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Abstract

The e�ciency and e�ectiveness of most optimization algorithms hinges on the numerical linear algebra algorithms
that they utilize. E�ective linear algebra is crucial to their success, and because of this, optimization applications have
motivated fundamental advances in numerical linear algebra. This essay will highlight contributions of numerical linear
algebra to optimization, as well as some optimization problems encountered within linear algebra that contribute to a
symbiotic relationship. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The work in any continuous optimization algorithm neatly partitions into two pieces: the work in
acquiring information through evaluation of the function and perhaps its derivatives, and the overhead
involved in generating points approximating an optimal point. More often than not, this second part
of the work is dominated by linear algebra, usually in the form of solution of a linear system or
least-squares problem and updating of matrix information.
Thus, members of the optimization community have been consumers of linear algebra research,

and their needs have set some research directions for the computational linear algebra community.
Recently, this relationship has entered a new phase in which optimization problems arising in linear
algebra are also setting research agendas for the optimization community.
This essay will highlight the advances in numerical linear algebra that contributed to this symbiotic

relationship. First, in Section 2 we review the modeling problems that give rise to linear algebra
problems. Least-squares modeling is the subject of Section 3. We turn our attention to the linear
algebra of unconstrained optimization problems in Section 4, and then review the simplex method for
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linear programming in Section 5. Section 6 discusses linear algebra problems arising in interior point
methods. Nonlinear problems are briey considered in Section 7. Section 8 concerns linear algebra
problems giving rise to optimization, and Section 9 discusses computational issues in optimization.
We summarize our survey in Section 10.

2. Linear and quadratic models

The modeling of complex phenomena in science and economics by linear and quadratic models
is ubiquitous. It is motivated by the Taylor series expansion of a thrice continuously di�erentiable
function f :Rn → R as

f(x) = f(x0) + f′(x0)(x − x0) + 1
2(x − x0)Tf′′(x0)(x − x0) + O(‖x − x0‖3);

as well as by the relative ease of handling these models rather than fully-nonlinear ones. Often the
full nonlinearity of f is neglected in the modeling process, either because the simpler models yield
su�cient accuracy or because the modeling process yields insu�cient information about the higher
order coe�cients.
We often determine the coe�cients in a linear model by obtaining the “best-possible” �t to

experimental data. The coe�cients can be highly dependent on our way of measuring “best.” In
general, given a model M (t; z) of some function y(t), and data (ti; yi); i = 1; : : : ; m, we try to
determine the model coe�cients z ∈ Z⊆Rp to minimize the norm of the residual vector, whose
entries are

ri = yi −M (ti; z); i = 1; : : : ; m:

Common choices of the norm are the 1-norm or in�nity-norm, leading to linear programming prob-
lems (See Section 5) or the 2-norm, leading to a linear least-squares problem (See Section 3). Narula
[68] discusses solution of these various regression problems. If the set Z is something other than
Rp, then there are constraints on the minimization problem.
Thus, modeling of physical phenomena leads to optimization problems, but, conversely, algorithms

for optimization often lead to linear and quadratic modeling. For instance, an objective function
f(x) might be locally modeled as a quadratic function in algorithms such as sequential quadratic
programming. As another example, we often temporarily replace a constraint by a local linear model
in order to make a subproblem easier to solve (See Section 7).
Perhaps the oldest use of quadratic models to solve nonlinear problems is the iteration of Newton

for minimizing a function or �nding a zero of a system of nonlinear equations. At each step in
the iteration, we construct a quadratic model of the function (or a linear model of the system of
equations) and use that model to generate a step in the direction of a better solution. A wonderful
survey of Newton’s method is given in [96], and we consider this method in Section 4.

3. Least squares

Consider the modeling problem

min
z

‖Mz − y‖2; (1)
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where M ∈ Rm×n; z ∈ Rn, and y ∈ Rm. This linear least-squares problem was shown by Gauss [39]
to produce the z that yields the best linear unbiased estimator of any function cTztrue whenever the
errors in y have mean zero and variance �2I .
The oldest algorithms for solving the linear least-squares problem can be viewed as applying direct

or iterative methods to solve the normal equations

M TMz =M Ty;

obtained by setting the derivative of (1) to zero.
Within the past 50 years, advances in the solution of least-squares problems have been of three

types: analysis of sensitivity and stability, development of computational tools, and consideration of
problem variants.
The lucid textbook by Bj�orck [8] is the de�nitive reference on the entire subject of numerical

solution of least squares problems, and we recommend it for exposition and further references.
Higham [48] is an alternate source for the history of sensitivity analysis for these problems.

3.1. Sensitivity and stability of least-squares problems

Important contributions to the study of sensitivity of least-squares problems have been made in
recent years.
Wedin [94, Theorem 5:1], studied the normwise perturbation of z and the residual r = y − Mz

when M is perturbed, showing that if the relative perturbations in M and y are less than �, and if the
condition number �2(M) (the ratio of its largest to its smallest singular value) satis�es �2(M)�¡ 1,
then

‖z − ẑ‖
‖z‖ 6

�2(M)�
1− �2(M)�

(
2 + (�2(M) + 1)

‖r‖2
‖M‖2‖z‖2

)
;

‖r − r̂‖
‖y‖ 6 (1 + 2�2(M))�:

This result says that if the residual is small, then perturbations are proportional to �2(M), but if
the residual is large, then perturbations proportional to �2(M)2 might be seen, and that is indeed the
case.
Further analysis can be found in [8, Chapter 1], including component-wise bounds on the

error [4].

