

JOURNAL OF COMPUTATIONAL PHYSICS142,163–181 (1998)
ARTICLE NO. CP985939

Efficient Iterative Solution
of the Three-Dimensional

Helmholtz Equation

Howard C. Elman1 and Dianne P. O’Leary2

Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland,
College Park, Maryland 20742

E-mail: elman@cs.umd.edu and oleary@cs.umd.edu

Received August 19, 1997; revised January 27, 1998

We examine preconditioners for the discrete indefinite Helmholtz equation on a
three-dimensional box-shaped domain with Sommerfeld-like boundary conditions.
The preconditioners are of two types. The first is derived by discretization of a related
continuous operator that differs from the original only in its boundary conditions. The
second is derived by a block Toeplitz approximation to the descretized problem. The
resulting preconditioning matrices allow the use of fast transform methods and differ
from the discrete Helmholtz operator by an operator of low rank. We present exper-
imental results demonstrating that when these methods are combined with Krylov
subspace iteration, convergence rates depend only mildly on both the wave number
and discretization mesh size. In addition, the methods display high efficiencies in an
implementation on an IBM SP-2 parallel computer.c© 1998 Academic Press

1. INTRODUCTION

The problem considered in this paper is to compute the numerical solution of the
Helmholtz equation

−1u− k2u = f. (1)

This equation arises in numerous physical applications [9, pp. 640ff]. Here we consider
a three-dimensional box-shaped domainÄ = (a1, b1) × (a2, b2) × (a3, b3) ⊂ <3, with

1 This work was supported by the U.S. Office of Naval Research under Grant N000149510338 and by the U.S.
National Science Foundation under Grant DMS-9423133.

2 This work was supported by the U.S. Office of Naval Research under Grant N000149510338 and by a General
Research Board Grant from the Office of Graduate Studies and Research of the University of Maryland.

163

0021-9991/98 $25.00
Copyright c© 1998 by Academic Press

All rights of reproduction in any form reserved.

164 ELMAN AND O’LEARY

Sommerfeld-like boundary conditions

un − iku = 0 (2)

on ∂Ä, which constitute an approximation to the Sommerfeld radiation condition

lim
r→∞ r (un − iku) = 0, (3)

used in models of acoustic scattering [17].
Discretization of the problem (1)–(2) results in a linear system of equations

Au= f. (4)

Since the problem is fully three-dimensional, any reasonable discretization will contain
a large number of unknowns and require considerable storage. Direct methods based on
Gaussian elimination with partial pivoting require a prohibitive amount of additional stor-
age and thus have limited use. Multilevel methods suffer from the requirement that coarse
spaces used must be fine enough to accurately represent the solution; see e.g., [5, 7, 19,
20, 21]. In addition, the complex symmetric coefficient matrixA typically has eigenval-
ues with both positive and negative real parts. This can cause difficulties for iterative
solution methods, and preconditioning of the matrix is essential in order to attain effi-
ciency.

In this paper, we propose solving the discrete Helmholtz equation using Krylov subspace
iterative methods with a preconditioning methodology derived from fast direct methods.
The basic principle behind fast direct solvers is to apply an inexpensive transformation
to break a problem into a number of lower-dimensional but independent problems. Many
solvers use fast Fourier transforms (FFTs) to achieve separation of variables and then solve
the resulting set of decoupled problems using sparse matrix methods. Fast direct methods
are standard tools for solving the Poisson equation on regular domains with Dirichlet,
Neumann, or periodic boundary conditions [6]; they can be adapted to other domains
via a capacitance matrix or embedding methods [14, 24]. They have been used for the
three-dimensional Helmholtz equation with Dirichlet or Neumann boundary conditions on
an irregular domain [23], and for the two-dimensional problem in polar coordinates with
nonreflecting boundary conditions [18] (derived from a Dirichlet-to-Neumann mapping)
in [11, 15]. In this work, we develop efficient solvers for problems with Sommerfeld-like
boundary conditions on box-shaped domains. Combining our techniques with capacitance
matrix methods would produce solvers for general geometries in Cartesian coordinates,
including exterior problems.

Our idea generalizes some results developed for two-dimensional Helmholtz problems
by Ernst and Golub [12]. (See also [8, Sec. 4] for variants applied to definite elliptic
problems.) We approximate the discrete operatorA with a matrix Q that can be treated
with fast direct methods. For finite difference discretizations, we deriveQ by defining and
discretizing the differential operator in the same way as forA except that the boundary
conditions on either two or four faces ofÄ are replaced by more convenient ones (Dirichlet
or Neumann). The resulting matrixQ differs from A by a (relatively) low-rank operator
and can be used as a preconditioner forA, to accelerate the convergence of iterative solvers

ITERATIVE SOLUTION OF THE HELMHOLTZ EQUATION 165

based on Krylov subspaces. We also develop variants of these ideas for finite element dis-
cretizations (on uniform grids), focusing on trilinear elements. Here, rather than explicitly
modifying the boundary conditions to constructQ, we use the fact that the discrete oper-
ator A is close to a block Toeplitz matrix and replace certain sub-blocks ofA by Toeplitz
approximations that are amenable to fast transforms. For both types of discretizations,
we will demonstrate empirically thatQ meets the requirements for an effective precondi-
tioner:

• Applying the action ofQ−1 to a vector is not too expensive. For our preconditioners,
using Q−1 entails a set of FFTs together with solution of smaller dimensional problems
(see Section 2).
• Q greatly reduces the number of iterations needed by Krylov subspace methods to

solve (4).

In particular, we will show that for several choices ofQ, the experimental convergence
behavior of preconditioned restarted GMRES [25] depends only mildly on both the wave
numberk and the discretization mesh size. In addition, we will demonstrate how the methods
can be implemented on a parallel computer with high efficiency.

