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CONSTRAINED MATRIX SYLVESTER EQUATIONS*
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Dedicated to Gene Golub on the occasion of his 60th birthday, with
gratitude for his tradition of fruitful research in linear algebra, in-
spired by applications.

Abstract. The problem of finding matrices L and T satisfying TA- FT LC and TB 0 is
considered. Existence conditions for the solution are established and an algorithm for computing the
solution is derived. Conditions under which the matrix [CT, TT] is full rank are also discussed. The
problem arises in control theory in the design of reduced-order observers that achieve loop transfer
recovery.
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1. Introduction. In this paper we consider the following problem: Let n, m,
and p be given integers. Given A E nx,, B Tnxp, C ,mxn, and F
(n--m)x(n--m) find L 7(n-m)xm and T Tt(n-m)xn such that

(1) TA- FT LC,

(2) TB-O,

Sylvester [10] considered the homogeneous version of (1)in an 1884 paper. For
this, reason, (1) is often called a matrix Sylvester equation. Liapunov considered (1)
with AT F and LC I in an 1892 monograph [6].

The constrained Sylvester problem (1), (2), and (3) arises in control theory, in
the design of reduced-order observers that achieve precise loop transfer recovery [11],
[7]. Here, the state model of the system is

and the observer z E ,/(n-m)xl

5c= Ax + Bu,
y Cx,

satisfies

Fz + (TB)u + Ly.

Tsui [11] has shown that the constrained Sylvester problem is the relevant one to
consider in the design of L and T.
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In 2 we discuss existence and uniqueness of solutions to matrix Sylvester equa-
tions. The section following that concerns existence and uniqueness of solutions to the
constrained Sylvester problem (1) and (2). The computational algorithm developed
in that section is summarized in 4. In 5 we consider conditions under which that
algorithm produces a solution to the full problem (1), (2), and (3).

2. Existence of solutions to matrix Liapunov equations. It is well known
that a matrix Liapunov equation

TA- BT C

has a unique solution T for every choice of C if and only if ,4 E :Rn n and B E Tmm
have no common eigenvalues. In this section we briefly review this result and related
results for the case of common eigenvalues. Our purpose is merely to establish enough
notation to discuss conditions under which the full rank condition (3) is violated.
Therefore, to simplify the discussion, we consider only the case in which 4 and B
each have a complete set of eigenvectors. The general case is studied using the Jordan
canonical forms of these matrices (see, for example, [4, Chap. 8]) but leads to the
same conclusions.

Let the eigendecomposition of A be ,4 UtDAUt1, where DA is diagonal with
elements cu, j 1, n. Similarly, let B UDU1, where D is diagonal with
elements i, 1,..., m.

Then TA- BT C is equivalent to

UITfl[UA U ]TUA al,vA

or, with definitions d UICUA and UITUA,

Writing this equation componentwise, we obtain

(4) (aj i){ij ij, 1, m, j 1, n.

This leads to the standard result that there is a unique solution (and therefore a
unique T) for every choice of if and only if aj i # 0 for all values of and j.

If any aj I 0, then there is no solution to (4) if IJ # O, and an infinite
number of solutions if dIJ 0, since {IJ is then arbitrary. Since T Ut3Ufi. 1,
each arbitrary component of contributes a term IgUlVY to T, where ux is the Ith
column of U and vy is the Jth row of U1.

In the problem of interest, the matrix C is LC, where L is to be determined, so
it is sometimes possible to produce a solution to the Liapunov equation even if there
are common eigenvalues.

Later we will be interested in conditions that ensure that a matrix related to
and be full column rank. Suppose there exists a nonzero vector u such that
and Cu 0. (This is equivalent to saying that the control system is not observable.)
If A is a simple eigenvalue of ,4, then a column of and the corresponding column of

will be zero. If A is a multiple eigenvalue, then all columns of C may be nonzero,
but there will be linear dependence among columns of corresponding to eigenvectors
of that eigenvalue. In this case, the corresponding columns of T will have the same
linear dependence, since the values aj in (4) are all equal.
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3. Development of an algorithm for the constrained problem. We ex-
amine the question of existence and uniqueness of the solution to (1) and (2), and we
develop an algorithm for determining the solution if it exists.

Note that there are (n- m)p equations in (2) and (n- m)n equations in (1).
There are (n- m)n unknowns in T and (n- m)m unknowns in L, so there are more

equations than unknowns if m < p.
We may assume that B has full column rank; if not, throwing away the redundant

columns does not change the problem. Therefore, the number of rows n in B must
be greater than the number of columns p; otherwise, the only solution to TB 0
is T 0. (This is an explanation of the fact that loop transfer recovery cannot be
accomplished if the circuit is broken at an "output point.")

Therefore, we may assume that n > p and rank(B)= p.
We can eliminate the constraint TB 0 by using the QR factorization of B to

define an unconstrained matrix Z. To do this, factor B as

where S E PP is full rank and W E Tn is an orthogonal matrix: wTw I. If
we partition W into its first p columns W1 and its remaining n-p columns W2, we
have

Since the columns of W2 form a basis for the orthogonal complement of the subspace
spanned by the columns of W1, and since TWS 0 if and only if TW 0, we know
that

(6) T ZWf
for some matrix Z (n-m) (n-p).