3.2. Computational tools for least-squares problems

The main computational algorithm for least-squares solves the problem by using the QR factor-
ization of the matrix M into the product of a matrix Q ∈ Rm×n with orthogonal columns, and an
upper triangular matrix R ∈ Rn×n. Use of this tool was �rst proposed by Golub [41], but great
attention has been given to the relative advantages of factorization using Householder reections,
Givens rotations, or modi�ed Gram–Schmidt [8, Section 2:4]. The �rst two alternatives were known
to have similar desirable error properties, and modi�ed Gram–Schmidt was �nally shown stable in
a paper of Bj�orck and Paige [10] by exploiting the fact, known to many early practitioners such as
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She�eld, that modi�ed Gram-Schmidt is numerically equivalent to Householder QR applied to the
matrix[

0
M

]
:

If the problem is di�cult in the sense that M is ill-conditioned, then more re�ned tools are
needed. The QR factorization with column pivoting [41] can be used to try to identify the most
linearly independent columns �rst and perhaps construct a model of reduced size; see [18] for a
survey of such rank-revealing QR factorization methods. This is not foolproof, however, and the
singular value decomposition [42, Section 2:5] is a more reliable (and more expensive) factorization
algorithm for identifying dependencies; see Stewart [85] for historical remarks on the SVD.
The LU factorization of M can also be used to solve least-squares problems [77], but its use

is not common except when the matrix M is sparse, with many zero elements. In that case, the
QR factors may be quite dense, due to creation of nonzeros in the course of the factorization. To
minimize this �ll-in, it is important to use the best algorithms for reordering the rows and columns
of the matrix [29] before factorization.
The normal equations can be solved by Cholesky factorization into the product of a lower triangular

matrix times its transpose, but if the problem is large and sparse, then reordering strategies should
again be used to minimize �ll [40].
An alternate to factorization for large sparse problems is the use of iterative methods. The precon-

ditioned conjugate gradient algorithm [42] can be used to solve (8), and row-action methods [17]
and other specialized methods such as CGLS and LSQR avoid forming the normal equations [8,
Chapter 7].

3.3. Variants of least-squares problems

Often the matrix M has special structure that can be exploited in order to make solution of the
least-squares problem more e�cient. One example is the matrix that arises from �tting polynomials
using the power basis and equally spaced data points. The resulting matrix for the normal equations,
a Vandermonde matrix, has beautiful structure but is quite ill-conditioned [11,9,27,47]. A second
example is the band matrix structure that results from �tting functions whose support is local [80,23].
Wavelet [20] and Fourier bases often give matrices with small displacement rank [51] again leading
to e�cient solution algorithms [86,24,67,44,76].
Some models give rise to nonlinear least-squares problems

min
z

‖r(z)‖;
where r :Rn → Rm. These are usually solved by Newton variants discussed in Section 4.
Constrained least-squares problems also arise frequently in practice. For instance if the parameters

z are constrained to be nonnegative, then the resulting least-squares problem is a special case of
quadratic programming

min
z

1
2z
TMz + zTw;

Cz¿d
(2)

and e�cient algorithms for solving such non-negativity constrained least-squares problems were �rst
proposed by Lawson and Hanson [59]. Alternatively, if the vector z is constrained in 2-norm, then
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this results in a quadratic objective function with a single quadratic constraint. This is the situation,
for example, in trust region methods for optimization (See Section 4).
Often a sequence of least-squares problems needs to be solved, each representing an update of

the previous one due to the addition of new data or the downgrading of the importance of old data.
Such problems arise, for example, in signal processing when we try to estimate the position of an
unknown number of signal sources (e.g., �nding the position of each aircraft within a given zone)
given data from a set of receivers. Updating and downdating can be done quite stably if the full QR
factorization is saved; in this case, Q is m×m. If this is too expensive, then a variety of algorithms
have been proposed that have decent numerical properties [8, Chapter 3].
The weighted least-squares problem

min
z

‖Mz − y‖W ;

where ‖x‖2W = xTWx, is also useful in practice. Here W is an estimate of the inverse covariance
matrix for the zero-mean errors in measurement of y. The normal equations become

M TWMz =M TWy;

and if we introduce the residuals s=W (y −Mz), then we can transform the normal equations into
an augmented system[

W−1 M
M T 0

] [
s
z

]
=
[
y
0

]
: (3)

We will see this system again in Section 6.
If there are outliers in the data, then the least-squares criterion is not very useful unless the

weights are adjusted so that the outliers do not a�ect the �t very much. This is the goal in iteratively
reweighted least-squares, or robust regression [50], in which the �xed weight matrix W is replaced
by some function of the size of a component of the residual

min
z

m∑
i=1

w(yi − (Mz)i):

If w(u)=u2, then we recover the least-squares problem. Functions that diminish the e�ects of outliers
include Huber’s choice [49]

w(u) =
{
u2=2; |u|6�;
�|u| − �2=2; |u|¿�;

where � is a problem-dependent parameter. Minimizing Huber’s function leads to a quadratic pro-
gramming problem. Computational issues arising in iteratively reweighted least-squares problems are
discussed, for example, in [73].

4. Unconstrained optimization

Given a point x0 and a quadratic model of a function

f(x) ≈ f(x0) + f′(x0)(x − x0) + 1
2(x − x0)Tf′′(x0)(x − x0);
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it is natural to approximate the minimizer of f by the minimizer of this model. If f′′(x0) is positive
de�nite, this minimizer is given by

x = x0 − f′′(x0)−1f′(x0):

This equation motivates Newton’s method. Given x0, we de�ne a sequence of iterates

xk+1 = xk + pk;

where the direction pk is the solution to the linear system

�Bkpk =−f′(xk) (4)

and �Bk = f′′(xk). If f is quadratic, then x1 is a stationary point of f, a global minimizer if f′′ is
positive de�nite. If f is not quadratic, the procedure is convergent at a quadratic rate of convergence
to a local minimizer of f under conditions such as those of the Newton–Kantorovich theorem [74,
Section 12:6].
Developments of Newton’s method during the last 40 years have focussed on improving this

method by making it more reliable and by adapting it for use on very large problems.

4.1. Making Newton’s method more reliable: line searches and trust regions

Two methods have been used to make Newton’s method (or its variants) globally convergent to
a local minimizer: line searches and trust regions.
In the line search method, the Newton-like direction pk is scaled so that

xk+1 = xk + �kpk;

where �k is a parameter chosen to ensure that the objective function f decreases su�ciently in
proportion to the size of the step. See [74, Section 14:4:3] for conditions on �k that guarantee global
convergence (e.g., Wolfe conditions, Goldstein–Armijo conditions).
The trust region method constrains the length of the step so that we do not exit some region in

which we “trust” the accuracy of the quadratic model. Thus we solve the problem

min
p
M (xk + p);

‖p‖6�;
where M is the quadratic model and � is the radius of the trust region. If the constraint is active,
then the solution to this problem is

