of triangular sys- 
tems (see also [z]). Recently, new data-flow algorithms 

‘By convention a processor is adjacent to itself. 
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(1,1H1,2) (1,3H1,4) (13) (176) 
@,lM2,2) 63)(.W) cz5) GG) 
(3,WG’) (3,3H3,4) (3,5) (396) 
(4,1M4,2) (4,3N4,4) (495) (496) 

(5,1M5,2) (5,3N5,4) (5s) W) 
(fLlN62) 1’364 (6.5) em 

FIGURE 5. Assigment by Blocks 

(f,V (12) (13X1 $1 (1,4X1 !5) 

(ZV Fv) (2,3X2,6) GYPS) 

(3vll (321 (3,3M3,6) (3,4U3,5) 
(691) (62) WXS,S) 6WS5) 

(4,V (42) WM46) (4,4X4,5) 
(5.1) (5.21 15.3N5.61 (5.4X5.51 

FIGURE 6. Assignment by Reflection 

(l>lX1,5) (1,2X1 96) (1831 (1*4) 
(5,1X5,5) WYW (593) (594) 

P,w3 (2,2N2,6) (2,3) e4) 
(6,WW GWW (6,3) (694) _ 

(3,1M3,5) KWW) (393) (3,4) 

(4,vl4,5) KW,6) (4,3) (4,4) 

FIGURE 7. TONS Assignments 

have been developed for the solution of Toeplitz sys- 
tems [5], the solution of the symmetric eigenvalue 
problem [4], and the computation of the singular value 
decomposition [6]. The purpose of this section is to give 
three other nontrivial examples of data-flow algo- 
rithms-algorithms for the solution of a triangular ma- 
trix Liapounov equation, the computation of a congru- 
ence transformation, and the iterative triangularization 
of a non-Hermitian matrix by Schur transformations. 
Taken together these algorithms furnish most of the 
wherewithal to implement a well-known, numerically 
stable method [l] for the solution of a general matrix 
Liapounov equation. Individually, the algorithms exem- 
plify different aspects of data-flow methods in numeri- 
cal linear algebra. The first algorithm illustrates the use 
of multiple networks and the delayed use of arriving 
data; the second, the use of communication networks to 
simulate missing connections between processors; the 
third, how computational nodes need not necessarily be 
associated with individual matrix elements. 

The computational networks for the first two exam- 
ples will turn out to be square grids or toruses. As in 
Section 2, a node will be identified by its position 
( I , J ) in the network. We adopt the convention, intro- 

duced in Section 3, that north, east, south, and 
west, used in the node program for node ( I, J), are 
abbreviationsfornodes (I - l,J), (1,J + l), 
(I + l,J),and (1,J - l).Node (1,J) itselfwill 
be denoted by home. Comments in programs will be 
surrounded by the delimiters /* and */. 

In principle, a data-flow algorithm is represented by a 
single computational network. In practice, as we shall 
see in the first example, certain subnetworks may per- 
form such diverse functions that it is convenient to 
regard them as separate networks, with distinct names, 
which are linked by send and await commands. We 
shall adopt the convention that a node in one such 
network may reference another in a different network 
by the notation (net. name). (nodeid). 

4.1 Solution of a Triangular 
Matrix Liapunov Equation 
In this example, we develop a data-flow algorithm for 
solving the matrix equation 

AX + XB = C, (1) 

where A is a lower triangular matrix and B is an upper 
triangular matrix, both nonsingular of order n. The ele- 
ment Ci, computed from (1) is 

Clj = Jk aikxkl + i bljxil, 
k=l I=1 

(2) 

from which it follows that 

i-l j-1 

~1, - zl aikxkj - z, bljxil 

xi, = 
a;i + bj, (3) 

Because Xii depends only on Xkj(k < i) and Xi/ (I < j) the 
x’s can be computed sequentially from (3), say in the 
order x I,, x21. x127 x31, x22, x13. . . 

A data-flow algorithm implementing (3) may be de- 
rived by considering the information required by node 
( I, J ) to compute xll. For I > J this is 

all! . . , al,/-I: alIs aJ./+l, , aJ,J-1, all 

h/, . . , 4-w b,\ 

Xl/, f 1 X/-l./, X//Y x/+1./* . . . 3 Xl-1.1 

x11. . . 9 q-1. 

