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ABSTRACT 

We consider the problem of factoring a dense n x n matrix on a network 
consisting of P MIMD processors, with no shared memory, when the network is 
smaller than the number of elements in the matrix (P < n2). The specific example 
analyzed is a computational network that arises in computing the LU, QR, or 
Cholesky factorizations. We prove that if the nodes of the network are evenly 
distributed among processors and if computations are scheduled by a round-robin or a 
least-recently-executed scheduling algorithm, then optimal order of speedup is achieved. 
However, such speedup is not necessarily achieved for other scheduling algorithms or 
if the computation for the nodes is inappropriately split across processors, and we give 
examples of these phenomena. Lower bounds on execution time for the algorithm are 
established for two important node-assignment strategies. 

1. INTRODUCTION 

Many dense-matrix calculations can be formulated efficiently as data-flow 
algorithms; for example, the data-flow formalism has been used to solve linear 
systems of equations 11, 7, 81, symmetric eigenvalue problems [2], and 
Liapunov equations [9]. In a data-flow algorithm, computations are parti- 
tioned into computational nodes which are vertices of a graph whose arcs 
represent the communication paths between nodes. A node can communicate 
with nodes adjacent to it in the network, sending and requesting data. A node 
that has requested data is not permitted to execute until all the data it has 
requested have arrived. Thus the computation is synchronized by the flow of 
data between nodes-whence the term data-flow algorithm. For a formal 
definition of this model of computation see [lo]. 
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One way to implement a data-flow algorithm is to assign each node in the 
computational network to a processor in an isomorphic network of processors. 
However, the size of the processor network will then restrict the size of 
problems that can be solved. Alternatively, we can allow assignments of 
multiple computational nodes to each processor, subject to the restriction that 
adjacent computational nodes must be assigned to adjacent processors (any 
processor will be considered to be adjacent to itself). In the language of 
operating systems, the computational nodes become tasks on the processors. 
The execution of the nodes must then be coordinated by an operating system 
resident on each processor (for a sketch of one such system see [9]). 

Although the multiple assignment of nodes to processors solves the 
problem of oversized networks, it creates two new problems. First, there may 
be many ways of assigning nodes to processors, and the question arises of 
which are best. Second, it may happen that several nodes on a processor will 
become ready for execution at the same time, in which case the operating 
system must choose one of them for execution according to some scheduling 
algorithm. Again the question arises of which scheduling algorithms are best. 

In this paper we consider the problems of scheduling and assignment for a 
computational network to factor dense matrices on a parallel computer 
consisting of processors with independent instruction streams and no shared 
memory. The network and flow of data is almost the same whether the 
network is used to compute the LU (without pivoting), the QR, or the 
Cholesky factorization of the matrix. 

The problem of factoring an n X n matrix on fewer than n2 processors has 
also been considered by other people. Srinivas [ll] finds an optimal schedul- 
ing for fewer than n processors with shared memory. Ipsen, Saad, and 
Schultz [6] compute lower bounds on the time for factorization on a ring of 
vector processors. George, Heath, and Liu [4] analyze some algorithms for an 
architecture like the HEP. 

In Section 2 we discuss the parallel factorization algorithm and various 
ways to assign nodes to processors. In Section 3 we analyze the time 
complexity of the algorithm assuming that the nodes are scheduled for 
execution under a round-robin or a least-recently-executed regime. We also 
give examples to show that care must be exercised in scheduling and 
assignment. In Section 4 lower bounds are established for the execution time 
for several natural assignment strategies. 

2. THE PARALLEL CHOLESKY ALGORITHM: ELEMENTARY 
LOWER BOUNDS 

Since our results apply to the parallel computation of all three factoriza- 
tions mentioned above, we may confine our investigations to one of them. For 
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FIG. 1. Computational network for the Cholesky algorithm. 

definiteness, we shall treat the parallel computation of the Cholesky factoriza- 
tion of a positive definite symmetric matrix. We shall assume that the reader 
is familiar with the usual sequential algorithm for computing this factoriza- 
tion. 

A computational network for the algorithm is illustrated in Figure 1 for 
the case n = 5. The nodes, which are identified by ordered pairs of integers, 
correspond to the elements of the matrix A; e.g. the node (3,4) corresponds 
the element Us. Note that the node (I, J) is connected only to the nodes 
(I - 1, J), (I, J + l), (I + 1, .Z), and (I, J - l), provided these nodes exist. 
Whenever it is clear from context that we are dealing with the node (I, J), we 
shall refer to the four surrounding nodes by the names north, east, south, and 
west. 

