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Approximating the number of monomer-dimer coverings in periodic lattices
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Our starting point is an algorithm of Kenyon, Randall, and Sinclair, which is built upon the ideas of Jerrum
and Sinclair, giving an approximation to crucial parameters of the monomer-dimer covering problem in poly-
nomial time. We make two key improvements to their algorithm: we greatly reduce the number of simulations
that must be run by estimating good values of the generating function parameter, and we greatly reduce the
number of steps that must be taken in each simulation by aggregating to a simulation with at most five states.
The result is an algorithm that is computationally feasible for modestly sized meshes. We use our algorithm on
two- and three-dimensional problems, computing approximations to the coefficients of the generating function
and some limiting values.
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I. INTRODUCTION

We consider the monomer-dimer covering problem fo
rectangular lattice with periodic boundary conditions.
three dimensions, for example, the lattice isn3m3p, with
each vertex connected by an edge to its six nearest ne
bors. An edge in this lattice corresponds to a possible p
tion for a dimer. A dimer covering is a choice of N
5nmp/2 edges in this graph that defines a complete ma
ing of vertices, i.e., each vertex in the graph is contained
exactly one edge of a dimer covering. Amonomer-dimer
coveringis a selection of fewer thanN edges in which each
vertex is contained in at most one edge; the vertices
contained in any edge are termed monomers.

In this work, we concentrate on two- and thre
dimensional lattices but the algorithms are applicable
other dimensions. For simplicity of notation we assumem
5n and, in three dimensions,p5n, but this is not essentia
to the algorithms.

Our starting point is an algorithm of Kenyon, Randa
and Sinclair ~KRS! @1#, which is built upon the ideas o
Jerrum and Sinclair@2#, giving an approximation to crucia
parameters of the covering problem in polynomial time. W
make two key improvements to their algorithm: we grea
reduce the number of simulations that must be run and
number of steps that must be taken in each simulation.
result is an algorithm that is computationally feasible
modestly sized meshes.

In Sec. II we give some background on this problem a
in Sec. III we summarize the algorithm of Kenyon, Randa
and Sinclair. Section IV presents the improved algorith
A-PRE, ~aggregation-prediction! explaining how to reduce
the number of simulations. In Sec. V we make the key
servation that reduces the number of steps.
1063-651X/2001/64~1!/016701~6!/$20.00 64 0167
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We conclude with some experimental results in Sec.
and some final remarks in Sec. VII.

II. BACKGROUND

This work is an instance of the general technique of
stating questions in statistical physics as combinato
counting problems for which reasonably efficient Mon
Carlo approximation techniques may exist. The monom
dimer problem has its origin in crystal physics where it h
been used to model behavior of systems of diatomic m
ecules~‘‘dimers’’ ! adsorbed on the surface of a crystal.
the three-dimensional case, it occurs in the theory of m
tures and in the cell-cluster theory of liquids. A classic
reference is Kastelyn@3#. More general dimer counting ques
tions occur in formulations of the Ising problem as counti
matchings on a decorated lattice. A recent theoretical tr
ment for the Ising model is given by Regge and Zecchina@4#

One of our principal results is based on the idea of ‘‘a
gregating’’ a Markov chain to one having many fewer agg
gated states@5,6#. In our case, we use aggregation to estim
how many steps to wait between collecting samples in
original chain and where to place the maximum of the pro
ability distribution function. This has some similarities wit
the notion of multicanonical Monte Carlo@7#.

III. THE KRS ALGORITHM

Jerrum and Sinclair@2# presented a randomized approx
mation scheme for approximating the permanent of a
matrix by studying the behavior of an associated Mark
chain. They showed that if the Markov chain had therapid
©2001 The American Physical Society01-1
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mixing property ~i.e., within a short time after beginning
random walk, the current state is independent of the ini
state!, then the approximation could be computed in polyn
mial time. More precisely, they can approximate the perm
nent with relative error bounded bye ~with high probability!
in time that is polynomial in the size of the problem and
1/e. They proposed using this scheme to compute the p
tion function for the monomer-dimer covering problem.