Substituting this in the Sylvester equation (1) and multiplying on the right by
the nonsingular matrix W, we obtain

zw2TA[w, W2]- Fzw2T[w, W2] LC[WI, W2].

This yields the two relations

(7) ZA. FZ LC2,

(8) ZA LC,

where A WTAW Tt(’-p)p, A. WTAW2 Tt(’-p)(’-p), C1 CW1
7"P, and C2 CW2 Tt" (’-P).

We now consider two cases, based on the relation between p, the number of
controls, and rn, the number of observed variables. We assume in both cases that C1
is full rank.



4 J.B. BARLOW, M. M. MONAHEMI, AND D. P. O’LEARY

3.1. Case I: p > m. As noted above, in this situation, there are more equations
than unknowns, and in general, no solution exists.

The RQ factorization of the m p matrix C1 is

C,= [/,0] [Q* ]Q2

where QI Tmxp, Q2 T(p-m)xp, mm, and/ has rank m.
Now (8) gives us the relation

ZAQT LCQT [L/, 0],

or, letting AIQT G [G1, G2],

ZG L, ZG2 O.

Using this formula in (7), we obtain

ZA2 FZ ZG-IC2,
or

(9) ZG2 =0,

(10) Z(A2 G_ft-C2) FZ O.

We now have a problem in exactly the same form as the original equations (2) and (1),
except that the Sylvester equation (10) is homogeneous. Further reduction proceeds
exactly as above in order to find a change of variables that produces an unconstrained
Sylvester equation. However, unless A2- G-C2 and F have at least one common
eigenvalue, the only solution to (10) is Z 0.

We will not consider this case further.

3.2. Case Ih p <_ m. Consider a QR factorization of the m p matrix C1 as

where Q x, Q. x(-p),/ pxp, and/ has rank p.
Now let

L
where e (-m)xp and T(-)x(m-p). Prom (8), we have that

ZA1 LC1

so

Using this formula in (7), and letting

ElQTc2 E2
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we obtain

ZA2-FZ [L1,L2]QTC2 [ZAI-I,L2] E2

or

(11) Z(A2 AI-E) FZ ]2E2.

We have succeeded in reducing the original constrained Sylvester problem (2) and (1)
to an unconstrained one through the change of variables T ZW2T. The (n-m)(m-
p) entries of ]-2 are free parameters. For each choice of ]-2, (11) has a unique solution,
as long as the matrices A2 A-EI and F have no common eigenvalues.
Section 2 discusses the existence of the solution in the case of common eigenvalues.

Note. If C fails to have full rank, then we have

where Q E T"r, Q2 E T"(’-r),/ T,/5 T(p-), and/ has rank r. A
derivation following the steps above leads to the Sylvester equation (11) but with the
side constraint

where A denotes the first r columns of A and A12 denotes the remaining columns.
Thus we reduced the problem to a smaller constrained Sylvester equation of the same
form as the original, and the process needs to be repeated. [:1

4. The resulting algorithm. The following algorithm computes a solution to
the constrained Sylvester problem (1) and (2).

(12) TA- FT LC,
(13) TB O,

under the assumptions that n > rn > p, rank(CB) p, and (redundantly) rank(B)
p.

Step 1. Factor B into its QR factors

where S ")PP is full rank and W 7nn is an orthogonal matrix:
wTw I. Partition W into its first p columns W and its remaining
n p columns W2.
Step 2. Set A1 W2TAW T(n-p)p, A2 W2TAW2 Tt(n-p)(n-p)

C CW Tt"p, and C2 CW2 ’(-P).
Step 3. Perform a QR factorization of the rn p matrix C1 as
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where Q1 E Tmxp, Q2 7mx(m-P), .[::l 7pxp, and/ has rank p.

Step 4. Let

QTc2 E2

where E1 7px(n-p) and E2 T(m-p)x(n-p).

Step 5. Solve the Sylvester matrix equation Z(A2 Al-lE1)
FZ 2E2, where the entries of 2 are chosen randomly.
Step 6. Set L1 ZAI-1 nnd L [L1,L2]QT.
Step 7. Set T ZW.

The software tasks needed to implement the algorithm are matrix multiplication,
the QR factorization [3], and an Mgorithm for solving unconstrained Sylvester prob-
lems [1], [5]. The highest-order terms in the operation counts are cubic in n, m, and p,
with constants depending on the specific choice of software. There is substantial po-
tential parallelism in the computation, since there are well-known parallel algorithms
for each of these basic tasks; see, for example, [9], [8], and the references therein.

For examples of applications of this algorithm to loop transfer recovery, see [7].
5. Necessary conditions and sufficient conditions for solutions to the

full problem. In this section we develop some conditions that are necessary in order
to obtain a solution T to the problem (1), (2), and (3). For ease of reference, we
define

where T (n-m)xn and C mxn.
Recall that we already assumed, without loss of generality, that n > p and

rank(B) p. We will consider the case p < m, since the other case has a solu-
tion only under accidental conditions. We also restrict ourselves to the case in which
F has no eigenvalues in common with the matrix A A-E1 of (11). Under
these circumstances, (1) and (2) always have a solution, and the only issue is the rank
ofT.