( �Bk + �I)p=−f′(xk)

for some nonnegative parameter � chosen to make ‖p‖= �. This problem can be solved by eigen-
decomposition of �Bk , but this is generally too expensive. Often an iterative approach is used; we
generate a sequence of approximations to p, stopping and backtracking when the norm of p exceeds
�; see, for example [38]. This does not give a step in the Newton direction unless the radius of the
trust region exceeds the norm of the Newton direction pk de�ned in (4).
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4.2. Making Newton’s method more reliable for nonconvex functions

If the matrix �Bk used in the Newton equation is not positive de�nite, then Newton’s method may
fail to have a downhill search direction. To remedy this, algorithms based on line search usually
diagnose inde�niteness as (4) is solved and cure it by adding a small correction matrix. These
techniques are easily incorporated into a Cholesky factorization of the matrix [38].
Another approach to making Newton’s method more reliable is to take very small steps – in fact,

to follow the path

dx
dt
=−f′′(x)−1f′(x);

starting with x(0)= x0. This is the idea behind methods such as homotopy methods [54], which also
introduce a parameterized function in order to locate multiple local minimizers. The linear algebra
is heavily drawn from that used in ordinary di�erential equation solvers [93].

4.3. Adapting Newton’s method for large problems

Computing, storing, and factoring the Hessian matrix may be impractical if the size is large.
Quasi-Newton methods mimic Newton’s method by generating less expensive approximations Bk to
the matrix �Bk . These approximations are generated by updating the approximation for �Bk−1, and some
have come to be interpreted as matrix approximation problems [28]. The most popular quasi-Newton
variant is that proposed by Broyden, Fletcher, Goldfarb, and Shanno (BFGS), which is de�ned by
the update formula

Bk+1 = Bk − BksksTk Bk
sTk Bksk

+
ykyTk
yTk sk

;

where yk is the change in gradient and sk is the change in x. Rather than storing and updating Bk+1,
we can also store and update its inverse or maintain the Cholesky factors of Bk+1; see, for example,
[37, Section 4:5:2:2].
An alternative is to use �Bk but avoid factoring it. This can be achieved by computing an approx-

imate Newton search direction pk as the solution to (4) using an iterative method (e.g., conjugate
gradients or some other Krylov subspace method) that uses �Bk only for matrix–vector products. If a
conjugate gradient algorithm is used, then there are very e�ective ways to handle inde�niteness and
to determine the step for the trust region. The iteration can be terminated if the increment d to p is
a direction of negative curvature (i.e., dT �Bkd¡ 0) or if the algorithm steps out of the trust region
[38]. Preconditioning can be used to improve convergence of the iterative methods [42, Section
10:3], but how this biases the generation of directions is an open question.
If �Bk is too expensive to compute or store, then the necessary products in the iterative method

can be approximated by di�erence quotients

�Bkp= f′′(xk)p ≈ f′(xk + hp)− f′(xk)
h

for a suitably small parameter h. This produces an algorithm that has come to be known as the
truncated Newton method [26,72,69].
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In very large problems, the updates to the quasi-Newton matrix may prove too numerous to store.
In that case we might discard updates as they age, or skip some intermediate updates. These limited
memory methods were proposed by Nocedal [70], and the properties of various discarding strategies
are studied in [57].

4.4. Alternatives to Newton’s method for large problems

There is a vast set of low-storage alternatives to Newton-like methods. They sacri�ce the superlin-
ear convergence rate that can be achieved under careful implementation of the Newton-like methods
[71] in order to avoid storing a matrix approximation. Many of these methods are derived from
methods for solving linear systems Ax∗ = b involving a symmetric positive-de�nite matrix A.
The conjugate gradient method [46] takes a sequence of A-conjugate descent steps for the function

(x − x∗)TA(x − x∗) beginning with the steepest descent direction. Many authors proposed nonlinear
extensions of this method, beginning with Fletcher-Reeves [34]. The algorithms are all equivalent to
quasi-Newton algorithms on quadratic functions [33, Chapter 3], but the most robust algorithm for
general functions is that of Polak and Ribi�ere [78], restarting with the steepest descent direction in
case trouble is diagnosed.
Another set of methods is related to �xed-point methods for solving linear systems. These linear

methods are of the form

xk+1 = Exk + c;

where x∗ is a �xed point of the iteration and the matrix E is chosen so that its spectral radius
is small, yielding linear convergence of the sequence to x∗. Often these methods are derived by
some variant of solving the ith equation for the ith variable, and then using estimates for the other
variables to form a new value for the ith component of x. Examples of such methods are Jacobi,
Gauss–Seidel, and SOR. See Varga [90] for a good discussion of such iterations in the linear case,
and Ortega and Rheinboldt [74] for the general case.

5. Simplex method for linear programming

In the 1940s and 1950s, several events led to an explosion of interest in computational methods.
The �rst was the computational need generated by the participants in World War II. Data �tting (least
squares) and logistics support (optimization) created enormous demands for solution to ever-larger
models. At the same time, electronic computing machines for the �rst time made it possible to solve
problems larger than those that could be handled by a roomful of human calculators.
George Dantzig was among those who realized the need for automatic algorithms for solving

optimization problems, and, working for the US war e�ort at Rand Corporation, he devised a tableau
to organize the data in a linear programming problem

min
x
cTx

Ax = b;

x¿0;

(5)
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where A ∈ Rm×n, with m¡n. The tableau of numbers could be stored and modi�ed systematically to
produce an optimal solution to the problem, as well as information on the sensitivity of the solution
to the data in A, b, and c [25]. Not only was this scheme well adapted to single or multiple human
calculators, but it could also be implemented for large problems on electronic computers, enabling
logistics planning that was unthinkable a few years earlier. The solution of linear programs, which
earlier could in general be done only approximately by heuristic methods, could now be automated.
Dantzig’s simplex algorithm was based on generating a path through the feasible set S =

{x¿0: Ax=b} through a set of vertices (i.e., points x for which at most m components are nonzero)
that are adjacent (i.e., have all but one zero component in common). Along this path, the objective
function cTx usually decreases, but in any case does not increase. Once an anti-cycling safeguard is
added that prevents any vertex from being visited too many times, the algorithm can be proven to
converge, because there are only a �nite number of vertices and it can be shown that one of them
is an optimal solution.
For a given vertex x, we let I denote the set of indices i for which xi is nonzero. Then, if AI

denotes the set of columns of A corresponding to indices in I, we see that the nonzero components
xI are de�ned by

