
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 1, JANUARY 1987 117

[10] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. C output: c
Bassous, and A. R. LeBlanc, "Design of ion-implanted MOSFETs
with very small physical dimensions," IEEE J. Solid-State Circuits,
vol. SC-9, pp. 256-268, Oct. 1984.

[11] G. Bilardi, M. Pracchi, and F. P. Preparata, "A critique of network (a) output: if c then x else y
speed in VLSI models of computation," IEEE J. Solid-State Circuits,
vol. SC-17, pp. 696-702, Aug. 1982.

[12] J. D. Ullman, Computational Aspects of VLSI. Rockville, MD:
Computer Science, 1984. c output: c

[13] C. A. Mead and L. Conway, Introduction to VLSI Systems.
Reading, MA: Addison-Wesley, 1980.

[14] F. P. Preparata, "A mesh-connected area-time optimal VLSI multiplier
of large integers," IEEE Trans. Comput., vol. C-32, pp. 194-198,
Feb. 1983. x output: if c then y else x

[15] F. T. Leighton, "Complexity issues in VLSI: Optical layouts for the
shuffle-exchange graph and other networks," Ph.D. dissertation, Dep.
Math., Massachusetts Inst. Technol., Cambridge, MA, Sept. 1981. f

[16] F. P. Preparata and J. Vuillemin, "Area-time optimal VLSI networks
for computing integer multiplication and discrete Fourier transform," Y
in Proc. I.C.A.L.P., Haifa, Israel, July 1981, pp. 29-40. (b)

[17] G. Bilardi and M. Saccafzadeh, "Optimal discrete Fourier transform in
VLSI," in VLSI: Algorithms and Architect., Proc. of the Int.

o

i
c

Workshop Parallel Comput. VLSI, Amalfi, Italy, 1985, pp. 78-89. r output: if c then x else y
[18] P. Duris, 0. Sykora, C. D. Thompson, and G. Vrto, "On the area

required for selection, discrete Fourier transformation and Walsh-
Hadamard transformation," to be published. coutput: C

[19] B. A. Bowen and W. R. Brown, VLSI Systems Design for Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1982, pp.
280-281.

[20] H. C. Card, W. Pries, and R. D. McLeod, "Contributions to VLSI
computational complexity theory from bounds on current density,"
Integration, vol. 4, pp. 175-183, 1986. x output: if c then y else x

[21] R. W. Keyes, "Physical limits in digital electronics," Proc. IEEE, 1

vol. 63, pp. 740-767, May 1975.
[22] B. Chazelle and L. Monier, "A model of computation for VLSI with

related complexity results," J. Ass. Comput. Mach., vol. 32, pp.
573-588, July 1985. (C)

[23] D. Kleitman, F. T. Leighton, M. Lepley, and G. L. Miller, "An (c)
asymptotically optimal layout for the shuffle-exchange graph," J.
Comput. Syst. Sci., vol. 6, pp. 339-361, June 1983.

[24] A. Aggarwal, "On I/O placement in VLSI," in Proc. 21st Ann. z
Allerton Conf. Commun., Contr., Comput., Monticello, IL, Oct. a
1983, pp. 236-243. s_r____

[25] G. Bilardi and F. P. Preparata, "A minimum area VLSI network for C

O(log N) time sorting," IEEE Trans. Conmput., vol. C-34, pp. 336- X
343, Apr. 1985. crs sab

0 ? 0Qy x

Systolic Arrays for Matrix Transpose and Other Reorderings 0 0 1 z x

DIANNE P. O'LEARY

Abstract-In this correspondence, a systolic array is described for
computing the transpose of an n x n matrix in time 3n - 1 using n2
switching processors and n2 bit buffers. A one-dimensional implementa- r Y

tion is also described. Arrays are also given to take a matrix in by rows (d)
and put it out by diagonals, and vice versa. Fig. 1. Four systolic array elements. The outputs and new state definitions

for the last one are indicated in the table.

