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Abstract. Rosen, Park, and Glick proposed the structured total least norm (STLN) algorithm
for solving problems in which both the matrix and the right-hand side contain errors. We extend
this algorithm for ill-posed problems by adding regularization, and we use the resulting algorithm to
solve blind deconvolution problems as encountered in image deblurring when both the image and the
blurring function have uncertainty. The resulting regularized structured total least norm (RSTLN)
algorithm preserves any affine structure of the matrix and minimizes a discrete �p-norm measure
of the error, where p = 1, 2, or ∞. We demonstrate the effectiveness of these algorithms for blind
deconvolution.
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1. Introduction and background. Most image recording devices fail to record
the intensity of a given image scene exactly. Each recorded image section (or pixel)
describing the corresponding scene has errors in the form of either random noise, or
blurring, or both. Blurring occurs when the recorded intensity of a given pixel is in
effect influenced by the intensity of neighboring sections. Because of these imperfec-
tions in recorded images, it is often necessary to apply deblurring techniques to obtain
clearer images.

The problem of image deblurring [6, 11] is modeled as an integral equation of the
first kind, ∫

Ω

a(s, t)x(t) dt = b(s) − r(s) = bc(s),(1.1)

where s, t ∈ R2 are the spatial coordinates, Ω the domain or (nonzero) support of
the image, x : R2 → R the true image, a : R4 → R the point spread function, and
r : R2 → R random noise. The function b(s) is the observed, blurred, noisy image,
and bc(s) is the noiseless blurred image.

In particular, if it is assumed that a(s, t) is spatially invariant, that is, its effect
depends only on the spatial distance between s and t, then the preceding equation
represents a convolution integral, where a(s, t) = a(s − t). In this case, bc(s) is the
result of convolving a(s) and x(s).
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Since recording devices make only a finite number of measurements, the imag-
ing model can be discretized and (1.1) can be written as a matrix equation. The
discretized model is

Ax = b− r,(1.2)

where the matrix A is the discretized counterpart of a(s, t), and x and b also are
the discretized versions of the corresponding continuous functions. If the blurring
function a is assumed to be spatially invariant, then the matrix A has a special
structure: for 1-dimensional signals it is Toeplitz and for 2-dimensional signals it is
block Toeplitz with Toeplitz blocks.

If the cause of the blur, and hence a, is not known exactly, then our estimate of A
has errors and the problem is known as blind deconvolution. In this case the model
in (1.2) should be replaced by

(A+ E)x = b− r,(1.3)

a problem of the total least norm variety. If the matrix A has no special structure and
the error ‖[E, r]‖p is measured using the Frobenius norm, then the problem can be
solved using the total least squares (TLS) method [5]. For image processing problems,
the matrix A has a special structure, and it is desirable to enforce the same structure
on the error matrix E. Rosen, Park, and Glick [23] developed the structured total
least norm (STLN) method to solve such problems.

While STLN is useful for many structured linear problems, the blind deconvolu-
tion problem as encountered for image deblurring is generally ill-posed [9]. In partic-
ular, the matrix A is often ill-conditioned, resulting in poor recovered images when
STLN is applied.

Regularization methods must be implemented in order to stabilize STLN and to
obtain useful results. In this paper it is shown how to implement Tikhonov regu-
larization [20, 26] to arrive at the regularized structured total least norm (RSTLN)
algorithm. Implementation of Tikhonov regularization for constrained TLS problems
had been developed previously [15, 17]. The first of these works predated the work
of Rosen, Park, and Glick on the simpler problem. These works, however, focused
solely on the 2-norm case. The contributions herein are the extension for p = 1 and
p = ∞ norms and the comparison of methods. In the p = 1 and p = ∞ cases, the
main computational task lies in solving a linear program (LP).

The paper is structured as follows. In the next section the STLN method is
introduced and derived. In section 3 the general RSTLN method is introduced and
derivations are presented for the p = 1, 2, and ∞ cases. Finally, in section 4 we
present numerical results, and in section 5 we draw conclusions.

2. Derivation of the STLN method. In order to understand the RSTLN
method, a brief derivation of STLN based on [23] is given. For a more thorough
derivation, the reader is referred to [23] and [12].

2.1. TLS and STLN. The TLS [5] formulation for solving problems as in (1.3)
is to find a matrix E and a vector r such that

‖[E, r]‖F(2.1)

is minimized, where F denotes the Frobenius norm and r = b − (A + E)x is the
residual. If the matrix A has a special structure which the user wants to enforce
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on E, then the TLS formulation is not applicable. Instead, the STLN formulation
proves useful.

As in [23], assume that the matrix E ∈ Rm×n is parameterized by elements of
the vector α ∈ Rq, q < mn. Then the residual is a function of α and x. The STLN
formulation is to find vectors α and x such that∥∥∥∥ r(α, x)Dα

∥∥∥∥
p

(2.2)

is minimized, where p = 1, 2, or ∞ and D is a diagonal weighting matrix through
which the size of α is measured. Note that the norm in (2.2) is a norm over the space
of structured matrices crossed with vectors in Rm. For p = 2, it is the same as the
Frobenius norm in (2.1) but, for p = 1 and p = ∞, it is not equivalent to any matrix
norm.