(41 

On the other hand if I <J the information required is 

afl, . . , al,I-1, alI 
bl,, . . , bl-1.1: h\, br+l.,, . . . , b/-l.,, bn 
Xl/, . . . , Xl-l.1 

(5) 

x11. f 7 XJ,J-1, XII, xJ.J+l, . , Xl./-1. 

The x’s present no problems; once an x has been com- 
puted, it may be passed east and south, where in due 
course it will end up at the nodes that require it. On 
the other hand, the a’s in (4) are not as easily dealt 
with; for those which precede al, in the list are west of 
node ( I, J ), while those which follow are to the east. 
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Node pass-e.(I,J) Node pass+s.(I,J) 

for k:=l to min(I,J-?l hop for k:=l to min{I-1,J) hop 
await(aw:west); await(bn:north); 
s&d(aw:solve.hogne) send(bn:sol&.home) 

(aw:east); (bn.south); 
end loop; ‘j, __ ),. (4nd~ loop; 
if x,2 J then ‘aL ,:,;.b~~n-1,2-- I, .if I S J then ’ n 

send{ a i east ) ; 
nl ...‘si.J,5,‘ ” 
1 ~‘c .p P::“,~ ~ ‘, ;;.I send(b:south); 

end if; s -._ ,.,:;; I) I'VE*,. j .. end if ; 
.finis; n,_^b n.l .',,,, ‘/ .' _'b , , finis; 

_n (_ 
‘Node pass-w.(T,J) _" :,.,..;,‘:li' Node passln.(I,J) 

:n ," :,* if ISJthen 
send(b:solve.pame) 

( a : w&#st ) ; (b:aorth)j : 
for k:=f+l to! J, loop 

await(bs:soiith); 
send(bs:sol@e.home) 

(ae:west) ; (bs:north); 
and laopi (- .s ,n end loop; 

end ‘If; 
,,, 

I- +,_.,j _nI. n._ eqd: if i 
finis; 

-# ; : .I,,; ) ; : ('_.‘ ~ *, - _ _'i. finis ; ji :en ' /', 

FIGURE 8. Solution of a Triangular Liapounov Equation 

Similarly, the b’s which precede bll in (5) are to the 
north of node ( I , J ) , while those which follow are to 
the south. In (either case, data must converge on node 
( I , J ) from three different directions. 

One way to circumvent the difficulty is to construct 
four networks to move the a’s and b’s around. Node 
programs for the node ( I , J ) are given in Figure 8. 
Initially, the nodes pass-e. ( I, J ) and pass- 
w. ( I, J ) contain the value aIl, and the nodes pass- 
n . ( I , J ) and pas s-s. ( I , J ) contain the value bl,. 
The node program for pass-e passes along all the a’s 
to the west of it before passing on its own value. As it 
receives each a it also passes it to the ( I, J ) node of 
the solve network, which implements (3). The node 
program for pass-w passes to the west; but this time it 
passes its own a first, so that it will arrive in the proper 
order. The programs pass-s and pass-n pass b’s 
south and north in a similar manner. 

The actual computation is done in the network solve, 
whose nodes contain the cl/. The node program for 
solve. ( I , J ) is given in Figure 9. The first loop for 
the case I L J computes 

I-1 
Cl1 - c hkxkl + bkJXlk). (6) 

k=l 

The values of a and b come from the networks pass-e 
and pass-s, respectively. In the second loop, values of 
a from pass-w are used to subtract cL:i aI&/ from the 
current value of x. The final value of x is computed by 
dividing by all + b/t and is sent east and south to be 
used by other nodes. The colon in (4) indicates where 
the a’s come from: those to the left from pass-e, the 

rest from pass-w. The computation for the case 
I < J is analogous. 

Although the computations in this algorithm are 
forced to occur in their proper order, the arrival of data 
for a node is not synchronized with its use in the com- 
putation. For example, if I 2 J, the number ajl arrives 
at node solve. ( I, J ) almost immediately; however, 
it is not used until after (6) is computed in the first loop. 
This illustrates the importance of queueing data in a 
node in the order of its arrival. In this computation, it is 
obvious that the length of the queue is bounded by n. 
However, in more complicated algorithms, the memory 
requirements of a node may not be obvious. 