Index Terms-Matrix transpose, parallel computation, systolic array.
Kung [21 suggest using "a buffer that supports fast two-dimen-sional
addressing," and the speed of their algorithm depends critically on

the speed of this hardware. Ullman [5] discusses a systolic algorithm
The task of computing the transpose of a matrix arises in many of Atallah and Kosaraju [1] which transposes a matrix in place.

matrix algorithms, for example, in computing congruence transfor- We present in this paper a. rather simple systolic array which puts
mations B = UA UT and in computing a step of the QR algorithm for out the transpose of a matrix. The matrix is pumped in systolically,
finding eigenvalues of a matrix, rather than being preloaded as in the above two methods. We also

Systolic arrays, introduced by Kung and Leiserson [4], are a very present two modifications of this array; one takes a matrix in by rows
popular implement for parallel matrix computation. However, there and puts it out by diagonals and the other revgrses thais process. A
seems to be no consensus on the best way to transpose a matrix for one-dimensional version of the matrix transpose arr.ay is also given.
use in asystolic array algorithm. For example, Bojanezyk, Brent, and Alternate designs for the diagonal-to-row and row-to-diagonal

conversions are given by Ipsen [3] who also presents an algorithm for

Manuscript received April 5, 1985. This work was supported by the Air trnPosto famti in digoafrmt
Force Office of Scientific Research under Grant AFOSR-82-0078. To keep diagrams uncluttered, we adopt the convention that
The author is with the Department of Computer Science, University of unlabeled inputs and outputs are either indeterminate or of no

Maryland; College Park, MD 20742. interest. The definitions of thle four building blocks of the arrays are
IEEE Log Number 8611264. given in Fig. I. The circles represent buffers which cause the control

0018-9340/87/0100-01 17$01 .00 © 1987 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

1 8 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 1, JANUARY 1987

matrix col 1 matrix col 2 matrix col 3 TIME 1

C~~~~~~~~~~~~~~~~~~~~~~~~~~

Al2

Input: last .. first TIM 2

c: 0 0 1

A2
0 0~~~~~~~~~~~0

A: a a2 a10C

Fig. 2. A two-dimensional systolic array for matrix transpose (n 3). a12

bits to travel at the proper velocity. They take a single bit as input and
give a single bit as output. The squares are very simple switching 0 o.'- 0

processors. The first receives as input a control bit c from the left, CKJ
and possible matrix elements x from the left and y from below. If c is (b) a22 - -
zero, then x is sent to the right and y is sent up. If c is one, then y is i
sent to the right and x is sent up. The second square is similar to the 1 1
first but has an extra single bit input and output called r. The third is a 0 0
variant of this switch which includes one bit s of memory. Its
operation is defined by the accompanying table in Fig. 1. a32 __l _| __

II. THE SYSTOLIC ARRAY FOR MATRIX TRANSPOSITION

The architecture for the first systolic array is shown in Fig. 2 for
the case n = 3. The matrix is fed into the array from the left, one row TIME 3

a

per row of processors. A control bit sequence is also fed from the left t2t
in each row of processors; a 1 is sent one time unit before the 0°
beginning of the row, and n - 1 O's follow. (The first column of bit v /
buffers can be eliminated; then the control bit 1 would be synchro- - - ,_
nized with the beginning of the row, and one time unit would be a3t
saved.) 0~~ 0
The transpose of the matrix exits from the top, one column per -Q-

column of processors. A simulation for the 3 x 3 case in which all (c) a23 a22
rows are started simultaneously is given in Fig. 3. Element (i, j) -_ ______
enters the array at time j and exits at time 2j + i - 1, giving a total
time of 3n - 1 for transposing a matrix of size n x n. °o