If the elements of E are linear functions of the parameters α, then there exists a
matrix X parameterized by x such that

Xα = Ex.(2.3)

For a detailed description on construction of the matrix X, see [23] and [12]. Note
that if the matrix E is structured, then so is X.

Now let ∆x and ∆E denote small changes in x and E, respectively. Then

X∆α = (∆E)x.(2.4)

If we expand r(α, x) in a Taylor series about [αT xT ]T and ignore second order and
higher terms, we have

r(α+ ∆α, x+ ∆x) ≈ b− (A+ E)x−X∆α− (A+ E)∆x
= r(α, x) −X∆α− (A+ E)∆x.

(2.5)

Hence, we have a linearization of (2.2),

min
∆α,∆x

∥∥∥∥
[
X A+ E
D 0

](
∆α
∆x

)
+

( −r
Dα

)∥∥∥∥
p

.(2.6)

The general idea behind the STLN method is to start with some initial estimates for
x and E, solve the minimization problem in (2.6) for ∆α and ∆x, set x = x+∆x and
α = α + ∆α, and update the residual r and the matrices E and X. The procedure
is repeated iteratively until ‖∆α‖ and ‖∆x‖ are below a specified tolerance, at which
point the algorithm has converged to a solution. For a detailed description the reader
is referred to [23].

3. Derivation of RSTLN. In order to make STLN more robust in the presence
of noise (as is encountered in most image deblurring applications), a form of regu-
larization must be introduced. The method of Tikhonov [26] is implemented herein,
which prevents the solution x from becoming too large. In particular, (2.2) can be
modified to arrive at the RSTLN algorithm. The new problem formulation is to find
vectors α and x so that ∥∥∥∥∥∥

r(α, x)
Dα
λx

∥∥∥∥∥∥
p

(3.1)
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Table 3.1

RSTLN Algorithm

1. Set E = 0m×n and α = 0q×1.
2. Compute x by min

x
‖Ax− b‖p (for p = 2 this is just least squares).

3. Compute X from x and the residual r = b−Ax.
4. For k = 1, 2, . . . until ‖∆x‖, ‖∆α‖ ≤ ε repeat steps 4.1–4.3.

4.1. Solve

min
∆α,∆x

∥∥∥∥∥
[

X A+ E
D 0
0 λI

](
∆α
∆x

)
+

(
−r(α, x)

Dα
λx

)∥∥∥∥∥
p

.

4.2. Set x = x+∆x and α = α+∆α.
4.3. Construct E from α, and X from x and compute

r = b− (A+ E)x.
5. The recovered image is x and the recovered blurring

matrix (A+ E).

is minimized, where λ is a positive scalar known as the regularization parameter and
p = 1, 2, or ∞. More generally, we could replace λx by λLx, where L is an operator
chosen to force some desirable property on the solution x. For example, L might be
a difference operator if we want a smooth image; see, for example [8, sect. 4.3]. For
simplicity, we will write the algorithm for the case L = I, although the generalization
is straightforward.

Using the relation in (2.5) and similar reasoning as for the STLN method, the
linearization of (3.1) results in

min
∆α,∆x

∥∥∥∥∥∥

 X A+ E
D 0
0 λI


( ∆α

∆x

)
+


 −r
Dα
λx



∥∥∥∥∥∥
p

.(3.2)

The general RSTLN algorithm (for arbitrary norm p) is listed in Table 3.1. We re-
mark that Tikhonov regularization can be added in the same manner to the structured
nonlinear total least norm (SNTLN) method [24], a variant of STLN for structured
nonlinear parameter estimation problems. The resulting regularized algorithm is sim-
ilar to RSTLN and may be the focus of future work.

3.1. RSTLN for p = 2. The minimization problem in the RSTLN formulation
is equivalent to minimizing the function

φ(α, x) =
1

2
‖r(α, x)‖2

2 +
1

2
‖Dα‖2

2 +
1

2
‖λx‖2

2.(3.3)

The 2-norm case has the property of differentiability so that Gauss–Newton theory is
applicable. Using similar reasoning as in [23] for the STLN method, it follows that
step 4.1 is a Gauss–Newton method which approximates the Hessian of φ(α, x) by the
positive definite matrix MTM , where

M =


 X A+ E
D 0
0 λI


 .(3.4)

See also [3].
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The least squares normal equations can be solved using the conjugate gradient
method, where the Toeplitz (or block Toeplitz with Toeplitz blocks) structure of M
is exploited. In particular, the FFT is used for efficient computation of matrix-vector
products.

Another, more efficient, approach for p = 2 may be to apply the techniques
of [14] for the nonregularized STLN to RSTLN. In particular, an algorithm based on
the generalized Schur algorithm [16] for solving least squares problems is used which
exploits the structure of the matrix[

X A+ E
D 0

]
.(3.5)

Since the RSTLN matrix M has a similar structure to this, the method in [14] should
be applicable. This may be the focus of future work.

3.2. RSTLN for p = ∞. For both the p = 1 and p = ∞ cases, step 4.1 of the
RSTLN algorithm is an LP. To see this, an approach similar to that in [23] is used.