Figure 2 contains a program for the node labeled (I, J) that transforms 
the element a,, into the corresponding element of the Cholesky factor. The 
program, a slight variant of the one given in [9], is written in a conventional 
sequential programming language, augmented by three commands. The com- 
mand send causes the data specified by its first argument to be sent to the 
node specified by the second argument. For brevity, we denote multiple 
invocations of send by repeated argument lists. Messages from one particular 
node to another particular one are assumed to arrive in the order in which 
they are sent. For simplicity, we will assume that messages directed to 
nonexistent nodes [e.g., the message that node (1,5) sends to (1,6) when 
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Inlt: 

sqrt: 

cdlv: 

rdlv: 

ellm: 

k := 0; 
loop 

k := k+l; 
if k=I and k=J then 

await(); 
a := sqrt(a); 
send(a:south) (a:east); 
fink; 

ebif k=J then 
await(an:north); 
a := a/an; 
send(an:south) (a:east): 
finis; 

elaif k=I then 
await(aw:west); 
a := a/aw; 
send(aw:east) (a:south); 
finis; 

else 
await(an:north) (aw:west); 
a := a - an*aw; 
send(an:south) (aw:east); 

end if; 
end loop; 

FIG. 2. Program for the Cholesky decomposition, node (I, 1). 

n = 51 are simply ignored by the operating system. The await command 
causes the node to suspend execution until data from the node specified by 
the second argument arrive. When this occurs, the data are stored as specified 
by the first argument, and execution is resumed at the next statement. The 
finis command terminates the execution of the node. 

Note the dummy await in the statement labeled sqrt. It has the effect of 
returning control to the operating system so that other nodes can be awakened. 
Since the node has not requested any data, it will be awakened when it next is 
examined by the scheduling algorithm. We include this statement in order to 
make the precedence graph, defined below, more regular. 

The best way to understand the program is to trace the execution of a 
particular node, say (3,4). We will refer to the nonzero element in position 
(i, j ) of either the upper triangular (if i < j ) or lower triangular (if j Q i) 
Cholesky factor by rij. Then rs_, is given by 

a34 - r31r14 - r32r24 
r 34 = 

53 

(2.1) 
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When k = 1 in the program, the node (3,4) waits for two items. The one 
coming from the north is r14, which is sent by node (1,4) to (2,4) and from 
there passed on to (3,4). The one from the west is rS1, which is passed from 
(3,l) via (3,2) and (3,3). On receiving these numbers, the node adjusts a 34 by 
subtracting rS1r,, from it, and then passes r14 to the south and r,, to the east 
for use by other nodes. When k = 2, the node behaves analogously, requesting 
Tag from the north and r,, from the west, subtracting their product from the 
current value of a, and passing on r24 to the south and rS2 to the east. Finally, 
when k = 3 the node enters the section labeled rdiv, receives rS from the 
west, divides it into the current value of a to produce rM, and passes r, 
south for use by the rest of the nodes in the third column. It passes its final 
value east, and then terminates. 

To see how data flow from node to node, the reader may find it useful to 
trace the actions of the programs for the nodes (3,4) and (4,4) together. 

In the spirit of the data-flow approach, the above description has been 
local. However, to develop scheduling strategies it is necessary to have a 
global view of the algorithm. This may be done by partitioning the work done 
by the nodes into waves indexed by the value of k in the program of Figure 
2. If the nodes are regarded as executing in lockstep, firing only when their 
data are available, then the first wave moves in a diagonal front across the 
matrix, first touching the (1,l) node, then the (2,l) and (1,Z) nodes in 
parallel, then the (3, l), (2,2), and (1,3) nodes-and so on. The second wave 
(k = 2) follows the first beginning with the (2,2) node. We shall have frequent 
occasion to refer to these waves in Section 4. 

O’Leary and Stewart [lo] have shown that however the nodes in a 
data-flow algorithm are sequenced for execution, each individual node receives 
input in a unique order and performs a unique series of actions, including 
send, await, and finis commands. This allows us to construct a precedence 

graph for the algorithm as follows. A vertex in the graph consists of any 
sequence of operations executed in a node beginning with an await command 
and ending just before an await or a finis command. (Every node program 
may begin with an initialization step, but this is not considered to be a 
vertex.) By the determinacy of the operations performed by a node, the 
vertices associated with any one node are linearly ordered, and we connect 
them with directed edges (arrows) in that order. These arrows represent 
control-flow synchronization of the algorithm (see, for example, [5, p. 291). 
We also connect two vertices if the first contains a send command that 
satisfies an item in the await command beginning the second. These arrows 
represent the data-flow synchronization of the algorithm. The result is an 
acyclic digraph, which partially orders the vertices: the operations in a vertex 
can be performed only after the operations in all preceding vertices have been 
performed. 
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FIG. 3. Precedence graph for the Cholesky algorithm. 