The ideas of Jerrum and Sinclair were extended
Kenyon, Randall, and Sinclair@1#, and their paper is the
starting point for our work. They proved that the Jerrum a
Sinclair scheme was applicable to a broad class of lat
problems. They gave a proposal for approximating the co
ficients of the generating function

Z~m!5(
s50

N

as~N!ms,

whereas(N) is the number of monomer-dimer coverings
the lattice containing exactlys dimers. We will abbreviate
as(N) by as when the size is clear from the context. The
coefficients are estimated through knowledge of the equ
rium distribution of a certain Markov chainM in which
adjacent states correspond to monomer-dimer coverings
differ by a single dimer. The equilibrium distribution give
the probabilities of being in a state withi dimers, i
51, . . . ,N, after a large number of steps through the cha
The structure of the Markov chain is determined by the
tice of interest,G5(V,E), with uVu52N vertices in the set
V and uEu5M edges inE.

Kenyon, Randall, and Sinclair gather data by taking
random walk controlled by the chainM. In principle, a
single Markov chain suffices but in practice they use a
quence of chains, each having the same structure but
transition probabilities depending on a parameterm, in order
to emphasize a certain range of states and get more acc
estimates of their equilibrium probabilities.

For a fixed value ofm, Kenyon, Randall, and Sinclai
determine the equilibrium~steady-state! distribution by tak-
ing O(N2) independent samples fromM, with O(m8N2M )
steps between sampling wherem85max(m,1).

The simulation proceeds as follows:
With probability 0.5, skip this step; otherwise choose,

random, one of the edges.
~1! If the edge can be added to the match, then add it w

probability paug .
~2! If the edge can be deleted from the match, then de

it with probability pdel .
~3! If the edge can be swapped into the match by rem

ing some other edge, then swap it.
~4! If the edge can only be added into the match by

leting two other edges, then do nothing.
The probabilities of adding or deleting edges in the ma

are defined aspaug5min(1,m) andpdel5min(1,1/m). Thus,
for low values ofm, we are likely to spend most of the tim
in states with a small number of dimers, but asm increases,
we are more likely to visit states with a large number
dimers.
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The device of skipping the step with probability 0.5
included to permit a bound on the mixing rate of the cha
which, in turn, gives a bound on the number of steps nec
sary between independent samples@2#.

This simulation is run for

m15
1

2uEu
, ~1!

m i5S 11
2

NDm i 21 , i 52,3,. . . , ~2!

where the largest value ofm should be aboutaN21 /aN .
From the equilibrium distribution, the probabilities of bein
in a state withi dimers after a large number of steps throu
the chain, they calculate ratiosZ(m i 21)/Z(m i), and from
these they obtain recursive estimates of thea coefficients.

IV. THE A-PRE ALGORITHM

The KRS algorithm is costly for two reasons.
~1! The authors determine the number of steps that m

be taken between recorded samples, based on the m
rate of the underlying Markov chainM, to be O(mN2M ).
We show that it is sufficient to base this number on t
mixing rate of an aggregated chainM5.

~2! The simulation must be run for many values ofm. The
authors note that a sequence of suitablem values can be
determined ‘‘by experiment,’’ but we reduce the number
values form i to just N by prediction of the next value base
on data gathered for the current value. Our method is in
same spirit as multicanonical Monte Carlo@7#.

We will call this algorithm theaggregation-prediction al-
gorithm, or the A-PRE algorithm.

We discuss the first cost reduction in Sec. V. To acco
plish the second reduction, we use three key relations gi
in the Kenyon, Randall, and Sinclair paper.

~1! Let t i(m̂) be the time that the simulation form5m̂

spent in states withi dimers. Thent i(m̂) is an estimate of the
quantityaim̂Z(m̂), so the coefficientsai can be estimated by
the recursion

ai5
ai 21 t i~m̂ !

m̂ t i 21~m̂ !
. ~3!

~2! Although any value ofm̂ suffices, there is less unce
tainty in the computed value ofai if we pick a value ofm̂ for
which the simulation spends most of its time in states witi

and i 21 dimers, and for which the ratiot i(m̂)/t i 21(m̂)'1.
Thus, from Eq.~3!, the ideal value for computingai is

m̂5m i[
ai 21

ai
. ~4!

~3! The proportion of time that the simulation form̂
spends in states withs dimers is an unbiased estimator of

asm̂
s

Z~m̂ !
.

1-2
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APPROXIMATING THE NUMBER OF MONOMER-DIMER . . . PHYSICAL REVIEW E 64 016701
Note thata051, since there is only one covering with n
dimers, anda15M . Thus, the optimal value ofm from
which to estimatea1 is

m15
1

M
.