Let us first consider the derivation for p = ∞. Suppose the original image in
vector form is x ∈ Rn×1, that α ∈ Rq×1, and that the residual r ∈ Rm×1. Then the
optimal function value in step 4.1 is σ̄, where σ̄ is determined from the LP

min
∆α,∆x,σ̄

σ̄

subject to −σ̄em ≤ X∆α+ (A+ E)∆x− r ≤ σ̄em,
−σ̄eq ≤ D∆α+Dα ≤ σ̄eq,
−σ̄en ≤ λ∆x+ λx ≤ σ̄en,

(3.6)

where ek ∈ Rk×1 is a vector of ones.

Using the matrix M we can write the linear programming problem in standard
form,

min
∆α,∆x,σ̄

σ̄

subject to

[
M −em+n+q

−M −em+n+q

] ∆α
∆x
σ̄


 ≤




r
−Dα
−λx
−r
Dα
λx



.

(3.7)

Depending on the method used to solve the LP, it may be useful to consider the
dual formulation. Setting σ = −σ̄, it follows that the dual is

min
yi≥0

rT y1 − αTDy2 − λxT y3 − rT y4 + αTDy5 + λxT y6

subject to

[
MT −MT

eTm+n+q eTm+n+q

]



y1
y2
y3
y4
y5
y6




=




0
0
0
...
0
1



,

(3.8)
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where y1, y4 ∈ Rm×1, y2, y5 ∈ Rq×1, and y3, y6 ∈ Rn×1. System (3.8) can be solved
using any standard simplex or interior point method.

The reader should note that since the matrix M has a special structure (Toeplitz
or block Toeplitz with Toeplitz blocks), any practical implementation of RSTLN for
p = 1 or p = ∞ should exploit this property when solving the LP.

3.3. RSTLN for p = 1. The derivation for the p = 1 case is similar to the
p = ∞ case. Again, let σ̄ be the optimal function value in step 4.1. In particular,
assuming x, α, and r are defined as previously, we have that σ̄ is determined by

min
∆α,∆x,σ̄

σ̄ =

m∑
i=1

σ̄1i
+

q∑
i=1

σ̄2i
+

n∑
i=1

σ̄3i

subject to −σ̄1 ≤ X∆α+ (A+ E)∆x− r ≤ σ̄1,
−σ̄2 ≤ D∆α+Dα ≤ σ̄2,
−σ̄3 ≤ λ∆x+ λx ≤ σ̄3,

(3.9)

where σ̄1 ∈ Rm×1, σ̄2 ∈ Rq×1, and σ̄3 ∈ Rn×1. Using the matrix M we can write the
LP as

min
∆α,∆x,σ̄

σ̄ =

m∑
i=1

σ̄1i +

q∑
i=1

σ̄2i +

n∑
i=1

σ̄3i

subject to

[
M −Im+n+q

−M −Im+n+q

]



∆α
∆x
σ̄1

σ̄2

σ̄3


 ≤




r
−Dα
−λx
−r
Dα
λx



.

(3.10)

As for the p = ∞ case, the user may want to use the dual formulation. Setting
σ = −σ̄, our formulation becomes

min
yi≥0

rT y1 − αTDy2 − λxT y3 − rT y4 + αTDy5 + λxT y6

subject to

[
MT −MT

Im+n+q Im+n+q

]



y1
y2
y3
y4
y5
y6




=




0m×1

0q×1

0n×1

em
eq
en



,

(3.11)

where all yi are as defined previously for the ∞-norm case, and 0k×1 is a vector of
zeros.

3.4. Convergence of RSTLN for p = 1 or p = ∞. As for the STLN
problem, the function minimized in (3.1) is nonconvex, so that there is no guarantee
that the RSTLN algorithm converges to a global minimum. For the p = 2 norm
case the Gauss–Newton theory is applicable: a suitable line search method (see, for
example, [3]) can be used to guarantee convergence to a local minimizer from any
starting point.

For p = 1 and p = ∞, Gauss–Newton theory is not directly applicable since
differentiability is lost. But the essential idea is the same as that for the p = 2 norm.
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In particular, the solutions
[
∆αT ∆xT

]T
to the LPs given in (3.7) and (3.10) can

be thought of as descent directions to the function in (3.1) for the respective p-norm.
Again, in order to guarantee convergence to a local minimizer from any starting point,
a line search method can be implemented.

4. Numerical results. In this section, experiments are presented to show that
the RSTLN method deblurs images better than the STLN method. In particular,
examples are shown comparing RSTLN and STLN for the p = 1, 2, and ∞ norms.
We also compare our results with other blind deconvolution algorithms.

4.1. Experimental design.

4.1.1. Numerical issues. All of our code was written in MATLAB to take
advantage of its image visualization capabilities.