Recall that W and Q are n n orthogonal matrices. We note that T is full rank
if and only if the matrices

and

QC E 0
E1
E

are full rank, and it is sometimes easier to work with these.
NECESSARY AND SUFFICIENT CONDITION 1. For T to be full rank, it is necessary

and su]ficient that QT C1 (or, equivalently, CI) and [ZT, ET2 be full rank.
Our goal is to express such conditions more obviously in terms of the data matrices

A, B, C, and F.
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NECESSARY CONDITION 1. The matrix C must have full rank m.
Proof. If aTc 0 for some nonzero a, then [0T, aT]T 0 and T is not full

rank.
NECESSARY CONDITION 2. The system A, B, C must be regular [2, p. 661], i.e.,

the matrix CB must have full rank p.
Note. This condition is also necessary and sufficient for the existence of a full

rank triangular factor/ for C1.
Proof. Recall from (5) that the first p columns of W span the range of B. For

TW to be full rank, it is necessary that C1 have full column rank p. Now, C
CW CBS-1, so it is necessary that CB be full rank.

NECESSARY CONDITION 3. The system must be observable, i.e., the only vector
y satisfying Ay #y and Cy 0 must be the vector y O.

Note. If we add the assumption that A and F have no common eigenvalues, then
this result is easy to prove. Suppose there is a nonzero y satisfying Ay #y and
Cy O. Then, since TA- FT LC,

TAy- FTy (#I- F)Ty LCy O,

so Ty 0. This fact, along with Cy 0, implies that :r is rank deficient. If we avoid
this extra assumption on the eigenvalues of A and F, then the outline of the proof is
similar, but it must be done in terms of the reduced Sylvester equation (11).

Proof. Suppose there is a nonzero y satisfying Ay #y and Cy O, and let

WTy--[ yl]Y2
so that y- Wy + W2y2. Then

Ay A(WIy + W2y2) #(Wy + W2y2).

Multiplying by W2T and using the definitions following (8), we obtain

W2TAWyl + w2TAW2Y2 Ay + A2y2 #y2.

Now, Y2 is an eigenvector of , since

(14) fye (A2 At-QTCW2)y.
A(u + -IQcw.u:). A(u + -QC(u- Wl)). A(u + -QrCu -QCWu)

PY2,

since Cy 0 and CWI Q, so QTI CW [. Further,

E: Qcwu. Qc(u- w) QcwI 0,

since QCW1 O.
Consider the reduced Sylvester equation (11) Z-FZ ]-2E2, and multiply by

y2:

Ziy2 FZy2 #Zy2 FZy2 (#I- F)Zy2 ]-2E2y2 0,
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so, since # is not an eigenvalue of F, we must have Zy2 O.
We have a vector Y2 that satisfies E2Y2 0 and Zy2 O, so QT/W is rank

deficient. Thus, observability is necessary for a full rank T. 0
These necessary conditions are not sufficient, as shown by the following example.
Example. Let

A= 0 1 1 B= C= 0 0 1-1 0 -2 1

It is easy to see that C, B, and CB are all full rank. The eigenvectors of A are the
columns of the matrix

0 1.0000 1.0000
1 -0.0819 0.4523
0 0.4343 -0.7676

so the system is observable. We calculate

[1 01E2=[ 1 0 ], = 0-3

so in using the decompositions in 2 to solve the reduced Sylvester equation of Step
5 we obtain

=[ 0].

Since this matrix has a zero column regardless of the choice of ]-2, the solution matrix
will as well, and we will have a rank deficient T.

NECESSARY CONDITION 4. The reduced system must be observable, i.e., the only
vector y satisfying fiy #y and E2y 0 must be the vector y O.

Proof. The proof of this result, motivated by the example above, follows from the
discussion at the end of 2.

If Necessary Conditions 1-4 are satisfied, then we conjecture that there exists
a choice of the matrices 2 and F so that the algorithm yields a solution to the
constrained Sylvester problem (1), (2) satisfying the full rank condition (3). The
first two necessary conditions guarantee the existence of full rank triangular factors
for B in Step 1 and C1 in Step 3. Some freedom in the choice of F is needed so
that its eigenvalues are distinct from those of ., guaranteeing the existence of
solution of the reduced Sylvester equation in Step 5. The remaininfl freedom in F,
the other two necessary conditions, and freedom in the choice of L2 in Step 5 can
be used in satisfying the condition that [ZT, ET2] be full rank. In practice, of course,
the eigenvalues of any given matrix F will virtually always be distinct from those
of A, and thus the algorithm will successfully compute a solution to the constrained
problem, although it may not be possible to satisfy the full rank condition.

See [7] for numerical computations using this algorithm in control design of
flexible arm, helicopter flight, and aircraft flight dynamics.

Acknowledgments. We are grateful to the referees for their helpful comments.
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