
Assignment and Scheduling in Parallel Matrix Factorization*

Dianne P. O’Leary and G. W. Stewart

Computtir Science Department
University of Maryland
College Park, Maryland 20742

Sulmittetl by R. G. Voigt

ABSTRACT

We consider the problem of factoring a dense n x n matrix on a network
consisting of P MIMD processors, with no shared memory, when the network is
smaller than the number of elements in the matrix (P < n2). The specific example
analyzed is a computational network that arises in computing the LU, QR, or
Cholesky factorizations. We prove that if the nodes of the network are evenly
distributed among processors and if computations are scheduled by a round-robin or a
least-recently-executed scheduling algorithm, then optimal order of speedup is achieved.
However, such speedup is not necessarily achieved for other scheduling algorithms or
if the computation for the nodes is inappropriately split across processors, and we give
examples of these phenomena. Lower bounds on execution time for the algorithm are
established for two important node-assignment strategies.

1. INTRODUCTION

Many dense-matrix calculations can be formulated efficiently as data-flow
algorithms; for example, the data-flow formalism has been used to solve linear
systems of equations 11, 7, 81, symmetric eigenvalue problems [2], and
Liapunov equations [9]. In a data-flow algorithm, computations are parti-
tioned into computational nodes which are vertices of a graph whose arcs
represent the communication paths between nodes. A node can communicate
with nodes adjacent to it in the network, sending and requesting data. A node
that has requested data is not permitted to execute until all the data it has
requested have arrived. Thus the computation is synchronized by the flow of
data between nodes-whence the term data-flow algorithm. For a formal
definition of this model of computation see [lo].

*This work was supported by the Air Force Office of Scientific Research under Grant
AFOSR-824078.

LINEAR ALGEBRA AND ITS APPLICATIONS 77:275-299 (1986) 275

cc) Elsevier Science F’ublishing Co., Inc., 1986
52 Vanderbilt Ave., New York, NY 10017 00243795/86/$3.50

276 DIANNE P. O’LEARY AND G. W. STEWART

One way to implement a data-flow algorithm is to assign each node in the
computational network to a processor in an isomorphic network of processors.
However, the size of the processor network will then restrict the size of
problems that can be solved. Alternatively, we can allow assignments of
multiple computational nodes to each processor, subject to the restriction that
adjacent computational nodes must be assigned to adjacent processors (any
processor will be considered to be adjacent to itself). In the language of
operating systems, the computational nodes become tasks on the processors.
The execution of the nodes must then be coordinated by an operating system
resident on each processor (for a sketch of one such system see [9]).

Although the multiple assignment of nodes to processors solves the
problem of oversized networks, it creates two new problems. First, there may
be many ways of assigning nodes to processors, and the question arises of
which are best. Second, it may happen that several nodes on a processor will
become ready for execution at the same time, in which case the operating
system must choose one of them for execution according to some scheduling
algorithm. Again the question arises of which scheduling algorithms are best.

In this paper we consider the problems of scheduling and assignment for a
computational network to factor dense matrices on a parallel computer
consisting of processors with independent instruction streams and no shared
memory. The network and flow of data is almost the same whether the
network is used to compute the LU (without pivoting), the QR, or the
Cholesky factorization of the matrix.

The problem of factoring an n X n matrix on fewer than n2 processors has
also been considered by other people. Srinivas [ll] finds an optimal schedul-
ing for fewer than n processors with shared memory. Ipsen, Saad, and
Schultz [6] compute lower bounds on the time for factorization on a ring of
vector processors. George, Heath, and Liu [4] analyze some algorithms for an
architecture like the HEP.

In Section 2 we discuss the parallel factorization algorithm and various
ways to assign nodes to processors. In Section 3 we analyze the time
complexity of the algorithm assuming that the nodes are scheduled for
execution under a round-robin or a least-recently-executed regime. We also
give examples to show that care must be exercised in scheduling and
assignment. In Section 4 lower bounds are established for the execution time
for several natural assignment strategies.

2. THE PARALLEL CHOLESKY ALGORITHM: ELEMENTARY
LOWER BOUNDS

Since our results apply to the parallel computation of all three factoriza-
tions mentioned above, we may confine our investigations to one of them. For

PARALLEL MATRIX FACTORIZATION 277

FIG. 1. Computational network for the Cholesky algorithm.

definiteness, we shall treat the parallel computation of the Cholesky factoriza-
tion of a positive definite symmetric matrix. We shall assume that the reader
is familiar with the usual sequential algorithm for computing this factoriza-
tion.

A computational network for the algorithm is illustrated in Figure 1 for
the case n = 5. The nodes, which are identified by ordered pairs of integers,
correspond to the elements of the matrix A; e.g. the node (3,4) corresponds
the element Us. Note that the node (I, J) is connected only to the nodes
(I - 1, J), (I, J + l), (I + 1, .Z), and (I, J - l), provided these nodes exist.
Whenever it is clear from context that we are dealing with the node (I, J), we
shall refer to the four surrounding nodes by the names north, east, south, and
west.