We constructed our experiments by taking a known image xtrue (stretched out to a
vector by stacking the columns of the image) and a known blurring function Atrue and
using them to construct a blurred image btrue = Atruextrue . Then we added n-bit noise
to the data: the elements of Anoisy were equal to those of Atrue plus noise from a nor-
mal distribution with mean zero and standard deviation maxi,j Atrue(i, j)/2

n. Simi-
larly, bnoisy was equal toAnoisyxtrue plus noise with standard deviation maxi btrue(i)/2

n.
Thus, the data perturbation can be measured by

pert(b) = ‖bnoisy − btrue‖2/‖btrue‖2,
pert(A) = ‖Anoisy −Atrue‖F /‖Atrue‖F .

To evaluate the algorithms, we took the computed (recovered) image xrec and the
computed blurring function (A+ E)rec and computed relative errors

err(x) = ‖xrec − xtrue‖2/‖xtrue‖2,
err(A) = ‖(A+ E)rec −Atrue‖F /‖Atrue‖F ,
err(b) = ‖brec − btrue‖2/‖btrue‖2, brec = (A+ E)recxrec.

4.1.2. Implementation issues for STLN and RSTLN. For the STLN and
RSTLN algorithms, a linear problem needs to be solved at each iteration; see step 4.1
of Table 3.1. For the p = 2 norm, we used the conjugate gradient least squares
method to solve this problem. We set the conjugate gradient termination condition
to a relative residual tolerance of 10−6 or 1000 iterations. This generally produces
satisfactory accuracy to determine the descent direction, but for larger images the
maximum number of iterations was sometimes taken.

For the p = 1 and p = ∞ cases we solved the LP in step 4.1 using the MAT-
LAB function linprog.m with the largescale model employed. The function uses the
LIPSOL [27] algorithm and is based on a primal-dual interior point method. Because
of limitations in the MATLAB interface to LIPSOL, we were only able to set our
stopping criteria to 10−2 to 10−3 compared with tolerances of 10−6 for the STLN ex-
periments in [23]; a smaller tolerance caused LIPSOL to fail to converge. Even with
this difficulty, RSTLN gives better results than STLN. Our current implementation
is restricted to fairly small images because of the large number of constraints in the
LP. While the constraint matrix M passed into linprog.m is sparse, its factorization
generally is not. Hence, the LP solver as implemented in MATLAB is very memory
intensive and currently restricts our test cases to images no larger than 100 × 100.

We stop the STLN or RSTLN iterations when the relative change in the recov-
ered image and the recovered A matrix drops below some tolerance tol . At times
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we stopped the RSTLN method prematurely before reaching the desired tolerance
because for a higher number of iterations the reconstructed image was, in fact, deteri-
orating. This is a common phenomenon in the numerical solution of ill-posed problems
shared, for example, by the Lucy–Richardson (LR) algorithm, and the number of it-
erations can be viewed as an additional regularization parameter [8, Chap. 6], [10].
Initial iterations tend to reconstruct the image while later ones tend to focus on the
noise. Problems with low signal-to-noise ratios are particularly prone to such noise
amplification; the basic problem is that we do not want to minimize the function
in (2.1) but just drive its value down to noise level. Thus, in our experiments, a
lower number of RSTLN iterations sometimes yielded a better recovered image than
one recovered using more iterations, even if the latter yielded a better function value
for (3.1) and satisfied lower tolerances.

The choice of the regularization parameter λ for algorithms such as RSTLN is
a well-studied problem (see, for example, [4, 7, 18, 19] and [8, Chap. 7]). Ideally,
the choice balances the need to stay close to the original noise-contaminated problem
without causing its ill-conditioning to produce unacceptable noise in the solution. In
our experiments, we were concerned with the best solution obtainable for any choice
of parameter. We set D = I and solved each problem for a wide range of values λ > 0,
choosing the parameter resulting in the smallest value for the 2-norm of the image
error. The solution was sometimes quite sensitive to this choice.

4.1.3. Comparison with other blind deconvolution methods. We com-
pare RSTLN with two other blind deconvolution methods: the blind LR method and
the APEX/SECB method of Carasso.

The blind LR algorithm is an extension of the well-known original LR method
[13, 22] to problems in which the blurring function is unknown. The original iterative
method was derived from Bayes’ theorem and assumes that the blurred image, the
original image, and the point spread function (PSF) are (possibly nonnormalized)
probability density functions. The most common and efficient implementation makes
use of the FFT to compute convolutions. This implicitly imposes periodic boundary
conditions on the image.

The blind version is similar to the original method; each iteration alternately uses
several iterations of the nonblind algorithm to estimate a new PSF and then a new
image. It is generally more effective for images having many pixels and for images
with fewer sharp edges, since convolution tends to smooth edge boundaries [9].

The algorithm can be used without FFTs, but it is computationally much slower
and may produce ringing (high frequency oscillations) in the recovered image if the
image does not have finite support. This ringing arises because the method has a
probabilistic basis, and any implementation must conserve energy. Thus, a nonperi-
odic (for example, zero boundary condition) implementation is useful only for images
having support strictly inside the image boundaries. Convolutions involving images
that violate this assumption do not conserve energy since data outside of the original
image boundary are lost; this lost energy tends to be recovered as ringing. Con-
servation of energy, image support, and ringing are discussed in more detail in [21].
To reduce the amount of ringing, we experimented with techniques such as tapering,
implemented in the MATLAB routine edgetaper.m, which seek to transform a non-
periodic image to a periodic one by reblurring the edges of the image with a suitable
PSF. The reader is referred to [25] for details.