The precedence graph for the Cholesky algorithm is given in Figure 3.’ A 
glance at the program in Figure 2 will show that each vertex for a particular 
computational node (i, j) must be associated with a unique value of k. Hence 
we label the vertices (i, j, k). The dashed arrows between nodes having the 
same value of k represent data-flow synchronization; the solid arrows be- 
tween nodes having different values of k represent control flow. 

It is important not to confuse the precedence graph with the computa- 
tional network from which it derives. To keep the distinction clear, we shall 
consistently refer to the nodes of a computational network and the vertices of 
its precedence graph. 

Any path in the precedence graph of a data-flow algorithm determines a 
lower bound on the time required to execute the algorithm. Specifically, since 
each vertex on the path must be executed in sequence, the algorithm cannot 
take less than the sum of the execution times of the vertices on any path, no 

‘Note that the precedence graph is uniquely determined by the node program in Figure 2 
and a particular value of n. Other node programs which perform the same mathematical 
computation may lead to either the same precedence graph or a different one. The graph for the 
LCJ and QR algorithms differs slightly in that the (n, n, n) node is omitted. The QR takes 
rotations in the order (1,2),(1,3) ,..., (1, n) ,..., (n - 1, n). 
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matter how many processors are used, how the nodes are assigned to the 
processors, and how nodes are scheduled for execution on the processors. 

For the Cholesky algorithm, the longest path is 3n - 2. Hence if Dr,,io 
denotes the minimum time required to execute a vertex, then the time To 
required to execute the Cholesky algorithm is bounded below by (372 - Z)D,,,,,,: 

Tn >, (3n - Z)D,nin. (2.2) 

This bound holds for any algorithm which has the precedence graph of 
Figure 3. 

In the sequel we shall be concerned with the implementation of the 
algorithm on a network consisting of P processors. For this case we can 
derive another lower bound on the execution time. Specifically, there are 
n”/3 + 0( n2) vertices in the precedence graph. If each vertex takes the same 
amount of time to execute, then even when all processors are fully utilized the 
algorithm cannot finish in less than n3/(3P) + 0(n2/P) times the time D 
required to execute a single vertex: 

T,a [$+O(n:)ln. 12.3) 

This bound holds for any algorithm which performs n’/3 + 0( n2) computa- 
tions, whether or not it has the precedence graph of Figure 3. It should be 
noted that this lower bound depends critically on the assumption that the 
vertices all require the same amount of time to execute; if some vertices 
execute in a very short time compared to the others, it may be possible to 
assign them to a single processor while the remaining processors execute the 
slower vertices. Fortunately, this assumption is approximately true for the 
Cholesky algorithm. 

3. SCHEDULING ALGORITHMS 

In this section we shall show that two natural scheduling algorithms for 
the nodes of Figure 1 are in some sense optimal under very weak assumptions 
about assignment. Optimal&y is defined by comparison with lower bound 
(2.3) established in Section 2, and consequently the caveat about vertices 
requiring equal time for their execution applies in interpreting the results of 
this section. In this section we also ignore transmission delays. The results 
apply to any arrangement of processors (square grid, hypercube, linear array, 
etc.) as long as adjacent nodes are assigned to adjacent processors. 
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The first scheduling algorithm is the round-robin algorithm. Here the 
operating system on a processor moves cyclicly through the nodes on the 
processor, looking for one that can execute. When it finds a node that is 
ready, the node is allowed to execute until it issues an await command, 
whereupon control is returned to the operating system, which goes on to the 
next node. 

The basic result is that round-robin scheduling gives optimal order time if 
the nodes are more or less evenly distributed among the processors. 