Elements in a given column come out at consecutive times, just as
they were loaded. The array still works if later rows are loaded a33 a32 /
delayed relative to earlier ones, as long as the earlier sequences of
control signals are padded by extra zeroes.
The array can be modified in case the elements :in each row are not

available at consecutive time units. For example, if elements are
loaded as (i, 1), *, *, (i, 2), *, *, * * (i, n) where * represents an L a3l a12
indeterminate, then each bit buffer should be replaced by three such CC
buffers. _+0

a13
III. A ONE-DIMENSIONAL IMPLEMENTATION OF THE TRANSPOSITION I I 'I

ARRAY t a22 t
The array discussed in the previous section can be easily modified 0°(>

to use n processors and n bit buffers, but then the time is increased to (d) a23 - - _
~2 + n, and elements in a given column exit at intervals of time n. (), 2
The array is shown in Fig. 4 for the case n = 3. The processors are a32' 1
the same as before, although the switching processor can be 0 0
simplified since the y input is always indeterminate. The matrix is 0 ° -
entered by rows (1, 1), (1,2), * * *, (1, n), (2, 1), (2, 2), * , (2, ni), 3

* , (n, 1), (n, 2), * ., (n, n), and, as before, the control signal is 0

except at the beginning of a row. A simulation of the array is given inTTT
Fig. 5. Element (i, j) enters the array at time (i - 1)n + j and exits]j
time units later, for a total time of fl2 + fl. Fig. 3. Transpose of a 3 x 3 matrix using the two-dimensional array.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 1, JANUARY 1987 119

rTIME S | a22 matrix col 1 matrix col 2 matrix col 3

DI 0 _
(___* *-

a32

0 1

(e)) (3 0 e
a23 input: last .. .f irst

c 0 ... 01 . 0 1 01

-*0 -*0~~~~~014Q
a33 A: n ... a2 ani .. a2 ...a22 a2l ai t.2 a|I all

Fig. 4. A one-dimensional sstolic array for matrix transpose (n 3).

TIME 68IM

a32 a13
0 01-*0 -*0__(`0-*10

-- ~~~~~~~~all
a23

|,L S-=;+ ~~~~~~~~~~TIME 2

1i. all0 0~~~~~~~~
_+

a23~~~~~~1

a33

0~~~~

0 0 0

-j ~~a22

00a3

0 .0 0~~~1 0 1

- --4 ~~~~a23 a12

TIME

Fi..Cotiue).Fg.5.Trnsos o a3x mtrx sig heoe-imnsonl rry

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

120 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 1, JANUARY 1987

|TIME 7 | TIME 8|

~~-iI1 W c<ojJ :a22 1.l
0 1 ~~~~00 1 0 0 0 0

- a3j a23 a32 a23

jTIME 11 |TIME 12
a23a3

0 0 1 0 D 1 0 0

O"~~~~O" ..0

a33 a32 . a

a33
0 0 0

__40 0 ~ _________0 ___ a3J+ _+

Fig. 5. (Continued).

-0 Q

_0-4 -4

D.1 Al-4~~~~-
-4~~~~~~~~~~-

INPUT: last in first

C:..0 0 1

Ai: ain ai2 ail

OUTPUt: Di = i-th diagonal

Fig. 6. An array for c'onverting from row ordering to diagonal ordering
(n = 3).

IV. IN By Rows, OUT By DIAOSONALS

We present in this section two other arrays which modify theC
order'ings of the miatrix elemTents. The first, shown in Fig. 6, consists2
of n2 processors plus bit buffers. It takes a matrix in by rows and puts
itou y diagonals. We use, the notation D odnoetekh 0-

diagonal, consisting of those elements aij for which j - i = k. The Di -
operatioh takes time 4n - 1 if all rows are started simultaneously, A1 A2 A3
and elements on a given diagonal are put out at intervals of four time c -4Qz -
units. The operation of the array iS similar to the examples above, so D
a simulation iS Omitted... .___

The second array of n2 processors plus bit buffers, shown in Fig.oTtc _r m_ -
7, transforms a matrix from diagonal ordering to row ordering. TheD
time is 2n, again assuming that all diagonals are started simultane-
ously. Here, thb array mus!t be primed with zero control, signals_JI
before the matrixc input is begun, and the processors are slightly more ~
complicated than in the arrays above. The center row of switches D-2
perform one of three routings instead of only two, and the processors T
below pass an extra control signal. (See Fig. 1-) A simulation of the Fig. 7. An array for converting from diagonalt ordering to row ordering
array is given in Fig. 8. (ii = 3; notation as in Fig. 6).