Figure 2 contains a program for the node labeled (I, J) that transforms
the element a,, into the corresponding element of the Cholesky factor. The
program, a slight variant of the one given in [9], is written in a conventional
sequential programming language, augmented by three commands. The com-
mand send causes the data specified by its first argument to be sent to the
node specified by the second argument. For brevity, we denote multiple
invocations of send by repeated argument lists. Messages from one particular
node to another particular one are assumed to arrive in the order in which
they are sent. For simplicity, we will assume that messages directed to
nonexistent nodes [e.g., the message that node (1,5) sends to (1,6) when

278 DIANNE P. O’LEARY AND G. W. STEWART

Inlt:

sqrt:

cdlv:

rdlv:

ellm:

k := 0;
loop

k := k+l;
if k=I and k=J then

await();
a := sqrt(a);
send(a:south) (a:east);
fink;

ebif k=J then
await(an:north);
a := a/an;
send(an:south) (a:east):
finis;

elaif k=I then
await(aw:west);
a := a/aw;
send(aw:east) (a:south);
finis;

else
await(an:north) (aw:west);
a := a - an*aw;
send(an:south) (aw:east);

end if;
end loop;

FIG. 2. Program for the Cholesky decomposition, node (I, 1).

n = 51 are simply ignored by the operating system. The await command
causes the node to suspend execution until data from the node specified by
the second argument arrive. When this occurs, the data are stored as specified
by the first argument, and execution is resumed at the next statement. The
finis command terminates the execution of the node.

Note the dummy await in the statement labeled sqrt. It has the effect of
returning control to the operating system so that other nodes can be awakened.
Since the node has not requested any data, it will be awakened when it next is
examined by the scheduling algorithm. We include this statement in order to
make the precedence graph, defined below, more regular.

The best way to understand the program is to trace the execution of a
particular node, say (3,4). We will refer to the nonzero element in position
(i, j) of either the upper triangular (if i < j) or lower triangular (if j Q i)
Cholesky factor by rij. Then rs_, is given by

a34 - r31r14 - r32r24
r 34 =

53

(2.1)

PARALLEL MATRIX FACTORIZATION 279

When k = 1 in the program, the node (3,4) waits for two items. The one
coming from the north is r14, which is sent by node (1,4) to (2,4) and from
there passed on to (3,4). The one from the west is rS1, which is passed from
(3,l) via (3,2) and (3,3). On receiving these numbers, the node adjusts a 34 by
subtracting rS1r,, from it, and then passes r14 to the south and r,, to the east
for use by other nodes. When k = 2, the node behaves analogously, requesting
Tag from the north and r,, from the west, subtracting their product from the
current value of a, and passing on r24 to the south and rS2 to the east. Finally,
when k = 3 the node enters the section labeled rdiv, receives rS from the
west, divides it into the current value of a to produce rM, and passes r,
south for use by the rest of the nodes in the third column. It passes its final
value east, and then terminates.

To see how data flow from node to node, the reader may find it useful to
trace the actions of the programs for the nodes (3,4) and (4,4) together.

In the spirit of the data-flow approach, the above description has been
local. However, to develop scheduling strategies it is necessary to have a
global view of the algorithm. This may be done by partitioning the work done
by the nodes into waves indexed by the value of k in the program of Figure
2. If the nodes are regarded as executing in lockstep, firing only when their
data are available, then the first wave moves in a diagonal front across the
matrix, first touching the (1,l) node, then the (2,l) and (1,Z) nodes in
parallel, then the (3, l), (2,2), and (1,3) nodes-and so on. The second wave
(k = 2) follows the first beginning with the (2,2) node. We shall have frequent
occasion to refer to these waves in Section 4.

O’Leary and Stewart [lo] have shown that however the nodes in a
data-flow algorithm are sequenced for execution, each individual node receives
input in a unique order and performs a unique series of actions, including
send, await, and finis commands. This allows us to construct a precedence

graph for the algorithm as follows. A vertex in the graph consists of any
sequence of operations executed in a node beginning with an await command
and ending just before an await or a finis command. (Every node program
may begin with an initialization step, but this is not considered to be a
vertex.) By the determinacy of the operations performed by a node, the
vertices associated with any one node are linearly ordered, and we connect
them with directed edges (arrows) in that order. These arrows represent
control-flow synchronization of the algorithm (see, for example, [5, p. 291).
We also connect two vertices if the first contains a send command that
satisfies an item in the await command beginning the second. These arrows
represent the data-flow synchronization of the algorithm. The result is an
acyclic digraph, which partially orders the vertices: the operations in a vertex
can be performed only after the operations in all preceding vertices have been
performed.

280 DIANNE P. O’LEARY AND G. W. STEWART

1 .1 .1

:

:
1
I
I

I

+

2.1.1

:

3.1.1

---+-+ 4 .3 .2 ____I__+ 4 .4 .2

4.1.1 ------+ 4 .2.1 ______+ 4 .3 .1 ------+ 4 .4 .1

______+ 2.2.1

------+ 3 .2.1 w--e: -+ 3 .3 .1

FIG. 3. Precedence graph for the Cholesky algorithm.

The precedence graph for the Cholesky algorithm is given in Figure 3.’ A
glance at the program in Figure 2 will show that each vertex for a particular
computational node (i, j) must be associated with a unique value of k. Hence
we label the vertices (i, j, k). The dashed arrows between nodes having the
same value of k represent data-flow synchronization; the solid arrows be-
tween nodes having different values of k represent control flow.