THEOREM 3.1. Suppose that the vertices in the precedence graph for the 
Cholesky algorithm require time bounded by Dmax to execute. Further suppose 
that there is a constant Q such that as n -+ 00 the number of nodes assigned 
to a processor is bounded by Qn2/P, where P is the number of processors 
performing the computation. Then the time TD required to execute the 
Cholesky algorithm with round-robin scheduling satisfies 

To G (3n - ~)$QD,,~~~. (3.1) 

Proof. Let T(i, j, k) be the time at which vertex (i, j, k) finishes execut- 
ing, and let D(i, j, k) be the time required for vertex (i, j, k) to execute. 
Then 

T(i, j, k) = max{ T(i - 1, j, k),T(i, j - 1, k),T(i, j, k - 1)) 

+ D(i, j, k)+ a(i, j, k), (3.2) 

where 6( i, j, k) is the delay due to scheduling. Since at most (Qn2/P) - 1 

processes can be examined before the vertex (i, j, k) is seen by the operating 
system, 

6(i, j, k) < 

Hence 

(3.3) 

T(i, j, k) <max{T(i-1, j,k),T( i,j-l,k),T(i,j,k-l))+~QD,~,.. 

(3.4) 
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This recurrence can be solved to give 

from which it follows that 

(3.5) 

W (3.6) 

Note that Q must be greater than or equal to one. When it is near one, 
the nodes are spread out evenly among the processors, and the bound 
becomes effectively (3n - 2)(r?/P)D,,,,,. Comparing this value with the 
bound (2.3) we see that if all the vertices of the precedence graph require the 
same amount of time to execute, then balanced-assignment round-robin 
scheduling is less than optimal by no more than a factor of about nine. 

Another method of scheduling is to give priority to nodes that have been 
waiting a long time. In this 2east-recently-executed algorithm, the operating 
system chooses from among the nodes that are ready to execute the one that 
has the earliest pending await command. Since a node ceases executing when 
it issues an await command and does not resume execution until the com- 
mand is no longer pending, this algorithm chooses the node that has been 
waiting longest for a chance to execute. It turns out that Theorem 3.1 remains 
valid for the least-recently-executed scheduling algorithm. (Funderlic and 
Geist [3] give some simulations of least-recently-executed scheduling for the 
Cholesky algorithm on a torus of processors.) 

THEOREM 3.2. In Theorem 3.1, the bound (3.1) continues to hold when 
round-robin scheduling is replaced by least-recently-executed scheduling. 

Proof Verify that (3.2) and (3.3) continue to hold. n 

It should not be thought that node balancing is enough to make any 
scheduling algorithm work well, as the following example shows. 

EXAMPLE 3.3. Consider the following implementation of the parallel 
Cholesky algorithm on a p X p grid of processors (so that P = p2). Suppose 
that for a positive integer m, we have n = pm. Partition the matrix A into 
m x m submatrices, and assign the nodes associated with each submatrix to 
the corresponding processor on the grid. 
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The scheduling algorithm is the following. The operating system on a 
processor will refuse to schedule a node lying on the last row or column of the 
submatrix on the processor until all the nodes not on the last row or column 
have executed their finis commands. In other words, the nodes on the last row 
or column of a submatrix are executed only when the processor has no 
prospect of doing anything else. 

Let t(i, j) denote the time that the (i, j)th processor first begins execut- 
ing nodes on the last row and column of its submatrix. Clearly, the (i, j)th 
processor cannot begin executing any nodes before t(i - 1, j) or t( i, j - l), 
whichever is larger. Moreover, before it can begin executing nodes on the last 
row or column, the (m - 1)’ other nodes must process all the data being sent 
to them from the north and west, something that requires time bounded 
below by min{ i - 1, j - l} ( m - 1)3D,,,i,,, where as usual D,ni,l denotes the 
least time required by a vertex in the precedence graph to execute. 

It follows that 

r(i, j) >, max{ t(i - 1, j),t(i, j - 1)) +min{ i - 1, j - 1) (m - 1)3D,,,i,,. 

(3.7) 

Taking t(i, 1) = t(1, j) = 0, we get from (3.7) 

(3.8) 

Since p = @, this strategy produces a time that is far from optimal. Note that 
even if nodes in the last row and column of a submatrix are allowed to execute 
whenever all other nodes on the processor are in a wait state, (3.8) still gives a 
worst-case bound for the scheduling strategy. 

The nice results of Theorems 3.1 and 3.2 are in part due to the fact that 
we assign nodes of the computational network, not vertices of the precedence 
graph. This forces a systematic assignment of the latter that works well when 
the former are balanced. Since vertices represent a finer granularity of 
computation than nodes, we can in principle speed up the computations by 
assigning at this level. But a simple load-balancing strategy will not neces- 
sarily work, as is shown in the following theorem. 

THEOREM 3.4. There is a way to evenly distribute the vertices of the 
precedence graph for the n x n Cholesky algorithm on n processors so that, 
even with instantaneous communication between all processors, the computa- 
tion time is 0(n3). 
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Proof. Consider the precedence graph G of the computation given in 
Figure 3, and write down the n3/3 + 0(n2) vertices of the graph in order of 
their distance from the initial vertex, (1, 1,l) (i.e., in order of level sets of the 
graph). Assign (roughly) n2/3 vertices to each processor, without partitioning 
level sets among processors. We show that this assignment produces time 
0( n”). 