Using this value ofm, our simulation should spend most o
its time in states with 0 or 1 dimers, but it also should spe
a significant amount of time in states with 2 dimers, whi
allows us to estimate the optimal value ofm from which to
estimatea2. Equations~3! and ~4! bring us to the formula

m i 115
ai

ai 11
'

ai

ai t i 11~m i !

m i t i~m i !

so we choose

m i 115m i

t i~m i !

t i 11~m i !
, i 51, . . . ,M21. ~5!

We could iterate this process to improvem i 11, but we found
that without iteration the ratiost i(m i 11)/t i 21(m i 11) were
most often between 0.95 and 1.05.

Thus we can estimate the natural logs ofai and Z(m i)
~since the quantities themselves are too large to st!
through the recursions

ln ai5 ln ai 211 ln
t i~m i !

m i t i 21~m i !
, ~6!

ln Z~m i !5 ln ai1 i ln m i2 ln@ t i~m i !/S#, ~7!

whereS is the number of states recorded during the simu
tion.

Using Eq. ~2!, we see that this drops the number ofm
values necessary from

ln aN212 ln aN1 ln 21 ln M

ln~112/N!

to N. This is important since, as Kenyon, Randall, and S
clair note, ‘‘the running time of the~original! algorithm,
though polynomial, is not quite small enough to be genuin
practical.’’

The bookkeeping involved in the simulation is minim
and can be arranged as follows. Color the vertices of
lattice alternately red and black so that no red vertex ha
red neighbor and no black vertex has a black one. Then
need to update three arrays: Entries in arrayrmatch(i) record
the index of the black vertex matched with the red vertei,
or a zero for unmatched red vertices; entries in ar
cmatch(j) record the index of the red vertex matched w
black vertexj, or a zero for unmatched black vertices; thesth
entry in arrayt records the number of times we recorded
state withs matched vertices~dimers!.
01670
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V. TWO MARKOV PROCESSES: THE ORIGINAL AND
THE AGGREGATED

In order to reduce the number of steps between recor
sample values, we need to understand the relationship
tween two Markov chains.

Let T be the transition probability matrix for the Marko
chainM corresponding to a specific value ofm. Assume that
we have ordered the states so that the state correspondi
no dimers is first, followed by theM states corresponding t
one dimer, and so forth, up to the states that haveN dimers.
Note that if we are currently in a state ofM that hask
dimers, then at the next time, we must be in a state that
either k21, k, or k11 dimers, Thus the matrixT is block
tridiagonal, where thekth block corresponds to states withk
dimers:

T53
T0,0 T0,1

T1,0 T1,1 T1,2

. . .

. . .

TN21,N22 TN21,N21 TN21,N

TN,N21 TN,N

4 .

The blockTi j in this matrix contains the transition probabil
ties from states withj dimers to states withi dimers for i
50, . . . ,N and j 5 i 21,i ,i 11 ~as long as these values ofj
are between 0 andN).

Since T is a probability matrix, all entries are non
negative and the column sums are one, so thateTT5eT,
where e is the column vector of all 1’s. SoeT is the left
eigenvector ofT corresponding to the eigenvalue 1, and w
will call the normalized right eigenvectorp, so thatTp5p
and eTp51. Thusp is the stationary vector forT, and we
will refer to the components corresponding to states witk
dimers as the subvectorpk .

Now consider a related but aggregated random proc
As we step through the Markov chainM, if we are currently
in a state withk dimers, then we will say that we are in sta
k of the aggregated process. We need to understand the
sitions in this aggregated process. In the original proces
we are in thei th state among those withk dimers, then the
probability of transitioning to a state withk21 dimers is the
sum of the elements in thei th column of the matrixTk21,k .
The stationary probability that we are in thisi th state is the
i th component ofpk . Therefore, the probability of making
transition from a state withk21 dimers to a state withk
dimers isek21

T Tk21,kpk , whereek21 is a vector of all 1’s,
with length equal to the number of rows ofTk21,k . Further,
the probability of making such a transition, given that we a
in a state with k dimers, is ek21

T Tk21,kpk /dk , with dk

5pk
Tek .

Similarly, the probability that the next state also hask
dimers isek

TTk,kpk /dk , while the probability of making a
transition from ak-dimer state to one withk11 dimers is
ek11

T Tk11,kpk /dk .
1-3
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BEICHL, O’LEARY, AND SULLIVAN PHYSICAL REVIEW E 64 016701
Thus, the transition matrix for the aggregated processMa
is

Ta5VTPTD21,

where the (N11)3K matrix P is defined by

P53
p0

T

p1
T

.