It is important not to confuse the precedence graph with the computa-
tional network from which it derives. To keep the distinction clear, we shall
consistently refer to the nodes of a computational network and the vertices of
its precedence graph.

Any path in the precedence graph of a data-flow algorithm determines a
lower bound on the time required to execute the algorithm. Specifically, since
each vertex on the path must be executed in sequence, the algorithm cannot
take less than the sum of the execution times of the vertices on any path, no

‘Note that the precedence graph is uniquely determined by the node program in Figure 2
and a particular value of n. Other node programs which perform the same mathematical
computation may lead to either the same precedence graph or a different one. The graph for the
LCJ and QR algorithms differs slightly in that the (n, n, n) node is omitted. The QR takes
rotations in the order (1,2),(1,3) ,..., (1, n) ,..., (n - 1, n).

PARALLEL MATRIX FACTORIZATION 281

matter how many processors are used, how the nodes are assigned to the
processors, and how nodes are scheduled for execution on the processors.

For the Cholesky algorithm, the longest path is 3n - 2. Hence if Dr,,io
denotes the minimum time required to execute a vertex, then the time To
required to execute the Cholesky algorithm is bounded below by (372 - Z)D,,,,,,:

Tn >, (3n - Z)D,nin. (2.2)

This bound holds for any algorithm which has the precedence graph of
Figure 3.

In the sequel we shall be concerned with the implementation of the
algorithm on a network consisting of P processors. For this case we can
derive another lower bound on the execution time. Specifically, there are
n”/3 + 0(n2) vertices in the precedence graph. If each vertex takes the same
amount of time to execute, then even when all processors are fully utilized the
algorithm cannot finish in less than n3/(3P) + 0(n2/P) times the time D
required to execute a single vertex:

T,a [$+O(n:)ln. 12.3)

This bound holds for any algorithm which performs n’/3 + 0(n2) computa-
tions, whether or not it has the precedence graph of Figure 3. It should be
noted that this lower bound depends critically on the assumption that the
vertices all require the same amount of time to execute; if some vertices
execute in a very short time compared to the others, it may be possible to
assign them to a single processor while the remaining processors execute the
slower vertices. Fortunately, this assumption is approximately true for the
Cholesky algorithm.

3. SCHEDULING ALGORITHMS

In this section we shall show that two natural scheduling algorithms for
the nodes of Figure 1 are in some sense optimal under very weak assumptions
about assignment. Optimal&y is defined by comparison with lower bound
(2.3) established in Section 2, and consequently the caveat about vertices
requiring equal time for their execution applies in interpreting the results of
this section. In this section we also ignore transmission delays. The results
apply to any arrangement of processors (square grid, hypercube, linear array,
etc.) as long as adjacent nodes are assigned to adjacent processors.

282 DIANNE P. O’LEARY AND G. W. STEWART

The first scheduling algorithm is the round-robin algorithm. Here the
operating system on a processor moves cyclicly through the nodes on the
processor, looking for one that can execute. When it finds a node that is
ready, the node is allowed to execute until it issues an await command,
whereupon control is returned to the operating system, which goes on to the
next node.

The basic result is that round-robin scheduling gives optimal order time if
the nodes are more or less evenly distributed among the processors.

THEOREM 3.1. Suppose that the vertices in the precedence graph for the
Cholesky algorithm require time bounded by Dmax to execute. Further suppose
that there is a constant Q such that as n -+ 00 the number of nodes assigned
to a processor is bounded by Qn2/P, where P is the number of processors
performing the computation. Then the time TD required to execute the
Cholesky algorithm with round-robin scheduling satisfies

To G (3n - ~)$QD,,~~~. (3.1)

Proof. Let T(i, j, k) be the time at which vertex (i, j, k) finishes execut-
ing, and let D(i, j, k) be the time required for vertex (i, j, k) to execute.
Then

T(i, j, k) = max{ T(i - 1, j, k),T(i, j - 1, k),T(i, j, k - 1))

+ D(i, j, k)+ a(i, j, k), (3.2)

where 6(i, j, k) is the delay due to scheduling. Since at most (Qn2/P) - 1

processes can be examined before the vertex (i, j, k) is seen by the operating
system,

6(i, j, k) <

Hence

(3.3)

T(i, j, k) <max{T(i-1, j,k),T(i,j-l,k),T(i,j,k-l))+~QD,~,..

(3.4)

PARALLEL MATRIX FACTORIZATION 283

This recurrence can be solved to give

from which it follows that

(3.5)

W (3.6)

Note that Q must be greater than or equal to one. When it is near one,
the nodes are spread out evenly among the processors, and the bound
becomes effectively (3n - 2)(r?/P)D,,,,,. Comparing this value with the
bound (2.3) we see that if all the vertices of the precedence graph require the
same amount of time to execute, then balanced-assignment round-robin
scheduling is less than optimal by no more than a factor of about nine.