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 1, JANUARY 1987 121

| TIME 1 | X~~~~~~~~~TIE 2

a13
a13

a12 a23

a12 all

00? 2+Q~~~~0 0 1 Q0

0 0
411~~~82 a32

1213

oT -oL T ,_0

T0 0 0

a3

(a) t(b)

|TIME 3 ||TIME 4

4D~~-

- 0 Q1 -40=

a13 812 a21 a13 a23 a22 a31
0 0 0
0 D'

0 1 .

1(e-*) 0f

833 822 a 33

0 ~~~~a3l 0 0 a32

0 T~~~ 1 0'T 0
832

-40 0~~- -

(c)(d

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

122 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 1, JANUARY 1987

REFERENCES In the third case, blocking occurs when a job in front of queue at
M.J.Atlu"Graph problems on a mesh- station i declares its destination station j before it starts its service in[1] M. J. Atallah and S. R. Kotsaraju, "rp rbeso eh station i's server. If the destination station j is full, the ith serverconnected processor array," in Proc. 14th Ann. A5CM Symp. Theoy becomes blocked, i.e., it cannot serve jobs. When a departure occurs

Comput., 1982, pp. 345-353.
[2] A. Bojanczyk, R. Brent, and H. T. Kung, "Numerically stable solution from destination station j, the ith server becomes unblocked and the

of dense systems of linear equations using mesh-connected proces- job begins receiving service [5], [8], [10], [19].
sors," SIAMJ. Sci. Stat. Comput., vol. 5, pp. 95-104, 1984. In recent years there has been a growing interest in the develop-

[3] C. F. Ilse Ipsen, "Stable matrix computations in VLSI," Ph.D. ment of computational methods to analyze queueing networks with
dissertation, Dep. Comput. Sci., Pennsylvania State Univ., University blocking. The interest developed primarily from the realization that
Park, PA, Tech. Rep. CS-83-17, 1983. these models are useful in the study of subsystem behavior in

[4] H. T. Kung and C. E. Leiserson, "Systolic arrays (for VLSI)," in computers and communication networks, in addition to providing
Sparse Matrix Proceedings 1978, I. S. Duff and G. W. Stewart,-.Sase Mhilatrlphix ,Proceedis 1,pp.25.6Duff,and7. W. Stewart, detailed descriptions of several computer-related applications such asEds. Philadelphia, PA: SIAM, pp. 256-282, 1979.

[5] J. D. Uliman, Computational Aspects of VLSI. Rockville, MD: flexible manufacturing systems.
Computer Science, 1984. Several investigators in recent years have published results on

queueing networks with classical, rejection and service blocking. A
bibliography concerning queueing network models with blocking is
given by Perros [14]. Formal comparisons between the distinct

Exact Product Form Solution for Queueing Networks with classes of blocking have been carried out by Onvural and Perros [12].
Blocking In this paper we introduce the state space transformation concept

which provides exact results for two-station closed queueing net-
1. F. AKYILDIZ works with classical blocking.