The stopping criterion for MATLAB’s blind LR function deconvblind.m is based
solely on the input number of iterations. The user may specify this total number of
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Table 4.1
RSTLN errors for p = 1, 2, and ∞. We list the errors in the image x, the matrix A, and the

residual error err(b) for the unregularized STLN and the RSTLN methods for each of the norms.
For the p = 1 and p = 2 norms the RSTLN recovered image error err(x) is much smaller than
for STLN. For p = ∞ the image error is near optimal and the error using RSTLN is only slightly
smaller than for STLN.

Test Case 1 err(x) err(A) err(b)
p = 2 STLN 1.19 3.97e−2 1.1e−3
p = 2 RSTLN 0.39 4.10e−2 1.1e−3
p = 1 STLN 0.97 3.99e−2 1.4e−3
p = 1 RSTLN 0.44 4.00e−2 1.1e−2
p = ∞ STLN 0.50 4.02e−2 5.5e−1
p = ∞ RSTLN 0.45 3.98e−2 4.9e−1

iterations or use the default value of 10. Our non-FFT implementation is similar
to the nonblind MATLAB routine deconvlucy.m but lets the user specify the total
number of iterations and, for each, the number of LR inner iterations to update the
image and PSF estimates. We estimate the optimal number of iterations by recovering
images using a wide variety of choices and then choosing the image resulting in the
smallest 2-norm error. For our comparison test cases, where our goal was to show
only general trends in the recovered images, we often used a default of 10 iterations,
modifying this number as needed.

Carasso’s APEX/SECB method [1] can be applied to the class of PSFs a whose
FFT, denoted by â(ξ, η), is of the form

â(ξ, η) = e−α(ξ2+η2)β ,(4.1)

where ξ and η are the respective frequency coordinates. If the blurred image b = a⊗x
is obtained by (periodic) convolution, then in the Fourier domain,

b̂(ξ, η) = x̂(ξ, η) · â(ξ, η)
= x̂(ξ, η) · e−α(ξ2+η2)β .

(4.2)

The idea behind the PSF identification method is to fit the function α|ξ|2β to the
logarithm of the Fourier transform of the blurred image minus an estimate of the true
image; see [1] for details. If the image or the PSF fails to meet necessary requirements,
then such a fit will not be possible.

4.2. Results.

Test 1. Our first test consists of a cross of size 21 × 21. The true PSF is a
Gaussian blur with variance 2.5, truncated to a support of size 11 × 11.

The blurred image was obtained by convolving the original image and PSF, as-
suming that pixel values outside the image are zero (zero boundary conditions). The
original and blurred images are shown in Figures 4.1(A) and (B). 6-bit noise was
added to the PSF to obtain the initial PSF estimate. This resulted in pert(A) =
3.99 × 10−2. Furthermore, 11-bit noise was added to the blurred image, resulting in
pert(b) = 1.10 × 10−3.

The errors resulting from the STLN and RSTLN methods for the different p-norms
are shown in Table 4.1. The corresponding images are shown in Figures 4.1(C)–(H).
From the error table we see that the use of RSTLN generally increases the error err(A)
in the blurring matrix and the residual error err(b). For the 1- and 2-norms, however,
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Fig. 4.1. RSTLN cross (noise, Gaussian blur). Test 1, results of STLN and RSTLN methods
using p = 1, 2, and ∞ norms. Random noise is present in the blurred image. The blur estimate
is the true blur plus the addition of 6-bit noise so that pert(A) = 3.99 × 10−2. 11-bit noise was
added to the blurred image so that pert(b) = 1.10 × 10−3. (A) Original image, 21 × 21. (B) Noisy
blurred image (zero BC). (C) STLN (∞-norm) solution with tol = 10−2. Solution is near optimal:
13 iterations. (D) RSTLN (∞-norm) recovered image with tol = 10−2, regularization parameter
λ = 0.001, 12 iterations. (E) STLN ( 2-norm) solution with tol = 10−3, 22 iterations. (F) RSTLN
( 2-norm) recovered image with tol = 10−3, λ = 0.05, 27 iterations. (G) STLN ( 1-norm) solution
with tol = 10−2, 13 iterations. (H) RSTLN ( 1-norm) recovered image with tol = 10−2, λ = 0.5,
50 iterations.
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Fig. 4.2. Test 1, LR results. (A) Periodic LR implementation using a periodic blurred image,
20 LR iterations each with 10 iterations. (B) Zero boundary condition LR implementation using a
zero BC blurred image, 5 LR iterations each with 10 iterations. (C) M-LR result without tapering
and using the RSTLN initial PSF estimate, 10 iterations. (D) M-LR result without tapering and
using an 11 × 11 matrix of ones for the initial PSF estimate, 10 iterations. (E) M-LR result with
tapering and using the RSTLN initial PSF estimate, 50 iterations. (F) M-LR result with tapering
and using an 11× 11 matrix of ones for the initial PSF estimate, 100 iterations.

the error err(x) in the image estimate is considerably lower, so the reconstructed image
is improved. For the p = ∞ norm, the image obtained from STLN was near optimal,
and all RSTLN experiments for nonzero values of the regularization parameter λ
resulted in higher image errors.