Another method of scheduling is to give priority to nodes that have been
waiting a long time. In this 2east-recently-executed algorithm, the operating
system chooses from among the nodes that are ready to execute the one that
has the earliest pending await command. Since a node ceases executing when
it issues an await command and does not resume execution until the com-
mand is no longer pending, this algorithm chooses the node that has been
waiting longest for a chance to execute. It turns out that Theorem 3.1 remains
valid for the least-recently-executed scheduling algorithm. (Funderlic and
Geist [3] give some simulations of least-recently-executed scheduling for the
Cholesky algorithm on a torus of processors.)

THEOREM 3.2. In Theorem 3.1, the bound (3.1) continues to hold when
round-robin scheduling is replaced by least-recently-executed scheduling.

Proof Verify that (3.2) and (3.3) continue to hold. n

It should not be thought that node balancing is enough to make any
scheduling algorithm work well, as the following example shows.

EXAMPLE 3.3. Consider the following implementation of the parallel
Cholesky algorithm on a p X p grid of processors (so that P = p2). Suppose
that for a positive integer m, we have n = pm. Partition the matrix A into
m x m submatrices, and assign the nodes associated with each submatrix to
the corresponding processor on the grid.

284 DIANNE P. O’LEARY AND G. W. STEWART

The scheduling algorithm is the following. The operating system on a
processor will refuse to schedule a node lying on the last row or column of the
submatrix on the processor until all the nodes not on the last row or column
have executed their finis commands. In other words, the nodes on the last row
or column of a submatrix are executed only when the processor has no
prospect of doing anything else.

Let t(i, j) denote the time that the (i, j)th processor first begins execut-
ing nodes on the last row and column of its submatrix. Clearly, the (i, j)th
processor cannot begin executing any nodes before t(i - 1, j) or t(i, j - l),
whichever is larger. Moreover, before it can begin executing nodes on the last
row or column, the (m - 1)’ other nodes must process all the data being sent
to them from the north and west, something that requires time bounded
below by min{ i - 1, j - l} (m - 1)3D,,,i,,, where as usual D,ni,l denotes the
least time required by a vertex in the precedence graph to execute.

It follows that

r(i, j) >, max{ t(i - 1, j),t(i, j - 1)) +min{ i - 1, j - 1) (m - 1)3D,,,i,,.

(3.7)

Taking t(i, 1) = t(1, j) = 0, we get from (3.7)

(3.8)

Since p = @, this strategy produces a time that is far from optimal. Note that
even if nodes in the last row and column of a submatrix are allowed to execute
whenever all other nodes on the processor are in a wait state, (3.8) still gives a
worst-case bound for the scheduling strategy.

The nice results of Theorems 3.1 and 3.2 are in part due to the fact that
we assign nodes of the computational network, not vertices of the precedence
graph. This forces a systematic assignment of the latter that works well when
the former are balanced. Since vertices represent a finer granularity of
computation than nodes, we can in principle speed up the computations by
assigning at this level. But a simple load-balancing strategy will not neces-
sarily work, as is shown in the following theorem.

THEOREM 3.4. There is a way to evenly distribute the vertices of the
precedence graph for the n x n Cholesky algorithm on n processors so that,
even with instantaneous communication between all processors, the computa-
tion time is 0(n3).

PARALLEL MATRIX FACTORIZATION 285

Proof. Consider the precedence graph G of the computation given in
Figure 3, and write down the n3/3 + 0(n2) vertices of the graph in order of
their distance from the initial vertex, (1, 1,l) (i.e., in order of level sets of the
graph). Assign (roughly) n2/3 vertices to each processor, without partitioning
level sets among processors. We show that this assignment produces time
0(n”).

Denote the level sets by

L,,,= {(i,j,k)~G:i+j+k=m+3}, m=O ,...,3n - 3.

Now for m < n, the number of elements in level set L,,, is

IL,,,I=(m+l)+(m-2)+ ... +(rem(m,3)+1)=$+O(m),

where rem(m,3) denotes the remainder function for division by 3. This
accounts for n3/18+ 0(n2) vertices. Consider the events on the correspond-
ing n/6 processors.

Suppose the vertices on a given processor are ordered so that all those in
L,,, compute before any in L,,, 1. Then, since there are at most nz/6 + O(n)
vertices in the last level set on the processor, and roughly n2/3 vertices in the
processor, no vertex in the last level set in the processor (and thus no vertex in
the next processor) can execute until time greater than n2/6 + 0(n) later than
the first vertex in the processor executes. This delay repeated n/6 times gives
a lower bound of n3/36 + 0(n2) on the execution time of the graph on the n
processors. n

4. BLOCK TORUS ASSIGNMENT, OPTIMAL SCHEDULING, AND
LOWER BOUNDS

In the last section we considered scheduling algorithms that gave good
results with rather general assignment strategies. No assumptions were made
about how the network of processors were connected, beyond the restriction,
stated in the introduction, that adjacent nodes must he on adjacent processors.
In this section we shall consider the problem of optimal scheduling on specific
networks of processors with specific assignment of nodes.

First we must clear up a potential source of confusion. In the last section
we spoke of scheduling nodes in the network. In this section it will be more
convenient to speak of executing vertices of the precedence graph. However,
the reader should keep in mind that the distinction is purely terminological.
At any given time at most one vertex associated with a node is ready to be

286 DIANNE P. O’LEARY AND G. W. STEWART

executed, and when it is executed, we say that we have scheduled the node or
executed the vertex.