The paper is organized as follows. In Section 2, we show how fast transform methods
can be used to generate preconditioning operators for finite difference discretizations of
the Helmholtz equation and we develop variants applicable to low-order finite element
discretizations, using trilinear elements as a specific example. In Section 3, we present
the results of a series of numerical experiments demonstrating the performance of the
preconditioners. In most cases, there is virtually no increase in iteration counts as the
mesh size is refined for fixed wave numbers; especially for finite differences, there is
only slight dependence on the wave numbers. In addition, we show that the new methods
are more effective than a standard algebraic preconditioner based on symmetric succes-
sive overrelaxation (SSOR) [30]. In Section 4, we show how the methods can be imple-
mented on parallel computers, and we demonstrate their parallel efficiency using experi-
ments on a sixteen processor IBM SP-2. Finally, in Section 5, we make some concluding
remarks.

2. THE PRECONDITIONERS

Good preconditioners for Krylov subspace iterations can be determined in two ways:

• preconditioners derived from operators related to the desired operator.
• preconditioners derived from matrices related to the desired matrix.

We will use both approaches in our work. For simplicity, we restrict our attention to
Ä = (0, 1)3, the unit box.

2.1.Preconditioners for Finite Difference Discretizations.Given positive integersmx,

my, andmz, let problem (1)–(2) be discretized by the seven-point (second order accu-
rate) finite difference operator on a uniform mesh with cells of sizehx × hy× hz, where
hx = 1/(mx + 1), hy= 1/(my + 1), hz= 1/(mz + 1). Assume that the normal derivatives
in the boundary conditions are approximated by one-sided differences and that the discrete
boundary conditions are used to eliminate all unknowns on∂Ä. The resulting “stencil” at
interior grid points is

166 ELMAN AND O’LEARY

wherecx = 1/h2
x, cy = 1/h2

y, cz = 1/h2
z, andd = 2(cx+cy+cz)−k2. The figure depicts

the contributions to the stencil in a givenx-y plane together with the contributions in the
two neighboringx-y planes in thez-direction. For points adjacent to thex boundaries, the
value

γx ≡ cx(1+ ikhx)

1+ k2h2
x

is subtracted from the center value of the stencil, and similarly for they andz boundaries.
If the matrix problem is formed by ordering the unknowns by lines within thex-y planes,

the resulting matrixA is block tridiagonal and can be written in tensor product form as

A = Imz ⊗ Imy ⊗ T (x)
mx
+ Imz ⊗ T (y)

my
⊗ Imx + T (z)

mz
⊗ Imy ⊗ Imx − k2Imxmymz.

Here,Im denotes the identity matrix of sizem, and

T (x)
mx
= Tmx + γx Emx

has sizemx with

Tmx = cx

2 −1
−1 2 −1

· · ·
· · ·
−1 2 −1
−1 2

, Emx =

1
0
·
·

0
1

.

The matricesT (y)
my

andT (z)
mz

are defined analogously. (See for example, [29, Sec. 4.5] for the
one- and two-dimensional versions of these statements.)

It was shown by Ernst and Golub [12] that for the Helmholtz equation on a two-
dimensional rectangular domain, an effective preconditioner can be devised by replacing
Sommerfeld-like boundary conditions on two opposite edges by Dirichlet or Neumann con-
ditions. Let us extend this idea to three-dimensional problems. If we replace the boundary
conditions (2) atx= 0 andx= 1 by homogeneous Dirichlet conditionsu= 0, then the
problem is separable in thex-direction. Discretization yields a matrix

Qd = Imzmy ⊗ Tmx + P ⊗ Imx , (5)

ITERATIVE SOLUTION OF THE HELMHOLTZ EQUATION 167

where

P = Imz ⊗ T
(my)
y + T (mz)

z ⊗ Imy − k2Imzmy .

The eigenvectors ofTmx are the columns of the orthogonal matrixUs corresponding to
a discrete sine series representation. Therefore, the productv=U T

s w can be formed by
computing the discrete Fourier sine transform of the vectorw, andw = Usv is the inverse
transform of the vectorv. If Dd is the diagonal matrix of eigenvalues ofTmx , thenQd can
be represented as

Qd =
(
Imzmy ⊗Us

)(
Imzmy ⊗ Dd + P ⊗ Imx

)(
Imzmy ⊗U T

s

)
. (6)

Reordering the rows and columns of the matrixImzmy⊗Dd+ P⊗ Imx in (6) by lines within
eachy-zplane yields a matrixP containingmx diagonal blocks, each with the same nonzero
structure as a five-point finite difference discretization of a two-dimensional problem.

Using Qd as a preconditioner entails applying the action ofQ−1
d to a vectorv at each

step of an iterative algorithm. The discussion above shows that this computation can be
performed in the following sequence of steps:

(1) Performmxmy sine transform operations in thex coordinate directions to compute
v1 = (Imzmy ⊗U T

s)v.
(2) Solvemx two-dimensional problems, one in eachy-z plane, to computev2.
(3) Performmxmy inverse sine transform operations in thex coordinate directions to

computew = (Imzmy ⊗Us)v2.

The solution of the two-dimensional problems required in Step (2) can be done using
a variety of techniques, including general sparse direct methods [10], band solvers, and
domain decomposition.

Consider a variant of this preconditioner, derived using Dirichlet boundary conditions
at two pairs of opposite faces of∂Ä: x= 0, 1 andy= 0, 1. The resulting preconditioning
matrix is

Qdd = Imz ⊗ Imy ⊗ Tmx + Imz ⊗ Tmy ⊗ Imx + T (z)
mz
⊗ Imy ⊗ Imx − k2Imxmymz. (7)

A set of sine transforms in thex-direction still decouples the problem intomx two-
dimensional subproblems as in (6), but now if this is followed by a set of sine transforms
in they-direction, the result ismxmy independent one-dimensional (tridiagonal) problems.
Step (2) of the computation of the action ofQ−1

dd then has the following form:

(2a) Performmzmx sine transform operations in they coordinate directions.
(2b) Solvemxmy tridiagonal systems in thez coordinate directions.
(2c) Performmzmx inverse sine transform operations in they coordinate directions.