AIxI = b: (6)

In order to step from this vertex to an adjacent one, we replace one index in I by an index not
in I, and the index is determined by solving a linear system involving the matrix ATI. In order to
compute the x corresponding to this step, we must modify our coe�cient matrix by replacing one
column with a new one. Dantzig proposed accumulating the matrix inverse and updating it using
elementary row operations. Equivalently, his algorithm can be viewed as Gauss–Jordan elimination
without pivoting [5]. This algorithm is numerically unstable, and simplex practitioners use periodic
reinversions to recalculate the matrix inverse directly and eliminate the accumulated inaccuracies.
This is still not unconditionally stable, but for many applications it works well. For dense matrices,
the initial factorization cost is O(m3) and the cost of each update is O(m2). Typically the simplex
algorithm takes a reasonably small number of iterations – a small multiple of m [25, p. 160] – but
in the worst case the algorithm can visit every vertex [56], so the bound on the cost is exponential
in the problem size.
In the last half of the 20th century, the dimensions of linear programming problems have become

much larger than �rst envisioned. At the same time, the matrices of interest have tended to become
more sparse, with many zero elements. Consequently, even though the original matrix has large
dimension, it usually can be stored in a small amount of memory. But the original simplex algorithm
explicitly stores the matrix inverse, which is usually completely dense. Thus various modi�cations
were made to the linear algebra of the algorithm to make it less of a storage hog. In the revised
simplex algorithm with product form of the inverse, the inverse matrix is stored as a product of
updates: a matrix AI is represented as

A−1
I = Rk−1 : : : R1;

where each update matrix Ri di�ers from the identity by one column. This form is easily updated
by accumulating additional matrices R, but when the storage for the updates becomes prohibitive,
or when inaccuracies accumulate, reinversion is performed.
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The computational linear algebra community became interested in the simplex method in the late
1960s. Bartels and Golub [6,5] showed how the updating algorithm could be made stable through
the use of partial pivoting, the interchange of rows of the matrix in order to bring the largest
magnitude element in the current column to the main diagonal at every stage of the factorization.
By computing in this way, it is possible to bound the error in the computed solution in two important
ways: the computed solution solves a nearby problem, and the computed solution is close to the true
solution [48, Chapter 9]. Neither of these properties is guaranteed to hold for earlier variants of the
simplex algorithm. Still, the use of this stabilized algorithm met with resistance. Pivoting makes the
implementation of updating much more costly, and for sparse matrices, it makes the data handling
more di�cult and the storage space generally higher.
The QR algorithm is an alternate matrix factorization that does not require pivoting for stability,

but its �ll-in often makes it prohibitively expensive for sparse matrices, so it was never widely used.
Much research in matrix reordering was spurred in part by the simplex algorithm. See [29] for

more information on reordering.
Although iterative methods could be used to solve the linear systems in the simplex method, they

have been proposed only for some special applications.

6. Interior point methods for linear programming

The proof by Khachian [55] that linear programming problems can be solved in polynomial time
began a new era in the solution of optimization problems. Khachian’s algorithm was not practical for
computation, but suddenly a great deal of attention was focused on the interior point method (IPM),
algorithms in which the path of the iterates stays in the relative interior of the feasible set rather
than marching around the boundary from vertex to vertex. Karmarkar [52] was the �rst to propose a
relatively practical interior point algorithm that had polynomial complexity, and that announcement
spurred a urry of work on new methods, as well as further work on older proposals such as the
SUMT technique of Fiacco and McCormick [31].
The structure of IPMs is quite di�erent from that of the simplex algorithm, but one similarity

remains: the main computational work in the algorithm is the solution of a linear system of equations.
Unlike the simplex algorithm, however, this linear system arises from a linear least-squares problem,
and this extra structure can be quite useful. Further, although the sparsity structure of the matrix in
the simplex algorithm changes from iteration to iteration, the structure of the matrix in the IPM is
constant, and only the weights in a diagonal matrix are changing. This fact makes data management
much easier.
Consider our linear programming problem (5). Gonzaga [43] and Wright [95] surveyed interior

point methods, and many computational issues are addressed by Lustig et al. [64] and Andersen
et al. [1]. The basic idea is to replace the linear program by a nonlinear problem formed by using
Lagrange multipliers y to handle the linear equality constraints, and using barrier functions to avoid
violating the nonnegativity constraints. One popular barrier function is the logarithmic barrier, ln xj,
which goes to −∞ as xj → 0+. The resulting Lagrange-barrier function is

L(x; y; �) = cTx − yT(Ax − b)− �
n∑
j=1

ln xj:



D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 457

The solution to our linear programming problem (5) is the limit of the saddle-points of L as �→ 0.
If we set the derivative of L equal to zero, we obtain necessary (�rst-order) conditions for a solution
(x; y; �) to be optimal:

Ax = b;

c − ATy − z = 0;
XZe = �e:

Here, e denotes a vector of all ones, and upper-case letters X and Z denote diagonal matrices created
from the entries of the vectors x and z, respectively. In some sense this is a relaxation of the linear
program, since these are optimality conditions for the linear program if we take z = 0 and � = 0.
The idea is to solve a sequence of problems; initially, � is taken large in order to easily obtain a
solution, and then � is reduced.
The introduction of the variables z makes the �rst two equations linear, and the Lagrange mul-

tipliers y can also be interpreted as the solution to the linear programming problem that is dual to
(5). The most successful IPMs have been those that preserve primal feasibility by keeping Ax = b
while at the same time maintaining dual feasibility by keeping c − ATy¿0.
We now have a system of nonlinear equations to solve, and we can apply Newton’s method. We

compute the Newton direction by solving the KKT (Karush–Kuhn–Tucker) system(−X−1Z AT

A 0

)(
�x
�y

)
=
(
rd + Ze − �X−1e

rp

)
; (7)

or by solving the equations formed by eliminating �x from this system. De�ning rp = b − Ax,
rd = c − ATy − z, and D2 = Z−1X , we obtain the normal equations

(AD2AT)�y = AD2(rd + Ze − �x−1e) + rp: (8)

Once �y is determined, �x may be easily computed from

−(X−1Z)�x + AT�y = rd + Ze − �X−1e:

Solving either Eq. (7) or (8), then, is the central computational problem in applying IPMs to linear
programming problems. The remaining considerations are what sequence of � values to use, how
accurately to solve intermediate problems, and when to terminate the algorithm or switch to direct
solution once the optimal vertex is identi�ed. For more information on these aspects, see, for example,
[64,1]. Here we concentrate on the issues involved in solving (7) or (8).
The normal Eqs. (8) involve a symmetric positive semi-de�nite matrix (positive de�nite if A is

full rank), and the Cholesky factorization is an e�cient tool for solving such systems. If the matrix
is sparse, though, then the Cholesky factor has the same sparsity structure as the triangular factor
in the QR factorization of A, and this can be quite dense. We observe that

ATDA=
n∑
j=1

ajdjjaTj ;

where aj is a column of A. If a small number of columns are causing excessive �ll-in, then these
columns can be omitted from the factorization, and the Sherman–Morrison–Woodbury formula [42,
Section 2:1:3] can be used to correct for their absence [3].
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Table 1
Comparison of matrix problems in the simplex algorithm and in IPMs

Simplex method Interior point methods

Nonsymmetric Symmetric positive de�nite (normal equations)
or inde�nite (augmented system)

Changing sparsity pattern Fixed sparsity pattern

Usually well conditioned Can become increasingly ill-conditioned as � becomes smaller

Matrix changes by rank-2 update Matrix changes completely, but only because D is changing

Table 1 compares the features of the matrix problems in the simplex algorithm and in IPMs.
If the matrix is ill-conditioned (which often happens at the end-stage, when � is small and some

solution components go to zero) or rank-de�cient (perhaps due to omission of columns in the
factorization), it may be desirable to add a diagonal correction to ATDA so that a factorization of a
better conditioned matrix is computed. This technique of Stewart [84] has been used by Andersen
[3] and others.
The matrix of the KKT system (7) is always symmetric inde�nite. We also saw this matrix in

optimality conditions (3) for weighted least-squares problems. Cholesky factorization is unstable for
inde�nite matrices, so other alternatives must be applied. The Bunch–Kaufman–Parlett factorization
[14,13] into the product LSLT, where L is lower triangular and S is block diagonal with 1 × 1 or
2× 2 blocks, is a convenient tool for such problems.
If A is large and sparse, then the factorizations for (7) or (8) usually include sparsity considerations

in the choice of pivot order.
Iterative methods for solving the linear systems in IPMs have received a great deal of attention

but rather limited success. The key problem is the choice of preconditioner. Chin and Vannelli [19]
solved the KKT system (7) using an incomplete factorization as a preconditioner, while Freund
and Jarre [36] proposed SSOR preconditioners. Most of the preconditioning work has been on the
normal equation formulation (8). Karmarkar and Ramakrishnan [53] used the factorization of the
matrix for one value of � to precondition the problem when � is changed. Mehrotra [65] used an
incomplete Cholesky factorization as a preconditioner, recomputing the factorization for each new �
value. Carpenter and Shanno [16] used diagonal preconditioning, and Portugal, Resende, Veiga, and
J�udice [79] also used spanning-tree preconditioners.
The best solution algorithm will surely be a hybrid approach that sometimes chooses direct solvers

and sometimes iterative ones. Wang and O’Leary [92,91] proposed an adaptive algorithm for deter-
mining whether to use a direct or iterative solver, whether to reinitialize or update the preconditioner,
and how many updates to apply, but further work remains.
The ill-conditioning of the matrices has stimulated a lot of work in trying to understand why the

algorithms work as well as they do. Saunders [81] sets forth a set of reliable solution strategies, and
a stability analysis is presented in [35].
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7. Nonlinear programming

Optimization problems with nonlinearities in their objective function or their constraints can be
more di�cult to solve than linear programming. We survey selected nonlinear programming problems
and strategies that make use of linear algebra.
Linear algebra plays a key role in the solution of quadratic programming problems (2) and of

linear complementarity problems (LCP)

Ax − b= z;
xTz = 0;

x¿0; z¿0:

Approaches include variations of the simplex algorithm, extensions of linear iterations such as Jacobi
and Gauss–Seidel, descent methods such as conjugate gradient, and interior point algorithms. See
[66] for a comprehensive discussion. Questions of existence and uniqueness of solutions to LCP
spurred work in matrix theory on matrix cones [22].
In the past, two popular methods were used to handle constraints in nonlinear programming

problems [62, Chapter 11]. In the �rst, certain constraints were held active for a portion of the
iteration, and the iterates were not permitted to depart from them. Any descent step was augmented
by a step back to the active constraints. In the second, descent directions were projected onto equality
constraints before the step was taken; thus, steps were computed relative to a reduced gradient
that corresponded to the gradient on the constraint surface. The computations were performed by
projection matrices. Both of these strategies are currently in eclipse, due to the advent of sequential
quadratic programming (SQP) and interior point methods.
In SQP, we solve a sequence of quadratic programming problems (2) arising from quadratic models

of the original constrained problem, using IPM or simplex-based methods for the subproblems. Again
we need modi�cations to maintain positive de�niteness. Boggs and Tolle [12] give an excellent
survey of these methods.
Interior point methods are also applied to nonlinear optimization problems directly [87]. The matrix

in the augmented system (7) becomes somewhat more complicated than in the linear case; the lower
right block can become nonzero, the upper left block may be full instead of diagonal, and in many
formulations, the matrix is increasingly ill-conditioned [95,83]. The structure of this ill-conditioning
is now somewhat understood, though, and, with care, the linear systems can be solved success-
fully [81].
Even these newer approaches, SQP and IPM, are not completely satisfactory, especially when the

constraints are ill behaved [21].
A rather di�erent approach to some classes of optimization problems is the use of

neural networks [30]. These networks �t a surface to a function of many variables. There are
various viewpoints for interpreting such methods, but one way is that the training of the net-
work corresponds to optimizing parameters in a function that discriminates among di�erent classes
of points. The functional form is predetermined, and the optimization problem is generally non-
convex, with many local solutions. To overcome this di�culty, Vapnik and colleagues proposed
support vector machines, a more limited set of functional forms that are easier to analyze; see,
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for example [89]. Many useful choices lead to convex optimization problems – in fact, to very
large dense least squares or quadratic programming problems (2). Burges [15] provides a
good introduction to the concepts and computational issues, while [88] is a more detailed
study.