.

pN21
T

pN
T
4 ,

K is the number of different monomer-dimer coverings, a

V53
e0

T

e1
T

.

.

eN21
T

eN
T
4 .

The matrixD5PVT is a diagonal matrix, with diagonal en
triesdk , and we will refer to the vector with entriesdk asd.

The aggregated processMa is also a Markov chain, as w
now prove.

Note thatTa is an (N11)3(N11) tridiagonal matrix.
This matrix has two interesting properties: first,

@1,1, . . . ,1#Ta5@1,1, . . . ,1#VTPTD21

5eTTPTD21

5eTPTD215dTD21

5@1,1, . . . ,1#

and second,

Tad5TaD@1,1, . . . ,1#T

5VTPTD21D@1,1, . . . ,1#T

5VTPT@1,1, . . . ,1#T

5VTp

5Vp

5d.

Thus, since the entries ofTa are non-negative, this matrix i
also a probability matrix with stationary vectord for the
corresponding Markov chainMa

Note that the stationary vectord determines the valuest i
in Eq. ~3! and thus tells us everything we need to know
order to compute the valuesa andZ.
01670
d

In fact, the Markov chainMa gives us more information
than we need, since, for a given value ofm, we need only
two entries ind in order to estimateai , and then only the
following one to estimate the next usefulm value. Therefore,
we can aggregate to a five-state Markov chainM5, in which
we gather into a single state those states ofMa correspond-
ing to fewer thani dimers, and into another state those co
responding to more thani 12 dimers.~There are fewer than
five states ifi 5N21 or i 5N.! The transition matrixT5 for
this chain is also tridiagonal.

Initially we do not know the transition probabilities fo
T5, but we can step through the corresponding aggrega
chainM5 by generating random samples using the chainM.
The data gathered in this way gives us an approximation
the matrixT5, and the stationary vector for this chain give
an alternate way to computeai .

The time required to estimate the parametersas using the
A-PRE algorithm depends on the number of samples
corded in each Monte Carlo simulation, and on the num
of steps necessary to take between samples to ensure
pendence.

~1! Number of samples: In estimatingas we try to choose
m so that the states with cardinalitys are maximally likely.
Thus, the proportion that we are trying to estimate is at le
(11N)21, ‘‘so by a routine variance calculation a sample
size only O(@N#) suffices for a good statistical estimate.
@1#

~2! Number of steps between samples: Jerrum and S
clair ~Ref. @22# in Ref. @1#! have shown that the ‘‘mixing
time’’ of the original chain isO(mN2M ). Clearly, though,
the only relevant parameter is the mixing time of the agg
gated chainM5 and this is determined experimentally b
computing the nonunit eigenvalue closest in modulus to

Therefore, each simulation in the A-PRE algorithm r
quires a manageable number of steps. As a practical ma
we run the simulation withs5N steps between sample
saving the transition probabilities that we observed for e
aggregated state. We then compute the subdominant ei
value of the estimated transition matrix. We use this to ch
the value ofs. If necessary, we increase the value and rer

A serious problem arises with this approach when the g
size becomes large: in single or double precision, the s
dominant eigenvalue can be indistinguishable from 1, and
this case the estimated number of steps between sam
becomes infinite. There are two possible fixes for this pr
lem.

~1! The ~integer! counts that contribute to the entries
our approximation toT5 are known exactly, as are the no
malizing constants that make the column sums equal to
Thus we could use symbolic computation to find a rigoro
upper bound on the subdominant eigenvalue of our 535
matrix, no matter how many digits of it agree with 1.~Note
that this a rigorous bound for the eigenvalue of the exp
mental matrix, which is only an approximation to the tran
tion matrix corresponding to the underlying probabilities!
The bound is computed by symmetrizing the tridiagonal m
trix and then using the Sturm sequence properties of
leading principal minors in a bisection algorithm@8#.

~2! Kenyon, Randall, and Sinclair proved that the numb
1-4
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of steps necessary between recorded samples is linearm.
We could fit a line to the number of steps determined
small values ofm in order to determine the number of ste
for large values. We tested this by estimating the values f
83838 grid for m.1000 using data for 1<m<1000, and
the results were quite good, giving neither a gross unde
timate nor a gross overestimate.

VI. EXPERIMENTAL RESULTS

A. Experiments on two-dimensional lattices

We ran the A-PRE algorithm on two-dimensional lattic
with n3n vertices and periodic boundary conditions. F
each value ofm, the number of moves between recordingsa
was determined by usingn2 times 1000 steps to estimate th
subdominant eigenvaluel of T5, and then computing the
number for which

la,.05.