We will consider four preconditioning operators of this type:

• Qd derived from Dirichlet boundary conditions atx = 0, 1.
• Qdd derived from Dirichlet boundary conditions atx = 0, 1 y = 0, 1.
• Qn derived from homogeneous Neumann boundary conditions atx = 0, 1. The

fast solver here involves discrete cosine transforms and solution ofmx two-dimensional
problems.

168 ELMAN AND O’LEARY

• Qnn derived from homogeneous Neumann boundary conditions atx= 0, 1, y= 0, 1.
The fast solver involves discrete cosine transforms in two directions plus solution ofmxmy

one-dimensional (tridiagonal) problems.

If mx andmy are powers of two, then the time required to computeQ−1
ddv or Q−1

nnv is
proportional tomxmymz(logmx+ logmy+1). ForQ−1

d v or Q−1
n v, the time is proportional

to mxmymz logmx plus the time to solve the two-dimensional problems.
Clearly, it is possible to derive other variants of these ideas based on other boundary

conditions. As long as the Sommerfeld-like boundary conditions are retained in at least one
coordinate direction, the preconditioning operators that use any combination of Dirichlet
and Neumann boundary conditions are all nonsingular for any value ofk.

2.2.Preconditioners for a Finite Element Discretization.The weak formulation of the
Helmholtz equation (1)–(2) is to findu∈S such that

a(u, v) = (f, v) for all v ∈ S,

where

a(u, v) =
∫
Ä

(∇u · ∇v̄ − k2uv̄)− ik
∫
∂Ä

uv̄

(8)

(f, v) =
∫
Ä

f v̄

andS is an appropriate Sobolev space (often,H1(Ä)), depending onf . Note that the
boundary conditions (2) are explicitly incorporated into the weak form.

LetSh denote the finite dimensional subspace ofS determined from continuous piecewise
trilinear basis functions on rectangular elements. The discrete weak form is to finduh ∈ Sh

such that

a(uh, v) = (f, v) for all v ∈ Sh.

Assuming uniform cells of sizeh × h × h and using a natural ordering of unknowns, the
resulting coefficient matrixA again has block tridiagonal structure. (Different values of
h can be used in each coordinate direction; we restrict our attention to cubic cells only to
simplify the notation.) We describe it using its stencil at interior mesh points, which consists
of the contribution from the stiffness matrix (from (∇u · ∇v)),

together with the contribution from the mass matrix (fromk2(u, v)),

ITERATIVE SOLUTION OF THE HELMHOLTZ EQUATION 169

For the mesh points on the boundary, fewer elements contribute to the stiffness and mass
matrices and the stencils are somewhat different. We omit a detailed description but observe
that contributions from the boundary integral in (8) are pure imaginary since the basis
functions are real. The matrixA has sizem3 where nowh= 1/(m− 1). (This is slightly
different from the relation between mesh size and number of grid points for finite differences,
because here the unknowns on the boundary are included in the system.)

To develop preconditioners, one alternative is to simply use the matrices derived above for
finite differences. That is, given a finite element grid withm3 unknowns, letQd, Qdd, Qn,
andQnn be the preconditioning matrices of the same size defined in Subsection 2.1.

An alternative and somewhat more successful approach is to derive preconditioners with
tensor product and Toeplitz structure that match the finite element matrix except at the
boundary. First, we recall that the sine transform diagonalizes matrices of the form

Sα,β ≡ α I + β

0 1
1 0 1
· · ·
· · ·

1 0 1
1 0

, (9)

whereα andβ are arbitrary scalars [29, Theorem 4.5.2].
Second, we observe that the finite element matrix is close to a matrix with tensor product

structure. The contribution of the mass matrix can be expressed ash3k2/216 times

−S4,1⊗ S4,1⊗ S4,1+ Bm,

whereBm is nonzero only in rows corresponding to boundary points. Similarly, the stiffness
matrix ish/12 times

−S0,1⊗ S2,1⊗ S2,1+ 4S0,1⊗ I ⊗ I − I ⊗ S0,1⊗ S0,2+ 32 I ⊗ I ⊗ I + Bs,

whereBs is nonzero only in rows corresponding to boundary points.
Let us define a matrix̂Qdd that matches the finite element matrix in all rows except those

corresponding to thex andy boundaries; in those rows, we simply neglect the contributions
from Bm and Bs. The resulting preconditioner differs from the finite element matrix by a
matrix of rank 4(m2−m). Since we have omitted the nonzeros inBm andBs corresponding
to thex andy boundaries, and since each of the other matrices in the tensor product repre-
sentation is diagonalized by the matrixUs corresponding to the discrete sine transformation,

we have an easy way to form the productQ̂
−1
ddv:

170 ELMAN AND O’LEARY

(1) Performm2 sine transform operations in thex coordinate directions to compute
v1 = (Im2 ⊗U T

s)v.
(2) Solvem two-dimensional problems, one in eachy-z plane, to computev2:

(3a) Performm2 sine transform operations.
(3b) Solvem2 tridiagonal systems.
(3c) Performm2 inverse sine transform operations

(3) Performm2 inverse sine transform operations in thex coordinate directions to
computew= (Im2 ⊗Us)v2.

