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Systolic Arrays for Matrix Transpose and Other Reorderings
DIANNE P. O’LEARY

Abstract—In this correspondence, a systolic array is described for
computing the transpose of an n X » matrix in time 3n — 1 using n?
switching processors and n? bit buffers. A one-dimensional implementa-
tion is also described. Arrays are also given to take a matrix in by rows
and put it out by diagonals, and vice versa.

Index Terms—Matrix transpose, parallel computation, systolic array.

[. INTRODUCTION

The task of computing the transpose of a matrix arises in many
matrix algorithms, for example, in computing congruence transfor-
mations B = UAUT and in computing a step of the QR algorithm for
finding eigenvalues of a matrix.

Systolic arrays, introduced by Kung and Leiserson [4], are a very
popular implement for parallel matrix computation. However, there
seems to be no consensus on the best way to transpose a matrix for
use in a systolic array algorithm. For example, Bojanczyk, Brent, and
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Fig. 1. Four systolic array elements. The outputs and new state definitions

for the last one are indicated in the table.

Kung [2] suggest using ‘‘a buffer that supports fast two-dimensional
addressing,”” and the speed of their algorithm depends critically on
the speed of this hardware. Ullman [5] discusses a systolic algorithm
of Atallah and Kosaraju [1] which transposes a matrix in place.

We present in this paper a rather simple systolic array which puts
out the transpose of a matrix. The matrix is pumped in systolically,
rather than being preloaded as in the above two methods. We also
present two modifications of this array; one takes a matrix in by rows
and puts it out by diagonals and the other reverses this process. A
one-dimensional version of the matrix transpose array is also given.
Alternate designs for the diagonal-to-row and rew-to-diagonal
conversions are given by Ipsen [3] who also presents an algorithm for
transposition of a matrix in diagonal format.

To keep diagrams uncluttered, we adopt the convention that
unlabeled inputs and outputs are either indeterminate or of no
interest. The definitions of the four building blocks of the arrays are
given in Fig. 1. The circles represent buffers which cause the control
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matrix col 1 matrix col 2 matrix col 3 TIME 1 I T

Ay N N N
I T | ] [
A3 CER .
o T I T
Input:  last first + . I T
[« 0 ... 01 _
A ain . . . a2 aj LOo—v -1—> —| —»O—v —
Fig. 2. A two-dimensional systolic array for matrix transpose (n = 3). ar2
N —
bits to travel at the proper velocity. They take a single bit as input and a T L
give a single bit as output. The squares are very simple switching LN O o LN W _’QH L,
processors. The first receives as input a control bit ¢ from the left,
and possible matrix elements x from the left and y from below. If ¢ is (b) a2 R N
zero, then x is sent to the right and y is sent up. If ¢ is one, then y is po
sent to the right and x is sent up. The second square is similar to the T [
first but has an extra single bit input and output called 7. The third is a LOO_. BN _,O_, s
variant of this switch which includes one bit s of memory. Its ;
operation is defined by the accompanying table in Fig. 1. 2 —
II. THE SYSTOLIC ARRAY FOR MATRIX TRANSPOSITION : T T
The architecture for the first systolic array is shown in Fig. 2 for
the case n = 3. The matrix is fed into the array from the left, one row TIME 3 s
per row of processors. A control bit sequence is also fed from the left o I T
in each row of processors; a 1 is sent one time unit before the IR o_.O_‘_. _*Q_, —
beginning of the row, and n — 1 0’s follow. (The first column of bit . s o
buffers can be eliminated; then the control bit 1 would be synchro- —
nized with the beginning of the row, and one time unit would be a3 I I
saved.) ‘ 0 0 1
The transpose of the matrix exits from the top, one column per — —'O—" -—’Q—-’ —
column of processors. A simulation for the 3 X 3 case in which all () a2 a2
rows are started simultaneously is given in Fig. 3. Element (i, j) ” —
enters the array at time j and exits at time 2j + i — 1, giving a total T T
time of 3n — 1 for transposing a matrix of size n X #. 0 0 1
Elements in a given column come out at consecutive times, just as O O
they were loaded. The array still works if later rows are loaded a3 332 L,
delayed relative to earlier ones, as long as the earlier sequences of 3
control signals are padded by extra zeroes. T
The array can be modified in case the elements in each row are not
available at consecutive time units. For example, if elements are TIVE 3
loaded as (7, 1), *, *, (i, 2), *, *, -+ - (i, n) where * represents an Tagn Tan T
indeterminate, then each bit buffer should be replaced by three such 0 0 1
buffers. —*O"—’ _'Q_* "’O"’
III. A ONE-DIMENSIONAL IMPLEMENTATION OF THE TRANSPOSITION L ) —
ARRAY 1‘ Tan 1‘
The array discussed in the previous section can be easily modified _,( ) , O_,Q_o_, 1_,@__, —
to use # processors and 7 bit buffers, but then the time is increased to
n? + n, and elements in a given column exit at intervals of time 7. @ N @, L
The array is shown in Fig. 4 for the case n = 3. The processors are I Tas T
the same as before, although the switching processor can be 0 0 1
simplified since the y input is always indeterminate. The matrix is —»O——» —oO——» ——»O—» —
entered by rows (1, 1), (1,2), - -+, (1, n), 2, 1), 2, 2), - -, (2, n), a3
s, (n, 1), (n, 2), -+, (n, n), and, as before, the control signal is 0 ‘ —
except at the beginning of a row. A simulation of the array is given in T I
Fig. 5. Element (/, j ) enters the array at time (; — 1)n + j and exits j
time units later, for a total time of n2 + n. Fig. 3. Transpose of a 3 X 3 matrix using the two-dimensional array.
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]‘ T Fig. 4. A one-dimensional systolic array for matrix transpose (n = 3).
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Fig. 3. (Continued). Fig. 5. Transpose of a 3 X 3 matrix using the one-dimensional array.
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Fig. 5. (Continued).
) Do Dy D3
1 1 I
O PO O~
Dy A -
4
-0 (O (O
b, _A
O O SO b
—
—Az =
T
INPUT: last first
c 0 0 1
Ai: ain . a2 ajy
output: D; = i-th diagonal