Denote the level sets by 

L,,,= {(i,j,k)~G:i+j+k=m+3}, m=O ,...,3n - 3. 

Now for m < n, the number of elements in level set L,,, is 

IL,,,I=(m+l)+(m-2)+ ... +(rem(m,3)+1)=$+O(m), 

where rem(m,3) denotes the remainder function for division by 3. This 
accounts for n3/18+ 0(n2) vertices. Consider the events on the correspond- 
ing n/6 processors. 

Suppose the vertices on a given processor are ordered so that all those in 
L,,, compute before any in L,,, 1. Then, since there are at most nz/6 + O(n) 
vertices in the last level set on the processor, and roughly n2/3 vertices in the 
processor, no vertex in the last level set in the processor (and thus no vertex in 
the next processor) can execute until time greater than n2/6 + 0( n ) later than 
the first vertex in the processor executes. This delay repeated n/6 times gives 
a lower bound of n3/36 + 0( n2) on the execution time of the graph on the n 
processors. n 

4. BLOCK TORUS ASSIGNMENT, OPTIMAL SCHEDULING, AND 
LOWER BOUNDS 

In the last section we considered scheduling algorithms that gave good 
results with rather general assignment strategies. No assumptions were made 
about how the network of processors were connected, beyond the restriction, 
stated in the introduction, that adjacent nodes must he on adjacent processors. 
In this section we shall consider the problem of optimal scheduling on specific 
networks of processors with specific assignment of nodes. 

First we must clear up a potential source of confusion. In the last section 
we spoke of scheduling nodes in the network. In this section it will be more 
convenient to speak of executing vertices of the precedence graph. However, 
the reader should keep in mind that the distinction is purely terminological. 
At any given time at most one vertex associated with a node is ready to be 
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executed, and when it is executed, we say that we have scheduled the node or 
executed the vertex. 

In this section we shall use nearly optimal scheduling algorithms to derive 
lower bounds for the time it takes to run the algorithm in Figure 2 on a linear 
array of processors and on a square grid of processors. These bounds are 
sharper than those in (2.2) and (2.3). The results are summa~zed at the end of 
the section in Table 1. Sample times for various ~go~~rns are given in Table 
2 for the case of n processors and fi processors. The scheduling ~go~thms 
we suggest here could be implemented on a torus or hypercube or, for the last 
algorithm, on a ring of processors. 

Square Grids of P~OC~SSOB 
We shall assume that we have a p X p grid of processors (so that the total 

number of processors is P = p2) with nearest-neighbor connections. We shall 
further assume that the western boundary of the grid is connected to the 
eastern and the northern boundary to the southern, so that topologically the 
connections form a torus (Figure 4). 

There are two natural strategies for assigning nodes to this configuration 
of processors. First we can partition the nodes into m x m blocks, where m 
= [ n/p 1, and assign each block to a processor in the natural ordering. With 
this block assignment, processor (i, j ) will contain nodes (m [ i - I] + k, m[ j 
-l]+Z)(k,Z=l,..., m). Second, we may take the computational network in 
Figure 1 and wrap it around the torus. With this torus assignment processor 
(i,j) will contain nodes (i+kp,j+lp) (k,l=O,...,w-l), where w 
= [ n/p] (Figure 4). 

The following general assignment strategy includes the two described 
above. Let w and m be integers such that n = wmp (this implicit restriction 
on n avoids messy boundary conditions, but does not significantly affect the 
applicability of the results). Partition the computational network into m x m 
blocks of nodes, and assign the blocks to processors using torus assignment. 
Then block assignment corresponds to taking w = 1, and torus assignment to 
taking m = 1. We shall call the general assignment strategy b~~k-to~ 
~s~gn~t . 

We begin our analysis of block-torus assignment by describing a schedul- 
ing ~go~thm that is nearly optimal under the ~s~ptions that all vertices in 
the precedence graph take the same time I) to execute and that communi- 
cation is instantan~~. Actually we shall describe a scheduling algorithm for 
an augmented precedence graph and then show that if the processors simply 
remain idle when one of the extra vertices is scheduled, the result is nearly 
optimal for the original graph. 
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FIG. 4. Torus assignment. 