A preconditionerQ̂nn can be defined in an analogous way, by changing the rows cor-
responding to thex and y boundaries in a way so that the discrete cosine transformation
diagonalizes the resulting matrices in the tensor product formulation. Since the cosine
transformation diagonalizes matrices of the form

Cα,β ≡ α I + β

1 1
1 0 1
· · ·
· · ·

1 0 1
1 1

,

we chooseα and β in the same way as forSα,β in order to match the interior stencil
coordinates. The resulting preconditioner differs fromA in the same rows asQnn.

Remark2.1. It is also possible to define matricesQ̂d andQ̂n that matchA except in
rows corresponding to just one opposite pair of boundaries, as in the development ofQd and
Qn above. Because these types of preconditioners were more costly for the finite difference
examples (see Section 4), we did not implement these variants.

3. EXPERIMENTAL RESULTS

In this section, we present the results of numerical experiments in which the precondition-
ers described in Section 2 are used with the iterative method GMRES (20) [25] to solve the
discrete Helmholtz equation. Our concern here is the effect of mesh size and wave number
on performance. Additional results showing behavior on a parallel computer are given in
Section 4. In all tests, the linear system (4) is defined by choosing a discrete solutionu, and
the right hand side is then computed asf = Au. We consider two discrete solutions:

(1) a vector with real and imaginary parts consisting of uniformly distributed random
numbers in the interval [−1, 1];

(2) a smooth vector whose value at the mesh point with index(j, k, l) is 10gjkl− ig jkl ,
wheregjkl = 10,000j + 100k+ l .

The first case is designed to show the behavior for problems with non-smooth solutions,
and the second case for problems with smooth solutions.

The iterative solver is used with right-oriented preconditioning; that is, GMRES is for-
mally applied to the preconditioned system

AQ−1û = f, u = Q−1û.

ITERATIVE SOLUTION OF THE HELMHOLTZ EQUATION 171

TABLE 1

Iteration Counts for GMRES (20) with Preconditioners That Combine One-Dimensional

Transforms with Two-Dimensional Sparse Direct Solves: Finite Differences with Non-

Smooth Solution

Qd (sine+ 2D solves) Qn (cosine+ 2D solves)
m m

k 20 40 60 80 k 20 40 60 80

1 11 11 12 — 1 4 3 2 —

5 9 10 11 — 5 7 6 5 —

10 9 11 11 — 10 10 8 8 —

20 12 12 12 — 20 15 14 12 —

30 13 14 14 — 30 20 18 18 —

40 12 18 17 — 40 31 21 20 —

50 16 19 24 — 50 44 26 27 —

This ensures that the norm minimized by GMRES is independent of the choice of the
preconditioner. The iteration is stopped when

‖r j ‖2
‖ f ‖2 < 10−5,

wherer j = f−Auj is the residual for the iterateu j , u0≡ 0, and the norm is the usual
vector Euclidean norm. All computations with these preconditioners were performed on
multiprocessors of an IBM SP-2 computer in double precision. (See Section 4 for details.)

We use a set of uniform three-dimensional grids of sizem×m×m for 20≤ m ≤ 80,
together with a variety of wave numbersk. For anyk, accurate discrete solutions of (1)
will be obtained only if the mesh is fine enough to resolve the features of the problem.
A commonly used criterion is for the mesh to include at least ten grid points per wave,
i.e., to requirek ≤ 2π/(10h). See [16] for rigorous justification of this criterion for one-
dimensional problems, instead of the more stringent requirement thatk3h2 be bounded. In
the tabulated data shown below, results for problems with at least ten grid points per wave
lie above the jagged line; data lying below these lines are included only to show trends and
do not correspond to physically meaningful computations. Dashed lines (–) correspond to
problems that are too large for practical computation on this configuration.

Tables 1 and 2 show results for non-smooth problems and finite difference discretizations.
Table 1 shows that iteration counts required by GMRES (20) with the preconditioners that
entail a set of trigonometric transforms together with direct solution of two-dimensional
subproblems. The entries on the left are for the preconditionerQd, which uses sine trans-
forms, and the entries on the right are forQn, which uses cosine transforms. We will refer
to these here as the “two-dimensional” solvers. Table 2 shows analogous results forQdd

andQnn, where the two-dimensional subproblems are also treated using fast transforms; we
will refer to these (less costly) preconditioners as the “one-dimensional” solvers. Table 3
shows analogous results for smooth problems. For the sake of brevity, here we only discuss
the one-dimensional preconditionersQdd andQnn.

The following trends are evident in these tables:

172 ELMAN AND O’LEARY

TABLE 2

Iteration Counts for GMRES (20) with Preconditioners That Combine Two Sets of One-

Dimensional Transforms with One-Dimensional Tridiagonal Solves: Finite Difference with

Non-Smooth Solution

Qdd (sine+ 1D solves) Qnn (cosine+ 1D solves)
m m

k 20 40 60 80 k 20 40 60 80

1 14 15 13 12 1 5 4 3 3

5 12 13 14 14 5 10 9 8 8

10 13 14 15 15 10 19 17 16 15

20 20 25 21 21 20 50 41 38 35

30 36 30 29 28 30 87 76 77 69

40 34 53 47 45 40 133 96 106 95

50 46 76 69 69 50 264 142 174 165

(1) For non-smooth problems, iteration counts are insensitive to mesh size. Indeed, the
counts often decrease ash decreases. Performance is much better than would be expected
from the rank(m2−m) of the difference betweenA and the preconditionerQ.

(2) Iteration counts for the methods based on the sine transform increase very modestly
with the wave numberk; counts for the cosine transform are more sensitive tok but they
are smaller whenk is small.

(3) Fewer iterations are required with two-dimensional solvers (for which the bound-
ary conditions determiningQ are more like those determiningA) than with the one-
dimensional solvers. As we will see in Section 4, however, this is at the expense of significant
extra work.