Fig. 6. An array for cOnvertihg from row ordering to diagonal ordering

(n = 3).
IV. IN BY Rows, OUT BY DIAGONALS |
We present in this section two other arrays which modify the ‘..O;. .

orderings of the matrix elements. The first; shown in Fig. 6, consists D2 N

of n? processors plus bit buffers. It takes a matrix in by rows and puts T i

it out by diagonals. We use the notation Dy to denote the kth ¢ O g _.
diagonal, consisting of those elements a;; for which j — i = k. The D R I
operation takes time 47 — 1 if all rows are started simultaneously, At o A2 A3
and elements oh a given diagonal are put out at intervals of four time c‘*O‘* L0 _j T -
units. The operation of the array is similar to the examples above, so 55 |
a simulation is omitted. ' ‘ :

_ The second array of n? processors plus bit buffers, shown in Fig. 0 I C - N
7, transforms a matrix from diagonal ordering to row ordering. The ‘QT

time is 2n, dgain assuming that all diagonals are started simultane- ' : -
ously. Here, thé array must be primed with zero control signals c T =

before the matrix input is begun, and the processors are slightly more -
complicated than in the arrays above. The center row of switches

perform one of three routings instead of only two; and the processors

below pass an extra control signal. (See Fig. 1.) A simulation of the gjg 7. An array for converting from diagonal ordering to row ordering
array is given in Fig. 8. (n = 3; notation as in Fig. 6).
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Exact Product Form Solution for Queueing Networks with
Blocking

I. F. AKYILDIZ

Abstract—This work investigates closed queueing networks with
blocking composed of two stations with multiple servers. Blocking occurs
when a job wanting to enter a full station is forced to remain in its source
station, thus blocking the source station until room is available at the
destination station. This type of blocking is known as classical blocking.
We show that, for a two-station closed qileueing network with blocking,
there exists an equivalent nonblocking network with the same state space
structure. Utilizing this concept, we demonstrate that two-station closed
queueing networks with blocking have product form solutions.

Index Terms—Blocking, equilibrium state probabilities, normalization
constant, performance analysis, performance measures, queueing net-
works, state space transformations.