In this section we shall use nearly optimal scheduling algorithms to derive
lower bounds for the time it takes to run the algorithm in Figure 2 on a linear
array of processors and on a square grid of processors. These bounds are
sharper than those in (2.2) and (2.3). The results are summa~zed at the end of
the section in Table 1. Sample times for various ~go~~rns are given in Table
2 for the case of n processors and fi processors. The scheduling ~go~thms
we suggest here could be implemented on a torus or hypercube or, for the last
algorithm, on a ring of processors.

Square Grids of P~OC~SSOB
We shall assume that we have a p X p grid of processors (so that the total

number of processors is P = p2) with nearest-neighbor connections. We shall
further assume that the western boundary of the grid is connected to the
eastern and the northern boundary to the southern, so that topologically the
connections form a torus (Figure 4).

There are two natural strategies for assigning nodes to this configuration
of processors. First we can partition the nodes into m x m blocks, where m
= [n/p 1, and assign each block to a processor in the natural ordering. With
this block assignment, processor (i, j) will contain nodes (m [i - I] + k, m[j
-l]+Z)(k,Z=l,..., m). Second, we may take the computational network in
Figure 1 and wrap it around the torus. With this torus assignment processor
(i,j) will contain nodes (i+kp,j+lp) (k,l=O,...,w-l), where w
= [n/p] (Figure 4).

The following general assignment strategy includes the two described
above. Let w and m be integers such that n = wmp (this implicit restriction
on n avoids messy boundary conditions, but does not significantly affect the
applicability of the results). Partition the computational network into m x m
blocks of nodes, and assign the blocks to processors using torus assignment.
Then block assignment corresponds to taking w = 1, and torus assignment to
taking m = 1. We shall call the general assignment strategy b~~k-to~
~s~gn~t .

We begin our analysis of block-torus assignment by describing a schedul-
ing ~go~thm that is nearly optimal under the ~s~ptions that all vertices in
the precedence graph take the same time I) to execute and that communi-
cation is instantan~~. Actually we shall describe a scheduling algorithm for
an augmented precedence graph and then show that if the processors simply
remain idle when one of the extra vertices is scheduled, the result is nearly
optimal for the original graph.

PARALLEL MATRIX FACTORIZATION

f
I

(1.1) (1.5)

(5.1) (5.9 (I
I (2.1) 0.5)

(6.0 (6.5) h=
(3,O (3.5) L=
(4,1) (4.5) L

\

(1.2) (1.6)

(5.2) (5.6)

I

I
(2.2) (2.6)

(62) (6.6)

- (3.2) (3.6) m

I 4

I
1

- (4.2) (4.6) .

/ ’ \

/

(1.3)

(5.3)

1

I

0.3)

63)

I

I

- (3.3)

i

I
- (4.3)

\
\

FIG. 4. Torus assignment.

The augmented graph is obtained by adding vertices as follows. For
k=l2 > >***> mp we add vertices (i, j, k) with 1~ i, j < k. For k = mp + 1, mp

+ 2,. . . ,2mp we add vertices (i, j, k) with mp + 1~ i, j < k. And so on, until
for k=(W--l)mp+l , . . . , wmp we add vertices (i, j, k) with (W - 1)mp + 1
< i, j < k. Algorithmically this amounts to starting the kth wave of the
Cholesky algorithm with the (imp + 1, imp + 1) element, where i = 1 k/mp].

The crucial feature of this expansion is that block-torus assignment places
mostly “real” nodes on the (p, p) processor; no matter what the scheduling
strategy for the expanded graph, the (p. p) processor does almost the same
work that it would have to do to execute the original precedence graph. The
(p, p) processor is the last to finish executing in any scheduling strategy,
since, under our restriction that n = wmp, vertex (n, n, n) is always assigned
to processor (p, p). It follows that if we can devise a scheduling algorithm

288 DIANNE P. O’LEARY AND G. W. STEWART

for I=1 to wm loop
for r=1 to w loop

for s=1 to w loop
for k=(l-l)p+l to Ip loop

execute all the vertices In
B(i, i. r,s, k) columnwlse;

end loop:
end loop:

end loop;
end loop;

FIG. 5. Scheduling algorithm for processor (i, j).

that

(1) activates the (p, p >processor in the shortest possible time and then
(2) never allows the (p, p) processor to rest until it has processed its last

vertex,

then the algorithm will be nearly optimal. We shall now describe a scheduling
algorithm that nearly achieves both desiderata.

Let the m X m blocks on the (i, j) processor be indexed by r (row) and s
(column). Let B(i, j, T, s, k) be the set of vertices belonging to wave k that lie
in block (r, s) on the (i, j) processor. Then the scheduling algorithm for the
(i, j) processor is given in Figure 5.

Some illustrations will show how the algorithm works. The waves are
divided into wm clusters G, of p waves with indices (1 - 1)~ + 1,. . . , Zp.
These clusters traverse the processors as illustrated in Figure 6(a)-(e), where
we take w = 3, m = 4, and p = 5. The small blocks represent the basic 4 x 4
blocks of the matrix, and the double lines represent where the blocks wrap
over the torus. Thus the small blocks lying in the same position within the
larger blocks are all assigned to the same processor. In the figures, the first of
the numbers in a block is the wave k (1 through n) being executed, and the
second is the column (1 through m) within the block currently being
processed. We assume here that the vertices are executed in lockstep, firing in
sequence beginning at the first clock pulse after the data for the column
become available.