Abstract-This work investigates closed queueing networks with
blocking composed of two stations with multiple seryers. Blocking occurs II. PRODUCT FORM SOLUTION
when a job wanting to enter a full station is forced to remain in its source We will consider closed queueing networks with N 2 stations
station, thus blocking the source station until room is available at the and K single-class jobs. Each station consists of a single queue served
destination station. This type of blocking is known as classical blocking. by (mi 2 1), servers each with exponentially distributed service time
We show that, for a two-station closed queueing network with blocking, with mean value l/,it (for i = 1, 2). The service discipline in each
there exists an equivalent nonblocking network with the same state space station is first-come, first-served. Each station has a fixed finite
structure. Utilizing this concept, we demonstrate that two-station closed capacity Mi where M' = (queue capacity + mi), (for i = 1, 2).
queueing networks with blocking have product form solutions. Cases in which the stations can have infinite capacity are also

allowed. Any station whose capacity exceeds the total number ofjobs
Index Terms-Blocking, equilibrium state probabilities, normalization in the network can be considered to have infinite capacity. It is

constant, performance analysis, performance measures, queueing net- obvious that the total number of jobs K must be smaller than the sum
works, state space transformations. of the station capacities, that is,

I. INTRODUCTION 2

The basic results of product form networks are given in Baskett, K< E Mi.
Chandy, Muntz and Palacios [4]. They show that queueing networks i=l
with different classes of jobs, exponential and nonexponential service
time distributions, and different queueing disciplines (FCFS RR-PS with probability pi, (for i, j = 1, 2), if the jth station is not full. That
or LCFS-PR) have product form solution. This was a remarkable J'is if the number ofjobs in the jth station kj is less or equal to Mj for
result for the queueing network theory. The term "product form" = 1, 2. Otherwise, the job is blocked in the ith station until a job
means that the equilibrium state probabilities can be expressed as a
product of terms for each queue in the network. The product form in the jth station has completed its servicing and a place becomes

available. Note that the case i = jis allowed. A station can have a
networks, also known as BCMP or separable networks, are based on transition b t i w. . ', ~~~transition back to itself, which will be shown by an example in
the assumption that all stations have infinite capacities. If the stations S.. , , ,. S~~~~ection IV. The queueing network with the above assumptions is
have finite capacity, blocking can occur in the network. Since
blocking causes interdependencies between stations, blocking queue- inest thinwork.
ing networks cannot be analyzed 'by existing product form al- inetgt nti ok

gingntwoks. cannot be analyzed by existing product form al- As is generally known, the following binomial coefficient formula
gorithms. is valid for closed queueing networks without station capacity limits.

Formally we distinguish between three types of blocking: classi- It indicates the number of possible ways that Kjobs can be distributed
cal, rejection, and service blocking. into N stations.

In the first case, blocking occurs when a job completing service at
station i cannot proceed to station j because station j is full. The job is N+K-I
forced to wait in the station i's server until it is allowed to enter the
destination station j. The station i's server stops processing until
station j releases a job [1], [2], [11], [13], [15], [20]. In the second where Z is the total number of states in a closed queueing network.
case, blocking occurs when a job completing service at station i For queueing networks with two stations (1) is simplified to
attempts to join destination station]j. If station]j is full at that moment,
the job is refused. The rejected job goes with a certain probability Z=K+ 1. (2)
(called rejection probability) back to the station i 's server and
receives a new service. This is repeated until some job completes a Structure for the state space of the two-station network is
service at station]j and a place becomes available [3], [9], [16], [22]. illustrated in Fig. 1.

The state (k, n) denotes that kjobs are in the first station and n jobs
are in the second station. The transition rates from one state to

Manuscript received May 13, 1985; revised September 11, 1985. another are equal to the service rates ,u, multiplied by the number of
The author iS with the Department of Computer Science, Louisiana State sresi1i ahsain i.1sosta hr utb tlat(

University, Baton Rouge, LA 70803. serinr) waitn plceneach queuen (in, job canha hremsbein sevie)sto(
IEEE Log Number 8611265. fatngpae neasile Sine eachjostcatinbein thervne)twr

ensure that all states arefesbeSiceahttonntentwr

0018-9340/87/0100-0122$01.00 ©C 1987 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2020 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