1. INTRODUCTION

The basic results of product form networks are given in Baskett,
Chandy, Muntz and Palacios [4]. They show that queueing networks
with different classes of jobs, exponential and nonexponential service
time distributions, and different queueing disciplines (FCFS, RR-PS
or LCFS-PR) have product form solution. This was a remarkable
result for the queueing network theory. The term ‘‘product form™’
means that the equilibrium state probabilities can be expressed as a
product of terms for each queue in the network. The product form
networks, also known as BCMP or separable networks, are based on
the assumption that all stations have infinite capacities. If the stations
have finite capacity, blocking can occur in the network. Since
blocking causes interdependencies between stations, blocking queue-
ing networks cannot be analyzed by existing product form al-
gorithms.

Formally we distinguish between three types of blocking: classi-
cal, rejection, and service blocking.

In the first case, blocking occurs when a job completing service at
station i cannot proceed to station j because station j is full. The job is
forced to wait in the station i’s server until it is allowed to enter the
destination station j. The station i’s server stops processing until
station j releases a job [1], [2], [11], [13], [15], [20]. In the second
case, blocking occurs when a job completing service at station /
attempts to join destination station j. If station j is full at that moment,
the job is refused. The rejected job goes with a certain probability
(called rejection probability) back to the station i’s server and
receives a new service. This is repeated until some job completes a
service at station j and a place becomes available [3], [9], [16], [22].
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In the third case, blocking occurs when a job in front of queue at
station 7 declares its destination station j before it starts its service in
station /’s server. If the destination station j is full, the ith server
becomes blocked, i.e., it cannot serve jobs. When a departure occurs
from destination station j, the ith server becomes unblocked and the
job begins receiving service [5], [8], [10], [19].

In recent years there has been a growing interest in the develop-
ment of computational methods to analyze queueing networks with
blocking. The interest developed primarily from the realization that
these models are useful in the study of subsystem behavior in
computers and communication networks, in addition to providing
detailed descriptions of several computer-related applications such as
flexible manufacturing systems.

Several investigators in recent years have published results on
queueing networks with classical, rejection and service blocking. A
bibliography concerning queueing network models with blocking is
given by Perros [14]. Formal comparisons between the distinct
classes of blocking have been carried out by Onvural and Perros [12].

In this paper we introduce the state space transformation concept
which provides exact results for two-station closed queueing net-
works with classical blocking.

II. PRODUCT FORM SOLUTION

We will consider closed queueing networks with N = 2 stations
and K single-class jobs. Each station consists of a single queue served
by (m; = 1), servers each with exponentially distributed service time
with mean value 1/y; (for i = 1, 2). The service discipline in each
station is first-come, first-served. Each station has a fixed finite
capacity M; where M; = (queue capacity + my;), (for i = 1, 2).
Cases in which the stations can have infinite capacity are also
allowed. Any station whose capacity exceeds the total number of jobs
in the network can be considered to have infinite capacity. It is
obvious that the total number of jobs X must be smaller than the sum
of the station capacities, that is,

A job which is serviced by the ith station proceeds to the jth station
with probability p;;, (for i, j = 1, 2), if the jth station is not full. That
is, if the number of jobs in the jth station £; is less or equal to M; for
i,j = 1, 2. Otherwise, the job is blocked in the ith station until a job
in the jth station has completed its servicing and a place becomes
available. Note that the case | = j is allowed. A station can have a
transition back to itself, which will be shown by an example in
Section IV. The queueing network with the above assumptions is
known as the network with classical blocking which we will
investigate in this work.

As is generally known, the following binomial coefficient formula
is valid for closed queueing networks without station capacity limits.
It indicates the number of possible ways that K jobs can be distributed

into N stations.
N+K-1
Z= < N-1 > @

where Z is the total number of states in a closed queueing network.
For queueing networks with two stations (1) is simplified to

Z=K+1. )]

Structure for the state space of the two-station network is
illustrated in Fig. 1.

The state (k, n) denotes that & jobs are in the first station and 7 jobs
are in the second station. The transition rates from one state to
another are equal to the service rates x; muitiplied by the number of
servers m; in each station. Fig. 1 shows that there must be at least (K
— m;) waiting places in each queue (m; jobs can be in service) to
ensure that all states are feasible. Since each station in the network
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