The total number of recorded moves to determine each s
results in the table was 10 000.

There are two interesting parameters that can judge
effectiveness of these algorithms@9#,

k5 lim
n→`

@a1~n!1•••1aN~n!#1/n2
51.940 215 351•••,

FIG. 1. Estimated coefficients of the generating function fo
20320 grid.

TABLE I. Results for two-dimensional lattices.

n k f a Time ~sec!

4 1.9369 1.4142 82–304 23
6 1.9404 1.3741 176–1291 107
8 1.9369 1.3525 204–4235 302
10 1.9471 1.3568 320–7690 709
12 1.9437 1.3483 417–17049 1408
14 1.9422 1.3442 470–31923 3586
01670
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f 5 lim
n→`

@aN~n!#1/n2
51.338 515 152 . . . .

Table I reports our computed estimates ofk andf, as well
as the range ofa and the total execution time in seconds f
the algorithm on a Sun Ultra-60.

In contrast, the KRS algorithm skipsO(mN2M ) steps be-
tween observations. Thus, for example, theira is 2048–
27 670 forn54 and 1 075 648–1.34e109 for n514, assum-
ing that the proportionality constant is 1. In order to getN2

5196 recorded steps forn514, they require 8.11e111
steps, rather than the 7.07e109 steps we used to get 10 00
recorded steps.

Figure 1 shows the estimated coefficients from the
320 simulation.

As in Ref. @10#, we fit the data points lnaN /N2 to the
functionb1g/N2. The resulting value ofb is an estimate of
the limiting value of lnaN . Using the data in the table, plu
the value 116.0882 for a 20320 grid, gives an estimate o
0.2914.

B. Experiments on three-dimensional lattices

We ran the algorithms on three-dimensional lattices w
n3n3n vertices and periodic boundary conditions. Aga
the total number of recorded moves was 10 000.

We compute two parameters@11#,

k5~a11•••1ak!
1/n3

,

FIG. 2. Estimated coefficients of the generating function for
83838 grid.

TABLE II. Results for three-dimensional lattices.

n k ln a Time ~sec!

4 2.1911 0.4734 320–7060 430
6 2.1918 0.4588 708–32270 3815
8 2.1968 0.4546 1.0e103–4.3e105 21746
1-5
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0.440 076< lim
n→`

ln<0.463 107,

whereln5 ln@aN(n)#/n3.
Beichl and Sullivan@10# have estimated the limiting valu

of ln as 0.4466 . . . . Table II shows our results.
Figure 2 shows the estimated coefficients from the 838

38 simulation.
Fitting the data points lnaN /N3 to the functionb1g/N2

yields an estimate of 0.4479 for the limiting value.

VII. SOME FINAL COMMENTS

We also experimented with two variants on the algorith
presented in this paper.

~1! More than 50% of the steps in the Kenyon, Rand
and Sinclair are null steps, where we either skip the s
entirely, or we decide not to do the add or delete, or ther
no possible swap with the chosen edge. We can avoid th
null steps by using the Monte Carlo time proposal of Bor
Kalos, and Lebowitz@12#. Because the A-PRE algorithm re
quires an estimate of the time spent in various states,
necessary to keep a running account of the number of
tropolis steps that would have passed between actual mo
This is possible using Monte Carlo time as in@13# and re-
s

01670
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fined in @14#. The values ofm, the number of steps, and th
number of steps between recordings are the same as fo
KRS Algorithm, but we now keep track of the edges th
could be added to the current match and the edges that c
be swapped.

~2! Since swaps are quite expensive in the Monte Ca
time algorithm, we are motivated to remove that option a
just allow a step in the Markov chain to add or delete
edge. This increases the mixing time of the chain, howev
so the number of steps in the simulation increases.

We found that the Monte Carlo time algorithm was n
competitive, since its overhead per step was much grea
The ‘‘no swap’’ algorithm was not very robust on very sma
or very large values ofm. Possibly we could use the ‘‘no
swap’’ algorithm on intermediate values ofm and use swaps
on large and smallm, in order to make the no-swap algo
rithm reliable and perhaps competitive in time with th
A-PRE algorithm.

In summary, we have made two key improvements to
algorithm for determining parameters for the monom
dimer covering problem: we greatly reduced the number
simulations that must be run and the number of steps
must be taken in each simulation. The result is an algorit
that is computationally feasible for modestly sized meshe
d.
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