The augmented graph is obtained by adding vertices as follows. For 
k=l2 > >***> mp we add vertices (i, j, k) with 1~ i, j < k. For k = mp + 1, mp 

+ 2,. . . ,2mp we add vertices (i, j, k) with mp + 1~ i, j < k. And so on, until 
for k=(W--l)mp+l , . . . , wmp we add vertices (i, j, k) with (W - 1)mp + 1 
< i, j < k. Algorithmically this amounts to starting the kth wave of the 
Cholesky algorithm with the (imp + 1, imp + 1) element, where i = 1 k/mp]. 

The crucial feature of this expansion is that block-torus assignment places 
mostly “real” nodes on the (p, p) processor; no matter what the scheduling 
strategy for the expanded graph, the (p. p) processor does almost the same 
work that it would have to do to execute the original precedence graph. The 
(p, p) processor is the last to finish executing in any scheduling strategy, 
since, under our restriction that n = wmp, vertex (n, n, n) is always assigned 
to processor (p, p). It follows that if we can devise a scheduling algorithm 
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for I=1 to wm loop 
for r=1 to w loop 

for s=1 to w loop 
for k=(l-l)p+l to Ip loop 

execute all the vertices In 
B(i, i. r,s, k) columnwlse; 

end loop: 
end loop: 

end loop; 
end loop; 

FIG. 5. Scheduling algorithm for processor (i, j). 

that 

(1) activates the ( p, p >processor in the shortest possible time and then 
(2) never allows the (p, p) processor to rest until it has processed its last 

vertex, 

then the algorithm will be nearly optimal. We shall now describe a scheduling 
algorithm that nearly achieves both desiderata. 

Let the m X m blocks on the (i, j) processor be indexed by r (row) and s 
(column). Let B(i, j, T, s, k) be the set of vertices belonging to wave k that lie 
in block (r, s) on the (i, j) processor. Then the scheduling algorithm for the 
( i, j ) processor is given in Figure 5. 

Some illustrations will show how the algorithm works. The waves are 
divided into wm clusters G, of p waves with indices (1 - 1)~ + 1,. . . , Zp. 
These clusters traverse the processors as illustrated in Figure 6(a)-(e), where 
we take w = 3, m = 4, and p = 5. The small blocks represent the basic 4 x 4 
blocks of the matrix, and the double lines represent where the blocks wrap 
over the torus. Thus the small blocks lying in the same position within the 
larger blocks are all assigned to the same processor. In the figures, the first of 
the numbers in a block is the wave k (1 through n) being executed, and the 
second is the column (1 through m) within the block currently being 
processed. We assume here that the vertices are executed in lockstep, firing in 
sequence beginning at the first clock pulse after the data for the column 
become available. 

Figure 6(a) shows the wave cluster G, getting started (it is instructive to 
work through the process a step at a time up to this point). Figure 6(b) shows 
G, wrapping around the torus. Note that the leading edge of the cluster is 
complementary to the trailing edge, so that all processors are active. Figure 
6(c) shows how G, passes down across the torus boundary, and Figure 6(d) 
shows how G, leaves the matrix while G, follows it in. The clusters G, and 
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I 
I I I I II I I I I II I I I 

I 1 
I 

t i i i i ii i i i i ii i i I 
(a) 

FIG. 6. Snapshot at time (a) 19m, (b) 30m, (c) 68m, (d) 191m, (e) 671m. 
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FIG. 6. (Continued) 
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FIG. 6. (Continued) 

G, are processed in the same way. However, as G, terminates, G, starts in 
the (6,6) block [Figure 6(e)]. In all cases the processors do not stutter-they 
are ever active. 

To see how near we come to the first desideratum, let us first compute a 
lower bound on how long it takes the first wave to reach the (p, p) processor. 
Consider the interval that must elapse between the time the first wave arrives 
at the (i, i) processor and the time that it arrives at the (i + 1, i + 1) processor. 
First it must traverse the (i, i) processor, which requires m2D time. Then two 
vertices must be executed, one in the southwest comer of the (i, i + 1) 
processor and the other in the northeast comer of the (i + 1, i) processor. 
Since these can be done in parallel, they add only D to the interval. Thus it 
takes at least ( m2 + 1)D units of time to traverse the (i, i) processor. Since 
p - 1 processors on the diagonal must be traversed, we find that the time 
required to activate the (p, p) processor is bounded below by 

S,=(p-l)(m’+l)D. (4.1) 
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On the other hand, it is easily seen that the scheduling algorithm requires 
time 

(p - l)(m2+ m)D. (4.2) 

to activate the (p, p) processor. The ratio of (4.2) to the lower bound (4.1) is 

1+’ 
m 

I+-$’ 
(4.3) 

which attains its maximum of 1.2 for m = 2,3. Thus as far as the first 
desideratum is concerned, the scheduling algorithm is nearly optimal. 