(4) The counts for smooth problems are somewhat higher than in the non-smooth case.
The qualitative dependence of performance on wave number is largely the same, as is the

TABLE 3

Iteration Counts for GMRES (20) with Preconditioners That Combine Two Sets of One-

Dimensional Transforms with One-Dimensional Tridiagonal Solves: Finite Differences with

Smooth Solution

Qdd (sine+ 1D solves) Qnn (cosine+ 1D solves)
m m

k 20 40 60 80 k 20 40 60 80

1 16 23 36 42 1 6 6 6 6

5 13 18 23 30 5 11 11 11 11

10 14 20 26 30 10 17 18 19 18

20 18 22 28 32 20 51 57 57 58

30 26 37 36 40 30 78 94 101 101

40 29 55 55 53 40 101 118 135 137

50 24 75 69 81 50 155 171 196 206

ITERATIVE SOLUTION OF THE HELMHOLTZ EQUATION 173

TABLE 4

Iteration Counts for GMRES (20) with Preconditioners That Combine One-Dimensional

Transforms with Two-Dimensional Sparse Direct Solves: Trilinear Finite Elements with Non-

Smooth Solution

Qd (sine+ 2D solves) Qn (cosine+ 2D solves)
m m

k 20 40 60 80 k 20 40 60 80

1 24 25 26 — 1 23 22 22 —

5 32 29 28 — 5 32 30 29 —

10 48 37 34 — 10 51 41 39 —

20 87 65 58 — 20 85 67 59 —

30 300∗ 85 79 — 30 300∗ 104 89 —

40 300∗ 146 89 — 40 300∗ 245 127 —

50 300∗ 300∗ 158 — 50 300∗ 300∗ 300∗ —

dependence on mesh size, except in the case of small wave numbers with sine transforms;
here the iteration counts appear to grow roughly linearly withh−1.

Tables 4–6 show the iteration counts for the trilinear finite element discretization. Here we
useQ̂dd andQ̂nn for the one-dimensional solvers; these were more effective than the variants
Qdd andQnn. Numbers with an asterisk correspond to the maximum number of iterations
permitted. Many of the trends are the same as for finite differences: iteration counts for non-
smooth problems are essentially independent of the mesh size; the sine-based methods are
generally more effective than the cosine-based methods; and, for smooth problems, costs
and dependence of the sine-based method on mesh size are somewhat greater. The sensitiv-
ity to wave number is somewhat more pronounced than for finite differences, although for
the larger values ofk considered, the iteration counts decrease as the mesh is refined. This

TABLE 5

Iteration Counts for GMRES (20) with Preconditioners That Combine Two Sets of One-

Dimensional Transforms with One-Dimensional Tridiagonal Solves: Trilinear Finite Elements

with Non-Smooth Solution

Q̂dd (sine+ 1D solves) Q̂nn (cosine+ 1D solves)
m m

k 20 40 60 80 k 20 40 60 80

1 14 15 15 14 1 12 12 11 11

5 14 14 14 14 5 21 19 18 18

10 19 17 17 17 10 43 40 39 38

20 51 35 31 30 20 156 138 123 112

30 164 73 51 41 30 300∗ 253 214 198

40 300∗ 135 97 77 40 300∗ 300∗ 300∗ 300∗

50 300∗ 231 146 140 50 300∗ 300∗ 300∗ 300∗

174 ELMAN AND O’LEARY

TABLE 6

Iteration Counts for GMRES (20) with Preconditioners That Combine Two Sets of One-

Dimensional Transforms with One-Dimensional Tridiagonal Solves: Trilinear Finite Elements

with Smooth Solution

Q̂dd (sine+ 1D solves) Q̂nn (cosine+ 1D solves)
m m

k 20 40 60 80 k 20 40 60 80

1 15 19 23 32 1 12 12 12 12

5 14 17 19 23 5 18 20 20 19

10 17 20 24 27 10 35 35 34 36

20 34 32 31 33 20 115 112 101 97

30 108 56 46 46 30 206 180 167 168

40 189 92 71 73 40 246 300∗ 300∗ 300∗

50 272 150 115 123 50 300∗ 300∗ 300∗ 300∗

suggests that for these wave numbers the asymptotic behavior (ash→ 0) of the solvers is be-
ing approached only for the finest meshes considered here. In these tests, performance is less
dependent on the smoothness of the solution than in the experiments with finite differences.

In a few tests without preconditioning, GMRES (20) required an average of eight times
more steps than with theQdd preconditioner for non-smooth problems, and at least fifteen
times more steps for smooth problems. (These tests were for finite differences,n= 20 and
40 andk ≤ 20; a maximum of 300 steps was used, and for the smooth problems the stopping
criterion was not satisfied in a majority of the runs.)

To compare the performance of the new preconditioners with a “standard” algebraic
preconditioner, we show in Tables 7 and 8 iteration counts obtained using the SSOR pre-
conditioner [30] (withω= 1) with GMRES (20). This method has been used to good effect
for solving the Helmholtz equation with multiple right hand sides (derived, e.g., form inci-
dent waves at different angles) in [13], cf. also [3]. These tests were run on a uniprocessor
Sun SPARCstation 20 in Matlab, and we considered only mesh sizes less than or equal to
m= 60. (Storage limitations permitted onlym ≤ 50 for trilinear elements.) In almost all

TABLE 7

Iteration Counts of GMRES (20) with SSOR (ω = 1) Preconditioning: Non-Smooth Solutions

Finite differences Trilinear elements
m m

k 20 40 60 k 20 40 50

1 26 19 20 1 20 19 19

5 26 28 24 5 17 27 26

10 37 49 50 10 27 38 42

20 76 78 87 20 80 61 66

30 200 103 103 30 300∗ 90 85

ITERATIVE SOLUTION OF THE HELMHOLTZ EQUATION 175

TABLE 8

Iteration Counts of GMRES (20) with SSOR (ω = 1) Preconditioning: Smooth Solutions

