
Linear Algebra and its Applications 391 (2004) 203–221
www.elsevier.com/locate/laa

Implementation of the regularized structured
total least squares algorithms for blind image

deblurring

N. Mastronardi a,∗,1, P. Lemmerling b ,2, A. Kalsi c,
D.P. O’Leary c,3, S. Van Huffel b ,4

aIstituto per le Applicazioni del Calcolo, CNR, via Amendola 122/D, Bari 70126, Italy
bDepartment of Electrical Engineering, ESAT-SCD (SISTA), Katholieke Universiteit Leuven,

Kasteelpark Arenberg 10, 3001 Leuven, Belgium
cDepartment of Computer Science and Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742, USA

Received 1 September 2003; accepted 26 July 2004

Submitted by P.C. Hansen

Abstract

The structured total least squares (STLS) problem has been introduced to handle prob-
lems involving structured matrices corrupted by noise. Often the problem is ill-posed. Re-
cently, regularization has been proposed in the STLS framework to solve ill-posed blind

∗ Corresponding author.
E-mail address: n.mastronardi@area.ba.cnr.it (N. Mastronardi).

1 This work was partially supported by MIUR, grant number 2002014121.
2 Philippe Lemmerling is supported by a post-doctoral K. U. Leuven fellowship.
3 This work was supported by the National Science Foundation under Grant CCR 0204084.
4 Research supported by Research Council KUL: GOA-Mefisto 666, IDO /99/003 and /02/009

(Predictive computer models for medical classification problems using patient data and expert knowl-
edge), several PhD/postdoc & fellow grants; Flemish Government: FWO: PhD/postdoc grants, projects,
G.0078.01 (structured matrices), G.0407.02 (support vector machines), G.0269.02 (magnetic resonance
spectroscopic imaging), G.0270.02 (nonlinear Lp approximation), research communities (ICCoS, AN-
MMM); IWT: PhD Grants, Belgian Federal Government: DWTC (IUAP IV-02 (1996-2001) and IUAP
V-22 (2002-2006): Dynamical Systems and Control: Computation, Identification & Modelling)); EU:
PDT-COIL, BIOPATTERN, ETU-MOUR.

0024-3795/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2004.07.006

www.elsevier.com/locate/laa
mailto:n.mastronardi@area.ba.cnr.it

204 N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221

deconvolution problems encountered in image deblurring when both the image and the blur-
ring function have uncertainty. The kernel of the regularized STLS (RSTLS) problem is a least
squares problem involving Block–Toeplitz–Toeplitz–Block matrices.

In this paper an algorithm is described to solve this problem, based on a particular imple-
mentation of the generalized Schur Algorithm (GSA). It is shown that this new implementation
improves the computational efficiency of the straightforward implementation of GSA from
O(N2.5) to O(N2), where N is the number of pixels in the image.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Displacement rank; Block Toeplitz matrix; Structured total least squares; Generalized Schur
algorithm; Image deblurring; Tikhonov regularization

1. Introduction

Image restoration is the process of reconstructing the true image from a degraded
one. The mathematical model of the two-dimensional (2-D) blurred image is a 2-D
first-kind Fredholm integral equation∫

�
A(s, t)x(t)dt = b(s) + ν(s) = b∗(s), (1)

where the spatial coordinates s ∈ R2, t ∈ R2 and � is a closed region containing
the domain of the image. The blurring of the unknown true image x : R2 → R is
modelled with the point spread function (PSF) A : R4 → R plus the additional noise
ν : R2 → R. The function b : R2 → R is the measured image, while b∗ is the exact
blurred image. The model is discretized into a matrix equation

Ax = b + β, (2)

where A ∈ Rm×n is the discretized counterpart of A and x, b and β are also the
discrete version of x, b and ν. Often, the point spread function A is assumed spa-
tially invariant, i.e., A(s, t) = A(s − t). In this case, the integral equation (1) is a
convolution, and the corresponding matrix A is a block Toeplitz matrix with Toeplitz
blocks (BTTB). If the cause of the blur, and hence A, is not known exactly, then the
matrix A is also uncertain, and the problem is known as blind deconvolution. In this
case (2) should be replaced by the following problem,

(A + E)x = b + β, (3)

with E and β unknown. Since in image deblurring problems the matrix A is struc-
tured, it is natural to require that the matrix E has the same structure as A, too.
The latter constraint leads to the Structured Total Least Squares (STLS) formulation
[21,14]

min
E,β,x

‖ [E|β] ‖2
F

such that (A + E)x = b + β,

and E same structure as A.

N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221 205

In many deblurring problems and other discretized problems involving integral equa-
tions of the first kind, the matrix A is so ill-conditioned that noise in the observations
b is magnified in solving the STLS problem and a meaningful solution cannot be
obtained. In this case, regularization methods [7,8] must be considered in order to
stabilize the STLS problem and to obtain better results.

An iterative method to solve the STLS problem was proposed in [21]. If A is a
Toeplitz matrix, the bulk of each iteration of the iterative method is the solution of a
least squares problem involving a particular Toeplitz block matrix. A fast algorithm
for solving this least squares problem, based on a particular implementation of the
Generalized Schur Algorithm (GSA) [9], has been proposed in [14]. Regularization
in the STLS (RSTLS) framework has been considered in [18,10,15]. Moreover, a fast
algorithm for solving the least squares problem, the kernel of the iterative method
for solving the RSTLS, when A is a Toeplitz matrix, is considered in [15]. The latter
algorithm is an extension of the fast implementation of GSA for STLS problems
[14]. In [18,10] the RSTLS algorithm is applied to the image deblurring problem. At
each iteration of the algorithm a highly structured least squares problem needs to be
solved. In this paper we propose a fast implementation of the GSA for solving this
least squares problem. The newly proposed algorithm improves the computational
efficiency of the algorithms in [18,10] from O(N2.5) to O(N2), where N is the num-
ber of pixels in the image. Other approaches for solving RSTLS problems have been
considered in [17,3].