8. Matrix and eigenvalue optimization problems

And now we come full circle. We have seen how computational linear algebra has enabled e�-
ciency advances in computational optimization. We have seen that the optimization community has
raised interesting questions about matrix theory and about stability analysis of linear algorithms.
Now we discuss a set of optimization problems that arise from linear algebra and have motivated
the development of important optimization algorithms and advances in the understanding of duality
theory for optimization problems.
These problems involve eigenvalue optimization [60]. An important subclass is the class of

semide�nite programs. Super�cially, they resemble linear programming problems (5), since they
can be written as

min
X
C • X; (9)

AX = B;

X¿0;

but here C and X are symmetric n × n matrices, C • X = trace(CX ), and X¿0 means that X is
positive semide�nite. This problem is convex but nonlinear. The duality structure for semide�nite
programming, the existence and construction of another problem that has the same optimality condi-
tions as (9), is not as satisfying as that for linear programming. Despite the di�erences between the
two classes of problems, linear programming gives much insight here, both for the theory and for the
algorithms, and interior point methods that are direct generalizations of those for linear programming
are the methods of choice.
Thus, semide�nite programming problems are eigenvalue optimization problems, and these prob-

lems have important linear algebra applications in control, in minimizing the condition number of a
matrix by diagonal scaling, and in solving Lyapunov inequalities. Further information can be obtained
from a review article of Lewis and Overton [60], a review article of Lobo, Vandenberghe, Boyd,
and Lebret describing a subclass known as second-order cone programming [61], and a collection
of papers [75].

9. Computational trends

Optimization algorithms can consume a great deal of computational resources, and they have
always been run on state-of-the-art computer architectures. More and more, these algorithms are
packaged and portable. There is reliable software for least-squares problems on parallel computers
[82], and signi�cant work has been done with neural networks [30, Section 4.1] and systolic arrays
[58]. But there is limited experience with parallelization of constrained optimization codes. A notable
e�ort is the parallel version of the CPLEX code by Lustig and Rothberg [63].
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A second computational trend is the development of software that performs more of the drudgery
for the user. Problem generators have been widely available for many years, but new tools are also
being developed. Programs for automatic di�erentiation, for example, have contributed to the practical
application of optimization techniques to a much larger set of problems. An automatic di�erentiation
program uses the computational de�nition of a function in some programming language to generate a
program for evaluating the derivative of the function. There are two basic strategies, both involving
repeated applications of the chain rule. The forward mode consumes a great deal of intermediate
storage, while the backward mode generally takes more time. Practical implementations generally
use a combination of the two strategies, guided by linear algebra tools such as sparsity structure
analysis and the construction of structurally orthogonal basis vectors [7].

10. Conclusions

Major developments in the basic linear algebra of optimization algorithms in the 20th century
include:

• Invention of the simplex algorithm, based on Gauss–Jordan elimination and updating.
• Learning to implement the simplex algorithm in a stable way while preserving sparsity.
• Development and understanding of Newton alternatives: truncated Newton for use when derivatives
are not available, quasi-Newton for use when second derivatives are not available, limited-memory
and conjugate gradient methods for large problems.

• Development of least-squares algorithms for solving dense and sparse problems in a provably
stable way.

• Development of algorithms for a wider range of constrained optimization problems, including
those involving eigenvalue placement.

• Making automatic di�erentiation practical.
• Understanding the sensitivity of linear [48] and constrained problems [25, Section 12:4] [32] to
perturbations in the data.

In addition, the development of e�cient “o�-the-shelf” packages of reliable software for dense linear
algebra (LAPACK) [2] and sparse linear algebra (e.g., Harwell codes [45]) makes the development
of e�cient and reliable optimization software much easier, and most optimization packages do make
use of this linear algebra basis.
Research areas that will remain active in the next century include:

• Hybrid algorithms for solving the linear systems from IPMs and other sources, involving automatic
preconditioning.

• More e�ective algorithms for global optimization.
• More e�ective algorithms for nonlinear constraints.
• Sensitivity analysis.
Much progress in linear algebra in the 20th century has been motivated, at least in part, by

optimization problems. This progress includes matrix up- and down-dating, sparse direct and iter-
ative methods for linear systems, and solution of least squares problems. Conversely, progress in



462 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

optimization enables many previously intractable linear algebra problems to be solved, especially
those related to eigenvalue placement. During the next century, this symbiosis will undoubtably
continue. Progress in optimization will inevitably be linked with progress in linear algebra.

Acknowledgements

I am grateful for the hospitality provided by Professor Walter Gander and the Departement Infor-
matik, ETH Z�urich, Switzerland, which enabled this work to be completed. I also appreciate helpful
comments on a draft of this article from Tamara G. Kolola.

References

[1] E.D. Andersen, J. Gondzio, C. M�esz�aros, X. Xu, Implementation of interior point methods for large scale linear
programs, in: T. Terlaky (Ed.), Interior Point Methods of Mathematical Programming, Kluwer Academic Publishers,
Boston, 1996, pp. 189–252.

[2] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, D. Sorensen, LAPACK Users’ Guide, SIAM, Philadelphia, 2000.

[3] K.D. Andersen, A modi�ed Schur-complement method for handling dense columns in interior point methods for
linear programming, ACM Trans. Math. Software 22 (1996) 348–356.

[4] M. Arioli, J.W. Demmel, I.S. Du�, Solving sparse linear systems with sparse backward error, SIAM J. Matrix Anal.
Appl. 10 (1989) 165–190.

[5] R.H. Bartels, A stablization of the simplex method, Numer. Math. 16 (1971) 414–434.
[6] R.H. Bartels, G.H. Golub, The Simplex method of linear programming using LU decomposition, Comm. ACM 12

(1969) 266–268.
[7] C. Bischof, A. Bouaricha, P. Khademi, J. Mor�e, Computing gradients in large-scale optimization using automatic

di�erentiation, INFORMS J. Comput. 9 (1997) 185–194.
[8] �A. Bj�orck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[9] �A. Bj�orck, T. Elfving, Algorithms for conuent Vandermonde systems, Numer. Math. 21 (1973) 130–137.
[10] �A. Bj�orck, C.C. Paige, Loss and recapture of orthogonality in the modi�ed Gram–Schmidt algorithm, SIAM J. Matrix

Anal. Appl. 13 (1992) 176–190.
[11] �A. Bj�orck, V. Pereyra, Solution of Vandermonde system of equations, Math. Comp. 24 (1970) 893–903.
[12] P.T. Boggs, J.W. Tolle, Sequential quadratic programming, Acta Numerica 4 (1995) 1–51.
[13] J.R. Bunch, L. Kaufman, B.N. Parlett, Decomposition of a symmetric matrix, Numer. Math. 27 (1976) 95–109.
[14] J.R. Bunch, B.N. Parlett, Direct methods for solving symmetric inde�nite systems of linear equations, SIAM J.