Figure 6(a) shows the wave cluster G, getting started (it is instructive to
work through the process a step at a time up to this point). Figure 6(b) shows
G, wrapping around the torus. Note that the leading edge of the cluster is
complementary to the trailing edge, so that all processors are active. Figure
6(c) shows how G, passes down across the torus boundary, and Figure 6(d)
shows how G, leaves the matrix while G, follows it in. The clusters G, and

PARALLEL MATRIX FACTORIZATION 289

I
I I I I II I I I I II I I I

I 1
I

t i i i i ii i i i i ii i i I
(a)

FIG. 6. Snapshot at time (a) 19m, (b) 30m, (c) 68m, (d) 191m, (e) 671m.

DIANNE P. O’LEARY AND G. W. STEWART

8,3
-

8.2
-

8.1
-

7.4
-

7.3

-

7.3

7.2

7.1

6.4

8.3

-

-

(4

FIG. 6. (Continued)

PARALLEL MATRIX FACTORIZATION 291

t i i i i ii I I I I II I I I I 1

I I I I I II I I l l l/ l l 20.4 I 10.4 1 18.4 I
I I I I II I I I I II I I I I

I II 20.3 19.3 18.3

69

FIG. 6. (Continued)

G, are processed in the same way. However, as G, terminates, G, starts in
the (6,6) block [Figure 6(e)]. In all cases the processors do not stutter-they
are ever active.

To see how near we come to the first desideratum, let us first compute a
lower bound on how long it takes the first wave to reach the (p, p) processor.
Consider the interval that must elapse between the time the first wave arrives
at the (i, i) processor and the time that it arrives at the (i + 1, i + 1) processor.
First it must traverse the (i, i) processor, which requires m2D time. Then two
vertices must be executed, one in the southwest comer of the (i, i + 1)
processor and the other in the northeast comer of the (i + 1, i) processor.
Since these can be done in parallel, they add only D to the interval. Thus it
takes at least (m2 + 1)D units of time to traverse the (i, i) processor. Since
p - 1 processors on the diagonal must be traversed, we find that the time
required to activate the (p, p) processor is bounded below by

S,=(p-l)(m’+l)D. (4.1)

292 DIANNE P. O’LEARY AND G. W. STEWART

On the other hand, it is easily seen that the scheduling algorithm requires
time

(p - l)(m2+ m)D. (4.2)

to activate the (p, p) processor. The ratio of (4.2) to the lower bound (4.1) is

1+’
m

I+-$’
(4.3)

which attains its maximum of 1.2 for m = 2,3. Thus as far as the first
desideratum is concerned, the scheduling algorithm is nearly optimal.

Although we have constructed our scheduling algorithm so that the second
desideratum is satisfied, we have yet to take into account work done on
“false” vertices. We begin our investigations by computing how much work
must be done on the (p, p) processor when the original Cholesky algorithm is
executed. It is easiest here to think in terms of block eliminations. We
distinguish three sources of work.

(1) Consider the block (r, s) in processor (p, p). If this block is on or
above the main diagonal of the matrix, then it must be eliminated by the
rp - 1 blocks above it, each of which generates m”D work. If the block is
below the main diagonal, then there are sp - 1 such block eliminations.
Summing over all blocks in the processor gives a total of

1c tt

m3D 2 C (min{r,s}p-1).
r=l s=l

(4.4)

(2) Each of the off-diagonal blocks must eliminate itself at a cost of
nz”(m + 1)0/2 units of work. Hence the contribution from this source is

m”(m+l)

2
D(w2- w). (4.5)

(3) Each of the w diagonal blocks must eliminate itself, for a cost of

m(m + l)(Z?n + 1)
Dw.

6 (4.6)

PARALLEL MATRIX FACTORIZATION 293

Summing (4.4)-(4.6), we get a lower bound for the time required by the
(p, p) processor, independent of scheduling algorithm:

m3w 3p I m3w “p m3wp
T,= - - -

3+2+6

rn’w’ m3w m2w2
_--- -

2 6 + 2
+y D. 1 (4.7)

Now consider the work done by the (p, p) processor when the additional
vertices are included. The work represented by (4.4) is unaffected. However,
the factor m2(m + 1)/2 in (4.5) must be replaced by m3, and the factor
m(m + 1)(2m + 1)/6 in (4.6) by m3. This gives an excess work of

m3w(w - 1) 2m3w

2 + 3
- D + O(m2w2). 1 (4.8)

Comparing (4.8) with (4.7) we see that if w increases as n increases, the
amomlt of extra work becomes asymptotically negligible. However, when w is
fixed, so that m increases linearly with n, (4.8) approaches a fixed proportion
of (4.7) which can be quite large. For example, when w = p = 1, the ratio of
(4.7)+(4.8) to (4.7) approaches three; in other words, if we wait for false
vertices, our scheduling algorithm takes three times longer than it needs to.
However, this ratio drops sharply with increasing p or w. For example, if
p = 1 and w = 5, the ratio is 1.32. For p = 5 and w = 1, it is 1.15. Moreover,
if we run the scheduling algorithm on the original graph with data-flow
synchronization rather than lockstep, the ratios will be even lower, since the
processor time devoted to false vertices can now be used profitably on real
ones.