Finite differences Trilinear elements
m m

k 20 40 60 k 20 40 50

1 52 200 300∗ 1 26 99 122

5 40 122 209 5 24 62 97

10 57 170 249 10 37 78 113

20 110 159 219 20 96 99 117

30 237 175 222 30 300∗ 122 127

cases, these iteration counts are larger than the analogous entries from Tables 1–6, and the
growth in iteration counts with increasing wave numbers is considerably more pronounced.
The differences are especially dramatic for smooth problems. (We also remark, however,
that the SSOR method was surprisingly insensitive to mesh size in the non-smooth case.
An analysis of behavior like this for a simple elliptic model problem is given in [22].) In
addition, these tests were run with a “natural” ordering of the unknowns, which does not
have efficient parallel implementation. Tests with point red-black ordering for the finite
difference example (forn ≤ 40, k ≤ 20, and non-smooth problems) required on average
65% more steps.

4. PARALLEL IMPLEMENTATION AND PERFORMANCE

The algorithms developed in Section 2 are well adapted for parallel computation in both
shared memory and message-passing environments. We have implemented them on an IBM
SP-2 computer assuming that the number of processors does not exceedmx or mz. In this
section, we describe the implementation and present the results of experiments showing
parallel performance.

4.1.Parallel implementation. For ease of illustration, we describe our implementation
under the assumption that there arep= 4 processors. The mesh is partitioned among pro-
cessors as in Fig. 1; ifmz is divisible by p then each processor containsmz/p blocks of

FIG. 1. Partitioning of the three-dimensional mesh among 4 processors.

176 ELMAN AND O’LEARY

mxmy grid points oriented along thex-y plane. Ifmz is not divisible byp, then the number
of x-y planes assigned to each processor differs by at most one.

4.1.1.Parallel implementation of the iterative method.We use the original form of the
restarted GMRES algorithm, based on the Arnoldi basis, as presented in [25]. With the
partitioning described above, the GMRES algorithm is easy to parallelize: each processor
is responsible for storing and updating at most

m̂z ≡
⌈

mz

p

⌉
mxmy

unknowns and for maintaining the factored form of a Hessenberg matrix of sizer ×r (using
r steps of GMRES between restarts). Communication is necessary only for inner products
and matrix-vector products. The cost per iteration isO(m̂z) floating point operation plus
accumulation of (on average)(r + 3)/2 sums of scalars across processors, plus the cost of
matrix-vector products and preconditioning.

4.1.2.Parallel implementation of matrix-vector products.Computation of products of
the finite difference or finite element matrix with a vector requires that each processor
send its highest-numberedx-y plane to the processor numbered one greater, and its lowest-
numberedx-y plane to the processor numbered one less (if these processors exist). The
stencil can then be applied to the local data. The cost per matrix multiply isO(m̂z) floating
point operations plus 2 sends and receives ofmxmy numbers per processor.

4.1.3.Parallel implementation of the preconditioning.The preconditioning computa-
tion is a somewhat more complex operation. Let

m̂x ≡
⌈

mx

p

⌉
mymz.

We arrange the work in the chart below, estimating the cost assuming thatmx andmy are
powers of 2. Note that the costs ofQ̂dd andQ̂nn are identical to those ofQdd.

Operation Cost

Each processor computes sine or cosine transforms in thex direction
on its local data.

O(m̂z logmx) operations.

The data are rearranged so that each processor has an approximately
equal number ofy-z planes. This requires a nontrivial amount of
communication: the data movement from the perspective of Proces-
sor 2 is shown in Fig. 2.

Each processor sends at most
dmz

p
edmx

p
emy numbers to every

other processor.

Each processor then solves its assigned two-dimensional problems.
For preconditionersQdd andQnn, this entails sine or cosine trans-
forms in they direction followed by solution of tridiagonal systems,
followed by inverse sine or cosine transforms. ForQd and Qn, a
two-dimensional problem is solved in each of they-z planes.

For Qd and Qn, the cost is the
solution of dmx

p
e problems of

size mymz. For Qdd and Qnn

the cost isO(m̂x(logmy + 1))
operations.

The data are rearranged to the original configuration. Each processor sends at most
dmz

p
edmx

p
emy numbers to every

other processor.
Each processor computes inverse sine or cosine transforms in thex

direction.
O(m̂z logmx) operations.

ITERATIVE SOLUTION OF THE HELMHOLTZ EQUATION 177

FIG. 2. Destination and source processors for data movement, from the perspective of Processor 2.

Remark4.1. Formx =my=mz=m, the total arithmetic cost forQdd or Qnn is propor-

tional to m3 logm
p , and the communication cost (assuming no contention for messages sent

simultaneously) is proportional tom
3

p . The communication cost is the same for the two-

dimensional direct solversQd or Qn, and the smallest possible arithmetic cost isO(m4

p) if
a nested dissection method is used [10]; this strategy would neglect any need for pivoting.
For the tests described below, we used a bandsolver (which allows pivoting), resulting in
cost proportional tom

5

p .

Remark4.2. ForQdd andQnn, data movement can be completely masked by compu-
tation of the sine or cosine transforms in they direction, provided communication speed is
not too slow and the hardware supports overlapping of communication and computation.
This option is not currently supported on the SP-2.