Although we have constructed our scheduling algorithm so that the second 
desideratum is satisfied, we have yet to take into account work done on 
“false” vertices. We begin our investigations by computing how much work 
must be done on the (p, p) processor when the original Cholesky algorithm is 
executed. It is easiest here to think in terms of block eliminations. We 
distinguish three sources of work. 

(1) Consider the block (r, s) in processor (p, p). If this block is on or 
above the main diagonal of the matrix, then it must be eliminated by the 
rp - 1 blocks above it, each of which generates m”D work. If the block is 
below the main diagonal, then there are sp - 1 such block eliminations. 
Summing over all blocks in the processor gives a total of 

1c tt 

m3D 2 C (min{r,s}p-1). 
r=l s=l 

(4.4) 

(2) Each of the off-diagonal blocks must eliminate itself at a cost of 
nz”(m + 1)0/2 units of work. Hence the contribution from this source is 

m”(m+l) 

2 
D(w2- w). (4.5) 

(3) Each of the w diagonal blocks must eliminate itself, for a cost of 

m( m + l)(Z?n + 1) 
Dw. 

6 (4.6) 
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Summing (4.4)-(4.6), we get a lower bound for the time required by the 
( p, p) processor, independent of scheduling algorithm: 

m3w 3p I m3w “p m3wp 
T,= - - - 

3+2+6 

rn’w’ m3w m2w2 
_--- - 

2 6 + 2 
+y D. 1 (4.7) 

Now consider the work done by the (p, p) processor when the additional 
vertices are included. The work represented by (4.4) is unaffected. However, 
the factor m2(m + 1)/2 in (4.5) must be replaced by m3, and the factor 
m( m + 1)(2m + 1)/6 in (4.6) by m3. This gives an excess work of 

m3w( w - 1) 2m3w 

2 + 3 
- D + O(m2w2). 1 (4.8) 

Comparing (4.8) with (4.7) we see that if w increases as n increases, the 
amomlt of extra work becomes asymptotically negligible. However, when w is 
fixed, so that m increases linearly with n, (4.8) approaches a fixed proportion 
of (4.7) which can be quite large. For example, when w = p = 1, the ratio of 
(4.7)+(4.8) to (4.7) approaches three; in other words, if we wait for false 
vertices, our scheduling algorithm takes three times longer than it needs to. 
However, this ratio drops sharply with increasing p or w. For example, if 
p = 1 and w = 5, the ratio is 1.32. For p = 5 and w = 1, it is 1.15. Moreover, 
if we run the scheduling algorithm on the original graph with data-flow 
synchronization rather than lockstep, the ratios will be even lower, since the 
processor time devoted to false vertices can now be used profitably on real 
ones. 

To recapitulate, we have computed a lower bound (4.7) on the execution 
time by computing how much work the (p, p) processor must do [the 
activation time (4.1) is asymptotically negligible]. Moreover, except for small 
p and w, this bound is nearly attained by our scheduling algorithm. Encour- 
aged by this result, we now proceed to compute lower bounds on the 
interprocessor communication time in much the same way. 

We shall assume that the times required for internal sends and receives are 
included in the node execution time D. Let R be the additional time 
required to receive a message coming from another processor. Then the time 
spent by the (p, p) processor receiving external messages may be counted as 
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above: 

(1) Consider the block (r, s). Each block elimination requires 2m2 num- 
bers from other processors. Therefore, the total amount of input needed for 
the eliminations in (4.4) is 

2m2 jJ $j (min{r,s} p-l) 
r=l s=l 

(4.9) 

(2) Each of the off-diagonal blocks must eliminate itself, which requires 
nl( m + 1)0/2 units of input. Hence the contribution from this source is 

rn(;+l) (w”- w). (4.10) 

Summing (4.9)-(4.10) and multiplying by R, we get a lower bound for the 
time taken by interprocessor receptions: 

3m2w2 
+ m2w2p - - 

2 

m2wp m2w 2 

--- 

+ 3 2 
+f--y R* 1 (4.11) 

Although the time for the sends is computed in the same way, the 
argument is more tedious and the formulas more complicated, since nodes on 
the boundary of the network do not pass on information. However, as p and 
w increase, they approach the number of receives. Hence we shall take (4.11) 
as characterizing the interprocessor communication time. 