4.2 Congruence Transformations 
The problem here is to compute a congruence transfor- 
mation of a matrix A; that is, given two n x n matrices 
A and Q, compute C = QAQT. We will break the com- 
putation into two parts: B = QAT and C = QBT. The 
computation will be done by a network named tong 
with nodes labeled ( I , J ) as usual. We shall assume 
that node tong . ( I, J ) contains the numbers 911 and 
all and construct a subroutine, called qat, to compute b,, 
and store it in the same node. A second call to the 
subroutine with the data 911 and b,t will then produce 
Cl\. 

The congruence algorithm may be derived by consid- 
ering the equation 

hk = ,$ 911aW (7l 

If we generate each b,k by updating partial sums slk, the 
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-‘ \p, : 
X :e c; j .,n .,.. j 

2. 

if I L J then ,, -5, _* &se :I~: L*sU; */ 
for k:= 1 to J-1 loop jor.k:& Co I-1 loop 

await(a:pass,e.home) await(a:pass,e.home) 
(xa:&orth) (x’a:north) 
(b:pass-s.home) (b:pass-s.home) 
(xb:west); (xb: west); 

X := x - a*xa - b*xb X := x - arxa - b*xb; 
send(xa:so:th) send(xa:south) 

(xb:east); (xb:east); 
end loop; end JOOpi 
for k:=J to I--l loop for k:=I to J-l loop 

await(a:pass-w.home) await(b:pass,n.home) 
(xa:north); (xb:west); 

X := x - a*xa; X := x - b*xb; 
send(xa:south); send(xb:east); 

end loop; end loop; 
await(a:pass,w.home); await(a:pass,e.home) 
if I = J then (b:pass_n.home); 

await(b:pass-n.home); X := x/(a + b)j 
else send(x:east) 

await(b:pass-s.home); (x:south); 
end if; end if; 
X := x/(a -t b); finis; 
send(x:east) 

(x:south); 

FIGURE 9. Solution of a Triangular Liapounov Equation Node solve (I, J) 

result is a series of updates of the form 

Slk := Slk + @JakJ. (8) 

This formula suggests that the updates be performed by 
streaming the Ith row of partial sums and the ]th col- 
umn of a’s past node tong . ( I , J ) and performing up- 
dates according to (8). Since each node must see all the 
s’s in its row and all the a’s in its column, it is natural 
to configure the network,as a torus and allow the s’s 
and a’s to move cyclically around the torus. 

Figure 10 contains an implementation of this scheme, 
with provisions for starting and storing partial sums. 
The subroutine qat is driven by a loop whose index k 
assumes values 

I + 1, 1+2, . . . . n, 1, . . . . I. (9) 

The algorithm has four phases, depending on where k 
is in the sequence (9).5 

k=I+l,...,J-1 
await and update partial sums ~11, . . , ~1.1-2. 
k=J 
start partial sum so.!-I. 
k=J+l 
await and store partial sum SI/. 
k = J + 2, . . . , I 
await and update partial sums SI,~+I, . . , SI.I-~. 

’ Expressions like I- 1 or / + 1 are to be interpreted as the entry before or after 
1 in (9). 

The computations in a node proceed in bursts. In 
phase one above, the node ( I, J ) must wait roughly 
J - I steps for SII to arrive, after which it processes 
Sll, . . . . 51.1-2 and then sI,l-1 in phase two. In phase 

subroutine qat(q,a,b) 
for kk:=I to n+I-1 loop 

k := mod(kk,n) -I- 1; 
if k#J then /* update */ 

awaitwest( 
S := s + q+a; 

else /*start a partial sum */ 
S := q*a; 

end if; 
if k=mod(J,n)+l then 

/* store completed partial sum */ 
b := s; 

else /t transmit partial sum */ 
sendeast( 

end if; 
sendnorth( 
if k#I then awaitsouth( 

end loop 

end qat; 

qat(q,a,b); 
wt(q,b,c); 

FIGURE 10. Congwnce Transformation Node Cong (I, J) 
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loop 
if J=x-I than 

await(x,net:*); 
else 

await(x,,net:east) j . 
end if 
if J=l then . 

send (X net. home ) 
else 

send (X net : west) 
end if 

end 104pj 

FIGURE 11. Nude torus-east (I, J) 

three, the node must wait II steps for sq, which is gener- 
ated in the node just east of it, to get around the torus, 
after which the rest of the partial sums are processed in 
phase four. The total number of time steps on a torus- 
connected grid of n2 processors would be 3n - 2. 