4.2.Parallel performance. We now describe the performance of the solvers using the
transform-based preconditioners on a sixteen processor IBM SP-2 computer, a distributed
memory machine with explicit message passing. The system contains sixteen RS6000/390
processing nodes running AIX, interconnected via a proprietary interprocessor commu-
nications switch. The computational component of the program was written in Fortran90
and compiled using the mpxlf90 compiler with the optimization (-O) switch. All modules
were taken from off-the-shelf software and modified to conform to Fortran90: GMRES is
derived from the TEMPLATES package [2]; the two-dimensional direct solvers use the
LAPACK [1] bandsolvercgbsv and cgbtrs, as do the tridiagonal solvers used for the
one-dimensional preconditioners; and the sine-transform and cosine-transform routines are
from FFTPACK [28]. All tests used double precision complex floating point computations.
Communication was performed using MPI [26] with nonblocking sends (MPIISEND)
and blocking receives (MPIRECV). Inner products were performed and broadcast using
MPI ALLREDUCE.

The results on parallel performance are summarized in Table 9 for finite differences and
Table 10 for trilinear finite elements. Again, dashed lines correspond to problems that were
too large. The entries show CPU times for solving the discrete problem with non-smooth
solution on various grid sizes with the sine-based preconditioners. For an understanding of
parallel performance it suffices to look at just one wave number, which in these cases was
k = 5; results for the cosine-based preconditioners also lead to the same conclusions. We

178 ELMAN AND O’LEARY

TABLE 9

CPU Times for Solving the Finite Difference Discretization withk = 5, for Various Grid Sizes

Qd (sine + 2D solves) Qdd (sine + 1D solves)
m m

Number of Number of
processors 16 32 64 processors 16 32 64

1 1.89 25.37 — 1 1.62 13.12 —
2 .98 12.75 — 2 .85 6.91 —
4 .57 6.72 — 4 .47 3.74 28.24
8 .43 3.56 — 8 .40 2.15 14.55

16 .52 2.14 27.72 16 .52 1.37 8.14

used grid sizes that are powers of two only for convenience so that the grid parametermz

divides the number of processors; results when this is not the case are similar. The timings
reflect the averages over three runs; these runs were made in time sharing mode and other
users had access to the machine.

It is evident from these data that all the methods display a large amount of paral-
lelism. The average speedups in going fromp to 2p processors form= 32 is 1.77 for
the one-dimensional solvers and 1.90 for the two-dimensional solvers; similar efficiences
are observed form= 64 andm= 16 when p is small. The higher parallel efficiencies
for the two-dimensional solvers reflect the larger ratio of arithmetic to communication
for these preconditioners. Table 11 shows the total speedup, i.e., ratio of CPU time on
one processor to CPU time onp processors, form= 32. The typically larger speedups
observed for the finite element problems also stem from the larger amount of arithmetic
(caused by denser coefficient matrices) for these problems. There is some degradation
of performance, especially for the one-dimensional solvers, when the number of proces-
sors increases. We attribute this to the relatively large number of synchronization points
required by the modified Gram–Schmidt computation in each iteration of the GMRES al-
gorithm, and to the decreased amount of computation performed on each processor. On a
very large number of processors, performance can be improved using a Krylov subspace
method that avoids such synchronizations, e.g., GMRES with the classical Gram–Schmidt

TABLE 10

CPU Times for Solving the Trilinear Finite Element Discretization with k = 5, for Various

Grid Sizes

Qd (sine + 2D solves) Qdd (sine + 1D solves)
m m

Number of Number of
processors 16 32 64 processors 16 32 64

1 9.20 91.56 — 1 3.41 24.82 —
2 4.38 45.81 — 2 1.71 12.70 —
4 2.09 24.41 — 4 .80 7.03 49.34
8 1.39 12.23 — 8 .65 3.71 25.10

16 1.20 6.67 70.59 16 .80 2.59 15.21

ITERATIVE SOLUTION OF THE HELMHOLTZ EQUATION 179

TABLE 11

Speedups form̂ = 32

Number of Fin. diff. Fin. diff. Fin. elem. Fin. elem.
processors Qd Qdd Qd Q̂dd

2 1.99 1.90 2.00 1.95
4 3.78 3.51 3.91 3.53
8 7.13 6.10 7.49 6.69

16 11.86 9.58 13.73 9.58

orthogonalization, or methods such as quasi-minum residual or BiCGSTAB that do not re-
quire orthogonalization against a growing collection of old vectors.3 For the more compute-
intensive two-dimensional solvers, there is little performance degradation. Despite this,
overall costs of the one-dimensional solvers were significantly lower, even when these
required more iterations (i.e., for finite differences).

Remark4.3. In repeated examples of groups of three runs, we found some variation
in the average CPU times, on the order of 10%. This explains some instances (e.g., finite
elements,Qd,m= 16) where doubling the processors led to speedups greater than two.
These variations may derive from contention for the communication switch, although we
also encountered some nontrivial variation on sixteen processors, when we occupied the
whole machine.

5. CONCLUDING REMARKS

The preconditioners presented here enable efficient parallel solution of the three-dimen-
sional Helmholtz equation on large uniform grids. Performance of restarted GMRES with
these preconditioners is relatively insensitive to discretization mesh size and wave number,
and the algorithms are highly parallelizable.

We have some limited computational experience using QMR, a lower-storage alternative
to GMRES, on this set of test problems and preconditioners and find that the convergence
rate is similar.

We have presented results of these methods on simple box-shaped domains. A problem
with Sommerfeld boundary conditions on only a portion of the boundary (arising, e.g.,
from a nozzle configuration) would be somewhat easier to handle. The methods can also
be adapted for use on exterior Helmholtz problems by applying the capacitance method of
[23], perhaps using a nonuniform grid in the neighborhood of the scatterer. In forthcoming
work we will present the results of applying the algorithms to problems with varyingk,
corresponding to an inhomogeneous medium. Our results indicate that the methods are
practical for such problems, too.

The techniques are potentially applicable in non-Cartesian coordinate systems, although
the “fast” solvers in such settings are not nearly as fast, relying on generation and solution
of general block tridiagonal systems [27]. We also expect them to perform well for more ac-
curate local approximations to the radiation boundary conditions (3), of the type considered
in [4].