It is instructive to examine how the bounds behave as n becomes large. 
First taking w = 1 (pure blocking) and making the substitution m = n/p, we 
get the following asymptotic expressions: 

T,,q3 b-t- D, 
[ 1 P2 3P3 

TR=n2 z--f- R. 

[ 1 P P2 
(4.12) 

On the other hand, if we take m = 1 (pure wrapping), we get 

n3 2n3 
To = y-/A TR = ,R. 

3P 
(4.13) 
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From this we see that when we pass from pure blocking to pure wrapping, we 
decrease the computation time at the cost of increasing the communication 
time. In principle one could use the lower bound to determine approximate 
break-even points. However, it must be kept in mind that if n B p, then the 
algorithm given here is not the best. For pure blocking, a better algorithm 
would be one that treats the blocks as units, thus reducing internal communi- 
cation among the nodes. Here the above analysis holds when D is reinterpre- 
ted as the cost of one update of one matrix element and does not include the 
overhead of internal transmission. For pure torus wrap a better algorithm 
would be one that recognizes that information passing through a processor 
will be used by the same processor later. The redundant sends and receives 
can be eliminated, and we refer to this as the compact algorithm. The 
analysis of such algorithms is similar to the above analysis, and equally 
tedious. The results are presented in Table 1. 

Linear Arrays of Processors 
The techniques in this case are analogous to the one for square grids of 

processors, and we shall only sketch the development. Assume that we have P 
processors, and let w and m be integers such that n = wmP. We partition 
the matrix into blocks of m columns and assign them sequentially to the 
processors, wrapping them around to the beginning w times. 

There is a nearly optimal scheduling algorithm for the linear array that is 
analogous to the one for the square grid. Groups of P waves are sent through 
the processors. As one group falls off the end of the matrix, the next starts in 
the appropriate place. The algorithm requires few false vertices to keep the 
Pth processor busy. Hence we shall not greatly underestimate the running 
time for this array by counting the time required by the Pth processor. 

To calculate this work, consider the rPth block of m columns. For 
j = l,..., m the (rP - 1)m + j column must be eliminated by all the preced- 
ing columns and by itself. The cost of being eliminated by the Zth column is 
(n - I + l)D. Hence the total amount of work done by the Pth processor is 

m3w3P2 m3w2P2 m3w2P 
=~+------- 

3 4 4 

m3wP 2 m3wP m3w m2w2P 
_~ + -- -+- 

12 4 6 2 
(4.14) 
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The extra time for receptions for the Pth processor may be calculated by 
dropping the self-elimination terms in the summation on 2 in (4.14) and 
dropping the summation on j. This gives 

m2w3P 2 m2w2P2 m2w2P m2wP 2 
=p+ ___--- 

3 4 2 12 

m2wP m2w mw2P mwP mw 
-_- - 

+ 2 2 + 4 +4-- 2 * 
(4.15) 

Again it is instructive to consider the extreme cases. If we take w = 1, 
then we get the following asymptotic expressions: 

If we take m = 1, then we get the following expressions: 

T,= $3, 
n3 

TR = iFR* 

(4.16) 

(4.17) 

Again we find a tradeoff between computation and communication. However, 
the same caveat applies in interpreting these bounds as interpreting the 
bounds for the grid of processors: when n X= P the compact algorithm is 
better than the one analyzed in this section. 

We summarize these scheduling results in Table 1, which presents the 
computation and communication costs for the scheduling algorithms pre- 
sented in this section. These results are expressed in terms of the blocksize m, 
the number of torus wraps w, and the number of processors p or P. In Table 
2, we compute the leading-order terms of these costs for some example 
configurations: n or 6 processors with the matrix either fully blocked 
(w = 1) or fully wrapped (m = 1). For n processors and for 6 processors, 
the best of these algorithms is full wrapping on a square grid. 
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TABLE 2 
NUMBER OF SEQUENTIAL COMPUTES AND RECEIVES 

FOR VARIOUS ALGORITHMS WITH A 

FIXED NUMBER OF PROCESSORS” 

n processors 
Square grid, full blocking 
Square grid, full wrapping 
Linear array 

\r n processors 
Square grid, full blocking 
Square grid, full wrapping 

Linear array, full blocking 

Linear array, full wrapping 

“Leading term only. 

ln2 2 n312 2 n3j2 
in2 !n” 1 n3/2 

in” in” in” 

1 n512 2 n7j4 2 n7j4 
I 5/2 
3n 

$ n5/2 1 n7j4 
i n5/2 in” in” 
j n5/2 in5/2 in” 
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