While a node is hung up waiting for a partial sum, it 
cannot transmit the elements of A. This suggests that 
the algorithm may perform badly, as nodes await data 
not immediat’ely forthcoming or that the algorithm 
could even deadlock. In fact neither happens, but this 
is not obvious either from the derivation of the algo- 
rithm or from the code in Figure 10. 

For communication we have used subroutines, like 
sendeast and .awaitwest. instead of the primitives send 
and await. The reason for this is that the subrou- 
tines make it easy to implement the algorithm on pro- 
cessor networks that are grid-connected but not torus- 
connected. For example, on a grid-connected set of 
processors we would create a second computational 
network, torus-east, that t.akes a data item from a 
node in another network at the eastern boundary of the 
grid, passes it west until it arrives at the western 
boundary of the grid, and then sends it back to the 
corresponding node of the original network. A node 
program for tlorus-east _ (I , J) is given in Figure 
11. Both the data and the name of the network are 
passed to torus-east, the latter so that torus- 
east can pass the information back when it has ar- 
rived at the western boundary. Note the use of “*‘I to 
indicate that the message can come from any network. 

Given the torus-east network, the sendeast sub- 
routine can be coded as 

subroutine sendeast 
if Jr% then 

send(x:east); 
else 

send(x,cong:torus-east.home); 
end if; 

end sendeast; 

Programs for awaitwest. sendnorth, awaitsouth, and 
node torus-north. ( I , J ) on a grid of processors 
are similar. 

4.3 Iterative Reduction to Triangular Form 
In this example, we discuss the data-flow implementa- 
tion of an algorithm for reducing a square matrix of 
order n to upper triangular form by means of Schur 
rotations [20]. Since the derivation of the algorithm is 
not germane to this article, we shall give only an over- 
view of the operations involved. 

The basic operators are Schur rotations, which are 
specified by two complex numbers c and s satisfying 

ICI2 + ISI’ = 1. IW 

The rotations originate in 2 X 2 diagonal blocks of the 
matrix, say in 

[,p::, UEj. (11) 

Once generated, a rotation must be applied to the rows 
and columns associated with the submatrix that gener- 
ated it. For the rotation generated by (ll), the opera- 
tions are 

1. 
Uik := C&k + SUi,k+l 

ai.k+l := -S&k + h&,k+l 
i = 1, 2, . . , n, 

(12) 
2, aki := cak, + sak+lvj 

ak+i,j := -sakj + Cak+lj 
j = 1, 2, . . . , n. 

The parallel implementation of this algorithm goes as 
follows. The rotations for all diagonal blocks (11) with k 
odd are generated simultaneously. These rotations are 
then passed to the four points of the compass. The rota- 
tions moving east and north will intersect in 2 x 2 
blocks of the form 

(13) 

where i and j are odd and i c j. The two rotations are 
applied to this block, the northbound rotation according, 
to (12.1) and the eastbound according to (12.2). Simi- 
larly, the rotations moving west and south will inter- 
sect in 2 X 2 blocks of the form (13) with i and j odd 
andi>j. 

The progress of the rotations away from the diagonal 
of the matrix is illustrated in Figure 12. In the first 
matrix, the rotations are generated in the 2 x 2 blocks 
labeled with a 1; in the second, the rotations are ap- 
plied to the blocks adjacent to the diagonal; and in the 
third, to the blocks two elements farther out. At this 
point, it is possible to generate rotations in the even 
blocks; that is, blocks of the form (11) where k is even. 
These rotations, designated 2 in Figure 12 follow the 
first batch of rotations away from the diagonal of the 
matrix, until at the fifth step a third batch of rotations 
can be generated in the odd diagonal blocks. Note that 
there are places on the boundary where the single even 
rotations are applied to only two elements. 

A data-flow algorithm for this procedure is rather 
easy to write. It is natural to associate nodes with 2 x 2 
blocks of the matrix as in Figure 13, where the ele- 
ments of the matrix are denoted by X. To allow rota- 
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l.llxxxxxx 4.~22~~~11 
llxxxxxx 2xx22xll 
xxllxxxx 2xx22xxx 
xxllxxxx x22xx22x 
xxxxllxx x22xx22x 
xxxxllxx xxx22xx2 
xxxxxxll llx22xx2 
xxxxxxll llXXX22X 

2.xxllxxxx 5.33x22xXx 
xxtlxxxx 33~~x22~ 
Ilxxllxx ~~33x22~ 
lfxxllxx 2x33~~~2 
xxllxxll 2~~x33~2 
xxllxxll ~22x33~~ 
xxxxllxx ~22~~x33 
xxxxllxx ~~~22x33 