Numer. Anal. 8 (1971) 639–655.
[15] C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining Knowledge Discovery 2

(1998) 121–167.
[16] T.J. Carpenter, D.F. Shanno, An interior point method for quadratic programs based on conjugate projected gradients,

Comput. Optim. Appl. 2 (1993) 5–28.
[17] Y. Censor, Row-action methods for huge and sparse systems and their applications, SIAM Rev. 23 (1981) 444–466.
[18] S. Chandrasekaran, I.C.F. Ipsen, On rank-revealing factorisations, SIAM J. Matrix Anal. Appl. 15 (1994) 592–622.
[19] P. Chin, A. Vannelli, Iterative methods for the augmented equations in large-scale linear programming, Technical

Report UWE& CE-94-01, Department of Electrical and Computer Engineering, University of Waterloo, October
1994.

[20] C.K. Chui, An Introduction to Wavelets, Academic Press, New York, 1992.
[21] A.R. Conn, N.I.M. Gould, P.L. Toint, Methods for nonlinear constraints in optimization calculations, in: I.S.

Du�, G.A. Watson (Eds.), The State of the Art in Numerical Analysis, Clarendon Press, Oxford, England, 1997,
pp. 363–390.



D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 463

[22] R.W. Cottle, J.-S. Pang, R.E. Stone, The Linear Complementarity Problem, Academic Press, New York, 1992.
[23] M.G. Cox, The least squares solution of overdetermined linear equations having band or augmented band structure,

IMA J. Numer. Anal. 1 (1981) 3–22.
[24] G. Cybenko, Fast Toeplitz orthogonalization using inner products, SIAM J. Sci. Statist. Comput. 8 (1987) 734–740.
[25] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.
[26] R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982) 400–408.
[27] C.J. Demeure, Fast QR factorization of Vandermonde matrices, Linear Algebra Appl. 122 (3=4) (1989) 165–194.
[28] J.E. Dennis Jr., J.J. Mor�e, Quasi-Newton methods, motivation and theory, SIAM Rev. 19 (1977) 46–89.
[29] I.S. Du�, A.M. Erisman, J.K. Reid, Direct Methods for Sparse Matrices, Clarendon Press, Oxford, 1986.
[30] S.W. Ellacott, Aspects of the numerical analysis of neural networks, Acta Numer. 3 (1994) 145–202.
[31] A.V. Fiacco, G.P. McCormick, Nonlinear Programming : Sequential Unconstrained Minimization Techniques, Wiley,

New York, 1968 Reprint: Volume 4 of SIAM Classics in Applied Mathematics, SIAM Publications, Philadelphia,
PA 19104–2688, USA, 1990).

[32] A.V. Fiacco (Ed.), Mathematical Programming with Data Perturbations, Marcel Dekker, New York, 1998.
[33] R. Fletcher, Practical Methods of Optimization, Wiley, New York, 1987.
[34] R. Fletcher, C.M. Reeves, Function minimization by conjugate gradients, Comput. J. 7 (1964) 149–154.
[35] A. Forsgren, P.E. Gill, J.R. Shinnerl, Stability of symmetric ill-conditioned systems arising in interior methods for

constrained optimization, SIAM J. Matrix Anal. Appl. 17 (1996) 187–211.
[36] R.W. Freund, F. Jarre, A QMR-based interior-point algorithm for solving linear programs, Technical Report,

AT& T Bell Laboratories and Institut f�ur Angewandte Mathematik und Statistik, 1995.
[37] P.E. Gill, W. Murray, M.H. Wright, Practical Optimization, Academic Press, New York, 1981.
[38] J. Nocedal, Large Scale Unconstrained Optimization, in: I.S. Du�, G.A. Watson (Eds.), The State of the Art in

Numerical Analysis, Clarendon, Oxford, UK, 1997, pp. 311–338.
[39] C.F. Gauss, Theory of the Combination of Observations Least Subject to Errors, Part One, Part Two, Supplement,

SIAM, Philadelphia, PA, 1995 (Translated from the Latin by G. W. Stewart).
[40] J.A. George, J.W.-H. Liu, Computer Solution of Large Sparse Positive De�nite Systems, Prentice-Hall, Englewood

Cli�s, NJ, 1981.
[41] G. Golub, Numerical methods for solving least squares problems, Numer. Math. 7 (1965) 206–216.
[42] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1996.
[43] C.C. Gonzaga, Path-following methods for linear programming, SIAM Rev. 34 (1992) 167–224.
[44] P.C. Hansen, H. Gesmar, Fast orthogonal decomposition of rank de�cient Toeplitz matrices, Numer. Algorithms 4

(1993) 151–166.
[45] Harwell subroutine library, HSL O�ce, Culham, Oxon OX14 3ED, United Kingdom, http:==www.cse.

clrc.ac.uk=Activity=HSL.
[46] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Standards

49 (1952) 409–436.
[47] N.J. Higham, Error analysis of the Bj�orck-Pereyra algorithms for solving Vandermonde systems, Numer. Math. 50

(1987) 613–632.
[48] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[49] P.J. Huber, Robust estimation of a location parameter, Ann. Math. Statist. 35 (1964) 73–101.
[50] P.J. Huber, Robust Statistics, Wiley, New York, 1981.
[51] T. Kailath, A.H. Sayed, Displacement structure: theory and applications, SIAM Rev. 37 (1995) 297–386.
[52] N.K. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373–395.
[53] N.K. Karmarkar, K.G. Ramakrishnan, Computational results of an interior point algorithm for large scale linear

programming, Math. Programming 52 (1991) 555–586.
[54] R.B. Kellogg, T.-Y. Li, J.A. Yorke, A constructive proof of the Brouwer �xed-point theorem and computational

results, SIAM J. Numer. Anal. 13 (1976) 473–483.
[55] L.G. Khachian, A polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR 244 (1979) 1093–1096.
[56] V. Klee, G.J. Minty, How good is the simplex algorithm? In: O. Shisha, (Ed.), Inequalities III, Academic Press,

New York, 1972, pp. 159–175.
[57] T. Kolda, D.P. O’Leary, L. Nazareth, BFGS with update skipping and varying memory, SIAM J. Optim. 8 (1998)

1060–1083.