In Figure 4.2 we present the results of the blind LR method. In (A) we show results
obtained by LR in reconstructing images blurred with periodic boundary conditions
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Table 4.2
RSTLN errors for p = 2 for the large cross test case. We list the errors in the image x, the

matrix A, and the residual error err(b) for the unregularized STLN and the RSTLN methods for
p = 2. For the RSTLN (λ = 2.5) recovered image error err(x) is much smaller than for STLN.

Test Case 2 err(x) err(A) err(b)
p = 2 STLN 4.2895 4.03e−2 1.03e−2
p = 2 RSTLN 0.5885 1.15e+0 9.20e−3

(6-bit noise added) using 20 outer iterations with 10 LR iterations in each. The width
of the cross is broadened due to blurring of the edges during the reconstruction.

In Figures 4.2(B)–(F), we present the result of various attempts to reconstruct the
image with zero boundary conditions from Figure 4.1. In (B) we show the result ob-
tained by using 5 outer iterations with 10 LR iterations each, computing convolutions
using zero padded images. It is clear that the image is distorted, and ringing is ob-
served throughout. The other images are reconstructed using the MATLAB-supplied
implementation of blind LR, which we call M-LR. In (C) we show the M-LR result,
beginning with the blur estimate as for RSTLN, and stopping after the MATLAB de-
fault of 10 iterations. We repeat this experiment in (D) but starting from a flat PSF
estimate (a matrix of ones of size 11 × 11). In both cases only poor reconstructions
are obtained. In (E) and (F) we show similar results as in (C) and (D), except that
the image is tapered using edgetaper.m. The reader is referred to [25] for details.
We performed 50 and 100 M-LR iterations, respectively. The reader should note that
the algorithm is not able to reconstruct data near the image boundary, although the
interior is adequately recovered.

The APEX/SECB method cannot be applied to this image because it is too small
to yield enough data points.

Test 2. Our next test consists of a somewhat broader cross image of size 41× 41
with a nonzero cross width of 5. The image was blurred with an 11 × 11 Gaussian.
8-bit noise was added to the blurred images, resulting in pert(b) = 1.05 × 10−2 and
9.8× 10−3, respectively. The blur estimate was obtained by adding 6-bit noise to the
original blur, resulting in pert(A) = 3.91 × 10−2.

Again, we present results comparing the STLN, RSTLN, LR, and M-LR meth-
ods, as well as Carasso’s APEX/SECB method. In Figures 4.3(A) and (B) we show
the original and blurred images. In (C) we show the STLN 2-norm solution (that
is, without any regularization), and in (D) the best RSTLN 2-norm solution with
regularization (using λ = 0.75). (The RSTLN p = 1 and p = ∞ were not computed
due to the expense of solving the linear programming problems.) The resulting STLN
and RSTLN errors for the 2-norm are shown in Table 4.2.

For APEX/SECB, the original image in Figure 4.3(A) was blurred using peri-
odic boundary conditions as in (4.2) using parameters α = 0.075 and β = 1. This
resulted in a blurred image nearly identical to (B). Again, 8-bit noise was added to
the blurred image. In subplot (E) we show the results of using APEX/SECB for PSF
identification and subsequent deblurring of the periodic noisy blurred image. The
APEX PSF identification procedure resulted in parameter estimates of αest = 0.0749
and βest = 0.9756, which are fairly close to the true parameter values. Unfortunately,
this method was unsuccessful for images blurred with zero boundary conditions and
noise added. In (F), we show the APEX optimization function for different scalar
value image estimates. The nonsmooth family of curves corresponds to the opti-
mization function for different scalar estimates for the unknown frequency-domain
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Fig. 4.3. Test 2, RSTLN, and APEX/SECB results. The image was blurred using zero bound-
ary conditions. 8-bit noise was added to obtain the image in (B), resulting in pert(b) = 1.05×10−2.
The blur estimate was obtained by adding 6-bit noise to the original blur, resulting in pert(A) =
3.91×10−2. (C) STLN 2-norm solution, tol = 10−3, 26 iterations. (D) Best RSTLN 2-norm solu-
tion, λ = 0.75, tol = 10−3, 25 iterations. (E) APEX/SECB recovered image using a noisy periodic
image. The image was blurred as in (4.2) using parameters α = 0.075 and β = 1. The recovered PSF
parameter estimates are αest = 0.0749 and βest = 09756 using a scalar image component estimate
of K = 2.2. (F) APEX optimization function for a zero BC noisy image. Since the function does
not have the proper form α|ξ|2β , no fit can be obtained. In this case no PSF was found.

image quantity log |x̂∗(ξ, 0)| if the natural logarithm is applied to the right- and left-
hand sides in (4.2) and when a noisy zero boundary condition blurred image is used.
The curves do not have the proper form and thus do not permit a curve fit of the
form α|ξ|2β . For this case no proper PSF can be found.
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Fig. 4.4. Test 2, LR results. (A) Periodic LR implementation using a periodic blurred image,
50 LR iterations each with 10 iterations. (B) Zero boundary LR implementation using a zero BC
blurred image, 50 LR iterations each with 10 iterations. (C) M-LR result without tapering and using
the RSTLN blur estimate, 25 iterations. (D) M-LR result without tapering and using an 11 × 11
matrix of ones for the PSF estimate, 25 iterations. (E) M-LR result with tapering and using the
RSTLN blur estimate, 10 iterations. (F) M-LR result with tapering and using an 11× 11 matrix of
ones for the PSF estimate, 10 iterations.