To recapitulate, we have computed a lower bound (4.7) on the execution
time by computing how much work the (p, p) processor must do [the
activation time (4.1) is asymptotically negligible]. Moreover, except for small
p and w, this bound is nearly attained by our scheduling algorithm. Encour-
aged by this result, we now proceed to compute lower bounds on the
interprocessor communication time in much the same way.

We shall assume that the times required for internal sends and receives are
included in the node execution time D. Let R be the additional time
required to receive a message coming from another processor. Then the time
spent by the (p, p) processor receiving external messages may be counted as

294 DIANNE P. O’LEARY AND G. W. STEWART

above:

(1) Consider the block (r, s). Each block elimination requires 2m2 num-
bers from other processors. Therefore, the total amount of input needed for
the eliminations in (4.4) is

2m2 jJ $j (min{r,s} p-l)
r=l s=l

(4.9)

(2) Each of the off-diagonal blocks must eliminate itself, which requires
nl(m + 1)0/2 units of input. Hence the contribution from this source is

rn(;+l) (w”- w). (4.10)

Summing (4.9)-(4.10) and multiplying by R, we get a lower bound for the
time taken by interprocessor receptions:

3m2w2
+ m2w2p - -

2

m2wp m2w 2

+ 3 2
+f--y R* 1 (4.11)

Although the time for the sends is computed in the same way, the
argument is more tedious and the formulas more complicated, since nodes on
the boundary of the network do not pass on information. However, as p and
w increase, they approach the number of receives. Hence we shall take (4.11)
as characterizing the interprocessor communication time.

It is instructive to examine how the bounds behave as n becomes large.
First taking w = 1 (pure blocking) and making the substitution m = n/p, we
get the following asymptotic expressions:

T,,q3 b-t- D,
[1 P2 3P3

TR=n2 z--f- R.

[1 P P2
(4.12)

On the other hand, if we take m = 1 (pure wrapping), we get

n3 2n3
To = y-/A TR = ,R.

3P
(4.13)

PARALLEL MATRIX FACTORIZATION 295

From this we see that when we pass from pure blocking to pure wrapping, we
decrease the computation time at the cost of increasing the communication
time. In principle one could use the lower bound to determine approximate
break-even points. However, it must be kept in mind that if n B p, then the
algorithm given here is not the best. For pure blocking, a better algorithm
would be one that treats the blocks as units, thus reducing internal communi-
cation among the nodes. Here the above analysis holds when D is reinterpre-
ted as the cost of one update of one matrix element and does not include the
overhead of internal transmission. For pure torus wrap a better algorithm
would be one that recognizes that information passing through a processor
will be used by the same processor later. The redundant sends and receives
can be eliminated, and we refer to this as the compact algorithm. The
analysis of such algorithms is similar to the above analysis, and equally
tedious. The results are presented in Table 1.

Linear Arrays of Processors
The techniques in this case are analogous to the one for square grids of

processors, and we shall only sketch the development. Assume that we have P
processors, and let w and m be integers such that n = wmP. We partition
the matrix into blocks of m columns and assign them sequentially to the
processors, wrapping them around to the beginning w times.

There is a nearly optimal scheduling algorithm for the linear array that is
analogous to the one for the square grid. Groups of P waves are sent through
the processors. As one group falls off the end of the matrix, the next starts in
the appropriate place. The algorithm requires few false vertices to keep the
Pth processor busy. Hence we shall not greatly underestimate the running
time for this array by counting the time required by the Pth processor.

To calculate this work, consider the rPth block of m columns. For
j = l,..., m the (rP - 1)m + j column must be eliminated by all the preced-
ing columns and by itself. The cost of being eliminated by the Zth column is
(n - I + l)D. Hence the total amount of work done by the Pth processor is

m3w3P2 m3w2P2 m3w2P
=~+-------

3 4 4

m3wP 2 m3wP m3w m2w2P
_~ + -- -+-

12 4 6 2
(4.14)

TA
BL

E
1

N
U

M
BE

R

O
F

SE
Q

U
EN

TI
A

L
C

O
M

PU
TE

S
A

N
D

R

EC
EI

V
ES

FO

R

V
A

R
IO

U
S

A
LG

O
R

IT
H

M
S

m
3w

3p

m
3w

2p

m
3w

p
m

:3
w

2
rn

’w

m
2w

2
Sq

ua
re

 g
ri

d
N

D
=

-
-

~
-

-_
-

3
+

2
+

6
+-

+y

2

6
2

2m
2w

3p

m
’w

p
3m

”w
”

m
2w

m

w
’