464 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

[58] H.T. Kung, C.E. Leiserson, Introduction to VLSI systems, Addison-Wesley, Reading, MA, 1980.
[59] C.L. Lawson, R.J. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood Cli�s, NJ, 1974; reprinted by

SIAM, Philadelphia, PA, 1995.
[60] A.S. Lewis, M.L. Overton, Eigenvalue optimization, Acta Numer. 5 (1996) 149–190.
[61] M. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second-order cone programming, Linear Algebra

Appl. 284 (1998) 193–228.
[62] D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1984.
[63] I.J. Lustig, E. Rothberg, Gigaops in linear programming, Technical Report, Silicon Graphics, 1995.
[64] I.J. Lustig, R.E. Marsten, D.F. Shanno, Interior point methods for linear programming: computational state of the

art, ORSA J. Comput. 6 (1) (1994) 1–14.
[65] S. Mehrotra, Implementation of a�ne scaling methods: Approximate solutions of systems of linear equations using

preconditioned conjugate gradient methods, ORSA J. Comput. 4 (2) (1992) 103–118.
[66] K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann Verlag, Berlin, Germany,

1988.
[67] J.G. Nagy, Toeplitz least squares computations, Ph.D. Thesis, North Carolina State University, Raleigh, NC, 1991.
[68] S.C. Narula, Optimization techniques in linear regression: a review, TIMS=Stud. Management Sci. 19 (1982) 11–29.
[69] S.G. Nash, Preconditioning of truncated-Newton methods, SIAM J. Sci. Statist. Comput. 6 (1985) 599–616.
[70] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp. 35 (1980) 773–782.
[71] J. Nocedal, Theory of algorithms for unconstrained optimization, Acta Numerica 1 (1992) 199–242.
[72] D.P. O’Leary, A discrete Newton algorithm for minimizing a function of many variables, Math. Programming 23

(1982) 20–33.
[73] D.P. O’Leary, Robust regression computation using iteratively reweighted least squares, SIAM J. Matrix Anal. Appl.

11 (1990) 466–480.
[74] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New

York, 1970.
[75] M. Overton, H. Wolkowicz, Forward: special issue on semide�nite programming, Math. Programming 77 (1997)

105–110.
[76] H. Park, L. Eld�en, Stability analysis and fast algorithms for triangularization of Toeplitz matrices, Numer. Math. 76

(1997) 383–402.
[77] G. Peters, J.H. Wilkinson, The least squares problem and pseudo-inverses, Comput. J. 13 (1970) 309–316.
[78] E. Polak, G. Ribi�ere, Note sur la convergence de methodes de directions conjug�ees, Rev. Francaise Informat

Recherche Operationelle 3eAnn�ee 16 (1969) 35–43.
[79] L.F. Portugal, M.G.C. Resende, G. Veiga, J.J. J�udice, A truncated primal-infeasible dual-feasible network interior

point method, Networks (2000), to appear.
[80] J.K. Reid, A Note on the least squares solution of a band system of linear equations by Householder reductions,

Comput J. 10 (1967) 188–189.
[81] M.A. Saunders, Cholesky-based methods for sparse least squares: the bene�ts of regularization, in: L. Adams,

J.L. Nazareth (Eds.), Linear and Nonlinear Conjugate Gradient-Related Methods, SIAM, Philadelphia, PA, 1996, pp.
92–100.

[82] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, R.C. Whaley, ScaLAPACK Users’ Guide, SIAM, Philadelphia, PA, 1997;
http:==www.netlib.org=scalapack=index.html.

[83] D.F. Shanno, E.M. Simantiraki, Interior point methods for linear and nonlinear programming, in: I.S. Du�, G.A.
Watson (Eds.), The State of the Art in Numerical Analysis, Clarendon Press, Oxford, England, 1997, pp. 339–362.

[84] G.W. Stewart, Modifying pivot elements in Gaussian elimination, Math. Comp. 28 (126) (1974) 537–542.
[85] G.W. Stewart, On the early history of the singular value decomposition, SIAM Rev. 35 (1993) 551–566.
[86] D.R. Sweet, Fast Toeplitz orthogonalization, Numer. Math. 43 (1984) 1–21.
[87] T. Terlaky (Ed.), Interior Point Methods of Mathematical Programming, Kluwer Academic Publishers, Boston, 1996.
[88] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
[89] V. Vapnik, A. Ya. Lerner, Pattern recognition using generalized portraits, Automat. Remote Control 24 (1963)

709–719; transl. from Avtomatika i Telemekhanika 24 (6) (1963) 774–780.
[90] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cli�s, NJ, 1962.



D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 465

[91] W. Wang, D.P. O’Leary, Adaptive use of iterative methods in predictor-corrector interior point methods for linear
programming, Technical Report CS-TR-4011, Computer Science Department, University of Maryland, College Park,
MD, April 1999, Numer. Algorithms, to appear.

[92] W. Wang, D.P. O’Leary, Adaptive use of iterative methods in interior point methods for linear programming,
Technical Report CS-TR-3560, Computer Science Department, University of Maryland, November 1995,
http:==www.cs.umd.edu=Dienst=UI=2.0=Describe=ncstrl.umcp=CS-TR-3560.

[93] L.T. Watson, M. Sosonkina, R.C. Melville, A.P. Morgan, H.F. Walker, Algorithm 777: HOMPACK90: a suite of
Fortran 90 codes for globally convergent homotopy algorithms, ACM Trans. Math. Software 23 (1997) 514–549.

[94] P.- �A. Wedin, Perturbation theory for pseudo-inverses, BIT 13 (1973) 217–232.
[95] M.H. Wright, Interior methods for constrained optimization, Acta Numerica 1 (1992) 341–407.
[96] T.J. Ypma, Historical development of the Newton-Raphson method, SIAM Rev. 37 (1995) 531–551.