3. xxxxllxx 6. ~~33x22~ 
x22xllxx ~~33~~x2 
x22xxxll 33~x33~2 
xxx22xll 33xx33xx 
11x22xxx xx33xx33 
llxxx22x 2x33~~33 
xxllx22x 2~~x33~~ 
xxllxxxx ~22x33~~ 

FIGURE 12. Propagation of the Rotations 

the odd nodes. Code for an odd node is displayed in 
Figure 14. In it 1 * r * 1 is used as a generic symbol for a 
rotation, and ne, se, SW, and nw denote the nodes to 
the northeast, southeast, southwest, and northwest. The 
core of the computation is In the cases 1 I I < 
J < Nandll J < I < N. Herethenodewaitsfor 
matrix elements from the even nodes and rotations 
from its neighboring odd nodes, applies the rotations, 
and passes the matrix elements back to the odd nodes 
and the rotations on to the even nodes. The other cases 
take care of diagonal nodes, where rotations must 
be generated, or boundary nodes that must be treated 
specially. 

This example differs from its predecessors in several 
respects. In the first place, the algorithm requires a 
more highly (though still locally] connected network of 
nodes than the algorithms for the Liapounov equation 
and congruence transformations. The nodes are associ- 
ated with a computation (the application of a rotation to 
a z x 2 block) rather than an element within a matrix. 
Finally, the computations are tightly synchronized-so 
much so that the algorithm could easily be imple- 
mented as a systolic array. 

5. IMPLEMENTATION 

tions to pass from node to node, the nodes with even 
indices are connected in a grid, as are the nodes with 
odd indices. Even nodes are connected diagonally to 
odd nodes to allow the matrix element that is between 
them to pass back and forth. 

The data-flow algorithm consists of two computa- 
tional networks, one for the odd nodes and another for 
the even nodes. It is assumed that initially the even 
nodes contain the matrix elements that surround them 
and start the computation by sending the elements to 

One advantage of data-flow algorithms is that they re- 
quire little systems support. The purpose of this section 
is to sketch a node communication and control system 
(NCC) that sequences the execution of nodes on a proc- 
essor and mediates communications between nodes. A 
version of this system has been implemented on the 
ZMOB [18], a parallel computer under development at 
the University of Maryland. 

A copy of NCC resides on each processor of the net- 
work that implements the data-flow algorithm. The 
processors are assumed to be general purpose, sequen- 
tial processors with their own, unshared memory (on 
the ZMOB a processor board contains a Z80 micropro- 
cessor, 64K bytes of memory, an Intel 8232 floating- 
point processor, and serial and parallel ports). As in 

(0,s) (0,4) (0,6) 
x X 

I x X I x X I x 
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FIGURE 13. Computational Network for the Jacobi-Schur Algorithm 
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loop elsif J=N then 
if I,(I<J.<N then 

await(ane:even.nej 
awaft(anw:eyen.nw) 

(asw:eyen.sw) 
(ase:even.se) (rw:west); 
(asw:even.sw) apply.the r~,tation; 
(anw:even.nw) send(anw:ev&n.nw) 
(rw: west) (atiW:eVCin.sw)j 

(rS:SOUth)i ./ e ‘3 elsif l<I=J then 
apply t:he rotati&&~;b r>;:;q, ""1. ge await(ane:even.ne) 
send ( ane : even . ne 1 ;~“‘3*~~:~:~-~,’ ‘:;,:, (ase:even.se) 

(ase:even.se),. -:~ ,‘,:“,~‘.“. (asw:even.sw) 
(asw:even.ew) )*’ ” :: 
(anw:even.nw) x .;‘ 

(anW:e~en.nw)j 
generate and dpply the 

(rw:east) 
n, -. 

FIGURE 14. Jacobi-Schur Reduction Node odd (I, J) 

Section 3, we say that processors that can communicate 
directly with one another are adjacent and assume that 
the computational nodes for the algorithm in question 
have been mapped onto processors in such a way that 
adjacent nodes. lie on adjacent processors. 

NCC is composed of a number of pieces, which are 
shown in Figure 15. We shall discuss each of them in 
turn. 

Structures 
Node Structtwes. A node in NCC is specified by 

three items: 
1. A node identifier, which must be globally unique. 
2. A pointer to a program that implements the node. 
3. An auxiliary structure containing variables local 

to the node. 