m
w

O

rig
in

al

al
go

rit
hm

N

H
 =

 3

+
m

2w
2p

 +
 -

-

~

3
2

2
$2

2

Co
m

pa
ct

al

go
rit

hm

N
R

=
m

2w
2p

 +
 m

’w
p

-
m

2w
2

-
m

2w

m
3w

3P
2

m
3w

2P
2

m
3w

P
2

m
:3

w
2p

m

3w
P

m

’w

m
’w

’P

L
in

ea
r

ar
ra

y
N

D
=

 _
+

+
--

_-

--
--

-+
-

3
4

12

4
4

6
2

m
2w

3P
2

m
2w

2P
2

m
2w

P
2

m
2w

2P

m
2w

P

m
2w

m

w
2P

m

w
P

m

w

O
rig

in
al

al

go
rit

hm

N
R

=
P+

P_
-- 3

p+
-

4
12

2

2
2+

4+
4

2

m
2w

2P
2

m
2w

2P

m
2w

P

m
2w

m

w
P

m

w

Co
m

pa
ct

al

go
rit

hm

N
R

=
2

-
~

~_
_

2+
2

2+
2

2

PARALLEL MATRIX FACTORIZATION 297

The extra time for receptions for the Pth processor may be calculated by
dropping the self-elimination terms in the summation on 2 in (4.14) and
dropping the summation on j. This gives

m2w3P 2 m2w2P2 m2w2P m2wP 2
=p+ ___---

3 4 2 12

m2wP m2w mw2P mwP mw
-_- -

+ 2 2 + 4 +4-- 2 *
(4.15)

Again it is instructive to consider the extreme cases. If we take w = 1,
then we get the following asymptotic expressions:

If we take m = 1, then we get the following expressions:

T,= $3,
n3

TR = iFR*

(4.16)

(4.17)

Again we find a tradeoff between computation and communication. However,
the same caveat applies in interpreting these bounds as interpreting the
bounds for the grid of processors: when n X= P the compact algorithm is
better than the one analyzed in this section.

We summarize these scheduling results in Table 1, which presents the
computation and communication costs for the scheduling algorithms pre-
sented in this section. These results are expressed in terms of the blocksize m,
the number of torus wraps w, and the number of processors p or P. In Table
2, we compute the leading-order terms of these costs for some example
configurations: n or 6 processors with the matrix either fully blocked
(w = 1) or fully wrapped (m = 1). For n processors and for 6 processors,
the best of these algorithms is full wrapping on a square grid.

298 DIANNE P. O’LEARY AND G. W. STEWART

TABLE 2
NUMBER OF SEQUENTIAL COMPUTES AND RECEIVES

FOR VARIOUS ALGORITHMS WITH A

FIXED NUMBER OF PROCESSORS”

n processors
Square grid, full blocking
Square grid, full wrapping
Linear array

\r n processors
Square grid, full blocking
Square grid, full wrapping

Linear array, full blocking

Linear array, full wrapping

“Leading term only.

ln2 2 n312 2 n3j2
in2 !n” 1 n3/2

in” in” in”

1 n512 2 n7j4 2 n7j4
I 5/2
3n

$ n5/2 1 n7j4
i n5/2 in” in”
j n5/2 in5/2 in”

REFERENCES

R. P. Brent and F. T. Luk, Computing the Cholesky factorization using a systolic
architecture, Technical Report IX 82521, Dept. of Computer Science, Cornell
Univ., 1982.
R. P. Brent and F. T. Luk, A systolic architecture for ahnost linear-time solution
of the symmetric eigenvalue problem, Technical Report TR 82-525, Dept. of
Computer Science, Cornell Univ., 1982.
Robert Funderhc and Alan Geist, Torus data flow for parallel computation of
missized matrix problems, manuscript, Oak Ridge National Lab., Oak Ridge,
Tenn., 1985.
Alan George, Michael T. Heath, and Joseph Liu, Parallel Cholesky factorization
on a multiprocessor, Technical Report ORNL6124, Oak Ridge National Lab.,
Oak Ridge, Tenn., 1985.
Kai Hwang and Faye A. Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill, New York, 1984.
Ilse C. F. Ipsen, Youcef Saad, and Martin H. Schultz, Complexity of dense linear
system solution on a multiprocessor ring Lin. Algebra Appl. 77:205-239 (1986).
S. Y. Kung, VLSI array processors for signal processing, presented at MIT
Conference un Aduanced Research in Integrated Circuits, Cambridge, Mass.,
1986, cited in [8].
S. Y. Kung, K. S. Arun, D. V. Bhaskar Rae, and Y. H. Hu, A matrix data flow
language/architecture for parallel matrix operations based on computational
wavefront concept, in VLSI Systems and Computation (H. T. Kung, B. Sproull,
and G. Steele, Eds.), Computer Science Press, Rockville, MD., 1981, pp. 235-244.

PARALLEL MATRIX FACTORIZATION 299

9 Dianne P. O’Leary and G. W. Stewart, Data-flow algorithms for parallel matrix
computations, Cutnm. ACM 28: 840-853 (1985).

10 Dianne P. O’Leary and G. W. Stewart, On the determinancy of a model for
parallel computation, Technical Report 1456, Department of Computer Science,
Univ. of Maryland, 1984.

11 Mandayam A. Srinivas, Optimal parallel scheduling of a Gaussian elimination
DAG’s, IEEE Trms. Conput. C-32: 1109-1117 (1983).

Received 10 April 19B.5; revised 26 September 1965