3 For example, in a few tests with the classical Gram–Schmidt orthogonalization and finite differences, we found
improved speedups of 13.7 and 10.3 forQd andQdd, respectively, on sixteen processors; cf. Table 11.

180 ELMAN AND O’LEARY

ACKNOWLEDGMENTS

We thank Alan Sussman for a great deal of advice on using the IBM-SP2, Ilya Zavorine for help with program-
ming, and Olof Widlund for some helpful discussions.

REFERENCES

1. E. Andersonet al., LAPACK Users’ Guide(SIAM, Philadelphia, 1995), 2nd ed.

2. R. Barrett et al.,Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods(SIAM,
Philadelphia, 1993).

3. A. Bayliss, C. I. Goldstein, and E. Turkel, An iterative method for the Helmholtz equation,J. Comput. Phys.
49, 443 (1983).

4. A. Bayliss, M. Gunzburger, and E. Turkel, Boundary conditions for the numerical solution of elliptic equations
in exterior domains,SIAM J. Appl. Math.42, 430 (1982).

5. J. H. Bramble, J. E. Pasciak, and J. Xu, The analysis of multigrid algorithms for nonsymmetric and indefinite
problems,Math. Comp. 51, 389 (1988).

6. B. L. Buzbee, F. W. Dorr, J. A. George, and G. H. Golub, The direct solution of the discrete Poisson equation
on irregular regions,SIAM J. Numer. Anal. 8, 722 (1971).

7. X.-C. Cai and O. B. Widlund, Domain decomposition algorithms for indefinite elliptic problems,SIAM J. Sci.
Stat. Comput.13, 243 (1992).

8. R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems,SIAM Rev.38, 427 (1996).

9. R. Dautray and J.-L. Lions,Mathematical Analysis and Numerical Methods for Science and Technology
(Springer-Verlag, New York, 1990), Vol. 1.

10. I. S. Duff, A. M. Erisman, and J. K. Reid,Direct Methods for Sparse Matrices(Clarendon, Oxford, 1986).

11. O. Ernst,Fast Numerical Solution of Exterior Helmholtz Problems with Radiation Boundary Condition by
Imbedding, Ph.D. thesis, Stanford University, Program in Scientific Computing and Computational Mathe-
matics, 1994.

12. O. Ernst and G. H. Golub, A domain decomposition approach to solving the Helmholtz equation with a
radiation boundary condition, inDomain Decomposition in Science and Engineering, edited by A. Quarteroni,
J. Periaux, Y. Kuznetsov, and O. Widlund (Amer. Math. Soc. Providence, 1994), pp. 177–192.

13. R. W. Freund and M. Malhotra, A block-QMR Algorithm for non-Hermitian linear systems with multiple
right hand sides,Linear Algebra Appl.254, 197 (1997).

14. J. A. George,The Use of Direct Methods for the Solution of the Discrete Poisson Equation on Non-rectangular
Regions, Tech. Rep. STAN-CS-70-159, Computer Science Department, Stanford University, Stanford, CA
1970.

15. E. Heikkola, T. Rossi, P. Tarvainen, and Y. Kuznetsov,Efficient Preconditioners Based on Fictitious Domains
for Elliptic fe-Problem with Lagrange Multipliers, Tech. Rep. 11/1996, University of Jyv¨askylä, 1996.

16. F. Ihlenburg and I. Babuˇska, Finite element solution of the Helmholtz equation with high wave number. Part
I. The h-version of the FEM,Comput. Math. Appl.30, 9 (1995).

17. M. C. Junger and D. Feit,Sound, Structures and Their Interaction(MIT Press, Cambridge, MA, 1986), 2nd
ed.

18. J. B. Keller and D. Givoli, Exact nonreflecting boundary conditions,J. Comput. Phys.82, 172 (1989).

19. S. Kim, A parallizable iterative procedure for the Helmholtz problem,Appl. Numer. Math.14, 435 (1994).

20. S. Kim, Parallel multidomain iterative algorithms for the Helmholtz wave equation,Appl. Numer. Math.17,
411 (1995).

21. M. Malhotra and P. M. Pinsky, Parallel preconditioning based on h-hierarchical finite elements with applica-
tions to acoustics,Comput. Methods Appl. Mech. Engrg.155, 97 (1998).

22. A. E. Naiman, I. M. Babuˇska, and H. C. Elman, A note on conjugate gradient convergence,Numer. Math.76,
209 (1997).

23. D. P. O’Leary and O. Widlund, Capacitance matrix methods for the Helmholtz equation on general three
dimensional regions,Math. Comput.33, 849 (1979).

ITERATIVE SOLUTION OF THE HELMHOLTZ EQUATION 181

24. W. Proskurowski and O. Widlund, On the numerical solution of Helmholtz’s equation by the capacitance
matrix method,Math. Comput.30, 433 (1976).

25. Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems,SIAM J. Sci. Stat. Comput.7, 856 (1986).

26. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra,MPI: The Complete Reference(MIT
Press, Cambridge, MA, 1996).

27. P. Swarztrauber and R. Sweet,Efficient Fortran Subprograms for the Solution of Elliptic Equations, Tech. Rep.
NCAR TN/IA-109, National Center for Atmospheric Research, Boulder, CO, 1975; code available through
http://www.netlib.org.

28. P. N. Swarztrauber, Vectorizing the fft’s, inParallel Computations, edited by G. Rodrigue (Academic Press,
New York, 1982), pp. 51–83.

29. C. Van Loan,Computational Frameworks for the Fast Fourier Transform(SIAM, Philadelphia, 1992).

30. D. M. Young,Iterative Solution of Large Linear Systems(Academic Press, New York, 1970).