In Figure 4.4 we present results of the blind LR algorithm. In (A) we see that
the algorithm gives a good result for periodic blurs, but the reconstruction for a
zero boundary condition exhibits ringing and distortion. These results used 50 outer
iterations, each using 10 LR iterations. In (B) we give the result for the zero boundary
condition image using the zero boundary implementation. We then apply the M-LR
algorithm to a noisy zero boundary blurred image. In (C) and (D) we show results
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Table 4.3
RSTLN errors for p = 2 for the sun test case. We list the errors in the image x, the matrix A,

and the residual error err(b) for the unregularized STLN and the RSTLN methods for p = 2. For
the RSTLN (λ = 75) recovered image error err(x) is much smaller than for STLN.

Test Case 3 err(x) err(A) err(b)
p = 2 STLN 20.01 2.47e−2 2.19e−2
p = 2 RSTLN 0.9265 3.8483e+0 6.71e−1

using no tapering, 25 iterations, and an initial guess of either the RSTLN blur estimate
or a matrix of ones of size 11 × 11. Both results exhibit ringing due to improper
boundary conditions. In (E) and (F) we show M-LR results with tapering, using
10 outer iterations and initial blur estimates as in (C) and (D). The reconstructions
are not useful.

Test 3. Our final comparison test consists of an image obtained from the NASA
Image Exchange (http://nix.nasa.gov). It shows the corona of the sun and a large
solar eruption. We truncated the image to size 99 × 99 and reduced it to grayscale.

Again, the image was blurred with a Gaussian PSF of size 11×11 in two ways: one
assuming zero values for pixels outside the image, and the other assuming a periodic
image. 6-bit noise was added to the image after blurring using a zero boundary
condition. This resulted in pert(b) = 2.20 × 10−2. For the periodic image no noise
was added to the blurred image. The blur estimate was obtained by adding 6-bit
noise to the original blur (pert(A) = 2.46 × 10−2).

In Figure 4.5(A) we show the original and in (B) the noisy blurred image using
zero boundary conditions. In (C) we show the STLN result using the 2-norm. Due
to the high noise level in both the blurred image and the blur estimate, no useful
result was obtained. In (D) we show the best result using the RSTLN method with
a regularization value of λ = 75. We remark that in this case the algorithm did not
converge to a tolerance of 10−2. Instead, we stopped prematurely after 10 iterations.
A larger number of iterations which did achieve the desired tolerance produced an
image of lesser quality (see section 4.1.1 on noise amplification).

In Table 4.3 we computed the resulting errors for the STLN and RSTLN methods.
Although err(A) and err(b) are increased for RSTLN with respect to STLN, clearly
the image error is drastically reduced using the RSTLN method.

For the APEX/SECB method the image was blurred with a Gaussian blur using
periodic boundary conditions and parameters α = 0.01 and β = 1 as in (4.2). This
resulted in a blurred image very similar to the one in Figure 4.5(B). 6-bit noise was
added to the blurred image. Using the APEX PSF identification method, a curve fit to
the optimization function was done, resulting in parameter estimates of αest = 0.0108
and βest = 1.028. These are fairly close to the true PSF parameters. In (E) we
show the APEX/SECB recovered image using the noisy blurred image with periodic
boundary conditions. In (F) we show the function to be fit using the noisy image with
zero boundary conditions. We plot the function using different scalar estimates for
the original image component in (4.2). None of the functions have the proper form
and a suitable curve fit of the form α|ξ|2β is not possible. For this case no useful PSF
was found.

In Figure 4.6 we show the results from the various LR experiments. In sub-
plot (A) we have the LR result using a periodic image using our own periodic LR
implementation. We performed 10 iterations, each with 10 LR iterations. In (B) we
show the result using the zero boundary implementation and a zero boundary blurred
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Fig. 4.5. Test 3, RSTLN and APEX/SECB results. (A) Original image, 99 × 99. (B) Noisy
blurred image (zero BC). (C) STLN ( 2-norm) solution with tol = 10−2, 2 iterations. (D) RSTLN
( 2-norm) recovered image with initial tol = 10−2 and regularization λ = 75. The experiment
was stopped prematurely after 10 iterations. While a larger number of iterations did achieve the
desired tolerance, the results were distorted by ringing. (E) APEX/SECB recovered image. Image
is blurred assuming a periodic image as in (4.2) with parameters α = 0.01 and β = 1. (F) Plot
of optimization function if the image is blurred using zero BC. The different plots represent the
optimization function for different scalar estimates for the unknown quantity log |x̂∗(ξ, 0)|, where
x̂∗(ξ, η) denotes the normalized FFT of the original image x. Since none of the curves possess the
proper shape, no useful PSF can be found.

image. We performed 15 outer iterations, each with 10 iterations to estimate the new
PSF and image. Severe ringing is present. In (C) and (D) we show the nontapered
M-LR results using the RSTLN blur estimate, an 11× 11 matrix of ones for the blur



1034 ARMIN PRUESSNER AND DIANNE P. O’LEARY

(A)  LR w/noise (PER. BC)

20 40 60 80

10

20

30

40

50

60

70

80

90

(B) LR w/noise (0 BC)

20 40 60 80

10

20

30

40

50

60

70

80

90

(C)  M−LR w/noise (no taper, blur est.)