The node programs are reentrant, so that they can be 
used by several. nodes. The auxiliary structures are 

necessary to prevent variables local to a node from 
being overwritten by other nodes using the program. 

The Node Table. The node table is an array contain- 
ing the node structures for all nodes resident on the 
processor. 

The Arrival List. This is a queue of all data that 
have arrived at the processor as a result of send com- 
mands. Each message is accompanied by a source-node 
identifier and a destination-node identifier. 

The Want List. This is a list of pending await re- 
quests for data by nodes on the processor. Each entry 
consists of a source-node identifier, a destination-node 
identifier, and a pointer indicating where the data are 
to be placed. 

Primitive Functions 
equal. This function takes two node identifiers as 

arguments and returns true if they are the same. 
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Otherwise it returns false. The function is used to 
match messages with their destinations. 

address. This function takes a node identifier as 
an argument and returns the address of the processor 
on which it resides. It is used by the output process to 
direct messages to the appropriate processors. 

send. This function is used by a node to transmit 
data to other nodes. Its syntax was described in Section 
3. The function communicates with other processors 
via the output process. 

await. This function is used by a node to request 
data. Its syntax was described in Section 3. It causes the 
request to be entered onto the want list and the node to 
return control to NCC. 

finis. This function is used by nodes to an- 
nounce to the system that they are finished executing. 
It causes control to return to NCC, after which the node 
is ignored by the control process. The finis function 
is included for efficiency. As we pointed out in Section 
3, its effect can be simulated by executing an await 
with data that will never arrive, but this does not re- 
lieve the control process of the overhead of monitoring 
the node. 

Processes 
Nodes. These are the raison dZtre for NCC. 
The Output Process. This process is invoked by the 

send command. It determines the destination proces- 
sor for each message, establishes communication with 
the input process on that processor, and transmits the 
message. 

The Znpuf Process. This process accepts messages 
from other processors and places them on the arrival 
list. 

The Control Process. This is the heart of the system. 
Its operation is sketched in Figure 16. Essentially, the 
control process on each processor loops endlessly trying 
to satisfy the requests on the want list with itemsin the 
arrival list. If it finds a node that has no requests pend- 
ing, then it awakens the node by calling its node pro- 

I. Structures 
a. Node structures 
b. The node table 
c. The arrival queue 
d. The want list 

II. Primitive functions 
a. equal 
b. address 
c. send 
d. await 
e. finis 

Ill. Processes 
a. Nodes 
b. The output process 
c.The input process 
d. The control process 

FIGURE 15. Components of NCC 

loop cyci.icaIly through the node 
table 
r;itisfied := true; 
loop thrbugh the want list 

need: if the current entry in want 
list is from the 
current node then 

loop through the arrival 
list 

if the current arrival 
entry matches the 
want entry then 

transfer data from the 
arrival queue and 
remove the entries from 
the want list and the 
arrival queue; 
leave need; 

end If; 
end loop; 
satisfied := false; 

need: end if; 
end loop; 
if satisfied then 

awaken the current node; 
end if; 

end loop; 

FIGURE 16. The Control Process 

gram at the point where the node last relinquished 
control. 

There are several points to be made about this sys- 
tem. In outline it is quite simple, and in our experience 
it remains simple when one descends to the details. 
Our implementation of NCC is in the programming lan- 
guage C, which allows a natural description of the 
structures in the system. The fleshing out of Figure 16 
requires little more than standard techniques for ma- 
nipulating the lists involved. The details of the input 
and output processes will depend on the way the net- 
work of processors communicate; for the ZMOB they 
were relatively easy to code. The major difficulties con- 
cern global problems of initialization (assigning nodes 
to processors and defining the address function), moni- 
toring algorithms (taking snapshots of processor activi- 
ties to identify bottlenecks), and collecting results. We 
are currently designing a table-driven loader, which 
will sit on a single processor and perform some of these 
functions. 