20 40 60 80

10

20

30

40

50

60

70

80

90

(D)  M−LR w/noise (no taper, ones)

20 40 60 80

10

20

30

40

50

60

70

80

90

(E)  M−LR w/noise (taper, blur est.)

20 40 60 80

10

20

30

40

50

60

70

80

90

(F)  M−LR w/noise (taper, ones)

20 40 60 80

10

20

30

40

50

60

70

80

90

Fig. 4.6. Test 3, LR results. (A) Periodic LR implementation using a periodic blurred image,
10 LR iterations each with 10 iterations. (B) Zero boundary LR implementation using a zero BC
blurred image, 15 LR iterations each with 10 iterations. (C) M-LR result without tapering and using
the RSTLN blur estimate, 25 iterations. (D) M-LR result without tapering and using an 11 × 11
matrix of ones for the PSF estimate, 10 iterations. (E) M-LR result with tapering and using the
RSTLN blur estimate, 25 iterations. (F) M-LR result with tapering and using an 11× 11 matrix of
ones for the PSF estimate, 10 iterations.

estimate, and a zero boundary blurred image. 25 outer iterations were performed,
with 10 iterations each. For the result in (C), ringing is observed near the image
boundary, whereas in (D) the image is severely distorted. Finally, in (E) and (F) we
obtained results using M-LR and a tapered noisy blurred image using the two different
initial blur estimate types. For the result in (E), 25 iterations were performed which
produced reasonable results. The result in (F) was obtained after 10 iterations with
less favorable results.
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Table 4.4
Summary of methods.

Algorithm Requirements Comments
Blind LR • FFT version requires periodic

boundary conditions or finite
support

• more effective with larger images
• ringing if image fails to have fi-
nite support

Carasso’s method • periodic boundary conditions or
finite support

• image must have specific proper-
ties [1]

• PSF must have specific proper-
ties [1]

• more effective with larger images

STLN • substantial computation for 1-
and ∞-norm methods

• sensitive to noise

RSTLN • substantial computation for 1-
and ∞-norm methods

• robust to noise

4.3. Effectiveness of methods. As the experiments indicate, some of the
methods presented prove useful only if specific requirements are satisfied. This section
summarizes the effectiveness of each of the methods.

The blind LR method using FFTs is useful only if the original image either was
blurred using periodic boundary conditions or has finite support. If it does not satisfy
either of these conditions, the recovered image often suffers from ringing. It is also
observed that the method is sometimes more useful for larger images or if prepro-
cessing techniques such as tapering or flat PSF initial estimates are used (see [25] for
details).

Like the blind LR method, Carasso’s APEX/SECB method requires periodic
boundary conditions or finite support [2]. Furthermore, it can be applied only to
the class of PSFs satisfying (4.1) and requires images to belong to a specific class as
defined in [1].

In contrast, neither STLN nor RSTLN imposes any restrictions on the image or
PSF and both are effective on small images. While STLN is useful for some total least
norm problems, the blind deconvolution problem is generally ill-posed, so that small
perturbations in the data can cause large changes in the solution. Thus, the RSTLN
method proves to be more useful for most blind image deblurring applications where
regularization is usually necessary.

If the noise is Gaussian, then least squares theory provides ample justification
for choosing the 2-norm in RSTLN rather than the 1-norm or ∞-norm. However,
in order to take advantage of this theory, the standard deviations of the two error
distributions must be known so that the error terms can be balanced. When this data
is unavailable, or when the noise distributions are not Gaussian, then the 1-norm and
∞-norm have no theoretical disadvantages. Our experiments show that the 1-norm
in particular provides high-quality reconstructions and is not sensitive to outliers in
the data.

A summary of the requirements and effectiveness of each method is given in
Table 4.4.

5. Conclusions. We have presented the RSTLN algorithm for blind deconvolu-
tion. Like the STLN method, RSTLN preserves any affine structure in the matrix,
and the user has the choice of minimizing the error for the 2-norm or for other norms
such as the 1- and ∞-norms. The use of norms other than the 2-norm leads to good
image recovery, although the cost is substantially higher.
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In contrast to other methods, such as that of Carasso’s APEX/SECB, the RSTLN
method does not depend on having a periodic image. Ringing in the reconstructed
images is less of a problem. Therefore, we can apply the RSTLN method for arbitrary
boundary conditions, for example, zero (Dirichlet), Neumann (data outside the image
boundary is a reflection of the corresponding data inside), or periodic.
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