In a software implementation of NCC, communica- 
tion overhead will dominate the calculations in the 
short node programs presented in this article. Fortu- 
nately, NCC itself has a great deal of inherent parallel- 
ism, which can be used to speed up the system. In 
particular, the input, output, and control processes 

August 1985 Volume 28 Number 8 Communications of the ACM 851 



Research Contributions 

could reside on a triad of separate, dedicated processors 
that communicate by a shared memory. Moreover, if 
these processors are sufficiently fast, one incarnation of 
NCC could serve several slower processors that are de- 
voted solely 1.0 executing nodes. The precise features of 
an efficient hardware implementation must remain ob- 
scure until experiments with real algorithms show 
where the bottlenecks and tradeoffs lie; but we believe 
that the software version of hJCC has already laid the 
ground for informed speculation. 

There are rnany possible extensions to NCC. One that 
we feel will be essential for computations with large 
dense matrices is the ability to broadcast data to several 
processors. For example, if a matrix is stored one col- 
umn to a proc;essor, then the implementation of many 
common matrix algorithms will require that a single 
column be transferred to a set of different columns. 
Technically, this can be done by a network whose 
nodes pass on the column one element at a time; how- 
ever, the cost to a node is a full NCC communication 
cycle for each element. The alternative is to define a 
path along which all the nodes shake hands before 
passing the column from node to node in burst mode. 

6. CONCLUSIONS 
In this article, we have presented a way of organizing 
parallel matrix computations so that complicated algo- 
rithms can be implemented with comparatively simple 
programs and little global control. We have shown by 
citation and example that the set of matrix algorithms 
that can be so implemented is nontrivial and important. 
We have also made a case for the practicality of the 
approach by describing a simple system that supports 
data-flow algorithms on a network of processors. In this 
last section, we will make some general observations 
about the data3low approach. 

Regarding programming languages, our data-flow 
algorithms req-uire little more ihan a standard language 
for their imple-mentation. This is surprising in view of 
the current interest in languages for parallel computa- 
tion; but the paradox can be resolved by observing that 
a node program is a description of a local computation, 
not of a global (algorithm. In Section 4, we leaned heav- 
ily on verbal descriptions to communicate our 
algorithms, and it is difficult (though not impossible) to 
reconstruct the algorithms from the node programs. 
Thus, the data-flow approach does not obviate the need 
for research into systematic ways to describe parallel 
algorithms. However, we feel that an attempt to devise 
a formal language for parallel matrix computations may 
well be premature; too few matrix algorithms have ac- 
tually been cast in parallel form to provide a suitable 
base for general izing. 

The main drawbacks of the data-flow approach are 
that it makes it easy to design bad algorithms and diffi- 
cult to analyze igood ones, This is clear from our exam- 
ples, where the potential for deadlock or data conges- 
tion cannot be lightly dismissed. Against this must be 
set the fact that data-flow algorithms lend themselves 
to an experimental approach; since node programs are 
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easy to write, one can code an algorithm and see how i-: 
runs. 

Another problem arises from the fact that we have 
effectively been multitasking nodes on processors. In a 
processor-rich environment, where only a few nodes 
reside on any one processor, scheduling presents few 
problems. However, with greatly oversized problems, 
which cause many nodes to be assigned to each proces- 
sor, some attention must be paid to the order in which 
nodes are inspected by the NCC control process. Al- 
though preliminary investigation of the Cholesky algo- 
rithm of Section 13 suggests that it runs well under a 
variety of scheduling algorithms, this is an open re- 
search area. 

The main advantages of the data-flow approach are 
that the node programs are independent of the relation 
between the size of the problem and the number of 
processors, are independent of the precise assignment 
of nodes to processors, and are independent of the pre- 
cise physical adjacencies and physical communication 
structures between processors. Thus, it is easy to inves- 
tigate the impact of changes in parallel machine archi- 
tectures on a given algorithm, or to study the perform- 
ance of an algorithm as the ratio of problem size to 
number of processors varies. The fact that the same 
node program can be used in a variety of situations also 
means that it is relatively easy to transfer algorithms 
from one system to another. 

It is hard to overstress the convenience of being able 
to debug data-flow algorithms on sequential computers. 
We first brought up the node communication and con- 
trol system, running the Cholesky algorithm on a single 
processor, before the multiple processor ZMOB system 
was available. All that was needed to make the system 
and the algorithm work on the ZMOB was to rewrite 
the NCC input and output processes to interface with 
the communication devices of the ZMOB. 

Although we have been concerned in this article 
with algorithms from numerical linear algebra, the 
data-flow approach is not restricted to them. In describ- 
ing the node communication and control system, we 
made no references to matrices or matrix algorithms. 
Thus, the system can be used to implement parallel 
algorithms for other tasks. 
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