The paper is organized as follows. We review the RSTLS problem for image de-
blurring problems, and an algorithm for solving it, in Section 2. Then we describe an
implementation of GSA for solving it in Section 3. The accuracy of the RSTLS esti-
mator for image deblurring problems is compared to the STLS estimator in Section
4 and then we conclude in Section 5.

2. The RSTLS problem for image deblurring

In order to make STLS more robust in the presence of noise, Tikhonov regulariza-
tion has been introduced in the STLS framework [18,15,10]. The regularized STLS
(RSTLS) problem is formulated in the following way:

min
E,x

αTα + βTβ + λ2‖Cx‖2
2

such that (A + E(α))x = b + β,

E same structure as A,

(4)

with A, E ∈ Rm×n, E the correction applied to A, β ∈ Rm×1 the correction applied
to b ∈ Rm×1 the output, x ∈ Rn×1 the impulse response, C a regularization operator,
and λ the regularization parameter. The operator C is commonly chosen to be the
identity matrix or a difference operator [7]. For the sake of simplicity, in this paper C
is chosen equal to the identity matrix. Fast RSTLS algorithms can also be developed

206 N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221

in case C is chosen to be a difference operator [15]. Moreover, α is a vector denoting
the minimal parametrization of the structured matrix E. For instance, if E is the
Toeplitz matrix

E =




αn αn−1 · · · α1
αn+1 αn · · · α2

...
. . .

...

αm+n−1 αm+n−2 · · · αm


 (5)

then the minimal parametrization α of E is the vector

α = [α1, α2, . . . , am+n−1]T.

Using the zeroth and first order terms of the Taylor series expansion of β = (A +
E(α))x − b (where we use the notation E(α) to denote the dependence of E on α)
around [αTxT]T, we obtain the Gauss–Newton method for solving (4) (for a proof,
see [21]). The RSTLS algorithm, as outlined in [18,15], is then as follows:

RSTLS Algorithm
Input: extended data matrix [A b] ∈ Rm×(n+1)(m > n) of full rank n + 1, and λ.
Output: correction vector α and parameter vector x s.t. αTα + βTβ + λ2‖x‖2

2 is as
small as possible and β = (A + E(α))x − b.

Step 1: α ← 0
x ← A\b

Step 2: while stop criterion not satisfied
Step 2.1: min�x,�α‖Mz + v‖2,

with M =

A + E X

λIn 0
0 Im+n−1


 , z =

[
�x

�α

]
, v =


 β

λx

α


 ,

Step 2.2: x ← x + �x

α ← α + �α and construct E from α

β ← (A + E)x − b

end

The matrix X is defined such that Xα = Ex. For instance, if E is the Toeplitz matrix
defined in (5), X becomes

X =



xn xn−1 · · · x1
. . .

. . . · · · . . .
xn xn−1 · · · x1




m×(m+n−1)

.

N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221 207

Note that A\b in Step 1 is a shorthand notation for the LS solution of the over-
determined system of equations Ax ≈ b. The latter LS problem can be solved in a
fast way by means of GSA [9] if A is a structured matrix. We apply this algorithm
to deblurring images whose point-spread function is spatially invariant. In this case,
we have measured a set of pixel values


y11 y12 · · · y1m

y21 y22 · · · y2m

...
...

...
...

ym1 ym2 · · · ymm


 .

The aim is to reconstruct the true image


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xn1 xn2 · · · xnn


 .

Let us order the pixels by rows to create a one-dimensional vector of unknowns:

x = [x11, x12, . . . , x1n, . . . , xn1, xn2, . . . , xnn]T,

and, similarly, we create a vector of observations,

b = [y11, y12, . . . , y1m, . . . , ym1, ym2, . . . , ymm]T.

For definiteness we will assume that the blurring function averages the p2 near-
est neighbours of each pixel, with p � n and that m = n + p − 1. In this case the
matrix A has p block diagonals, each with p diagonals:

A =




T1

T2 T1
.
.
.

. . .
. . .

Tp

. . .
. . .

. . .

. . .
. . . T2 T1

. . .
. . . T2

. . .
.
.
.

Tp




, Tj =




tj1

tj2 tj1
.
.
.

. . .
. . .

tjp
. . .

. . . tj1

. . .
. . . tj2

tjp
.
.
.

tjp




, j = 1, . . . , p.

The dimension of A is m2 × n2, and the dimension of Tj is m × n. The matrix E has
the same structure as A, with entries αji . The relation Xα = Ex holds if we define

208 N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221

X=




X1
X2 X1
... X2

. . .

Xp

. . .
. . . X1

...
...

Xn Xn−1
... Xn−p+1

Xn

. . .
...

. . . Xn−1
Xn




,

Xj =




xj1
xj2 xj1
... xj2

. . .

xjp

. . .
. . . xj1

...
...

xjn

. . .
. . . xjn−p+1

. . . xjn−1

...

xjn xjn−1
xjn




, j = 1, . . . , n.

If we solve Step 2.1 of the RSTLS algorithm using normal equations, we would solve
the linear system of equations

M̂z = MTv, (6)

where M̂ = MTM . Forming M̂ and computing its Cholesky factorization M̂ = LLT

would cost O((n2 + m2)3) operations. In the next section we show how the general-
ized Schur algorithm can be used to compute the Cholesky factorization in O((n2 +
m2)2) operations by exploiting the structure of the matrix.

3. Generalized Schur algorithm for image deblurring

The generalized Schur algorithm allows fast computation of a variety of decom-
positions (i.e., QR, LDLT, . . .) of structured matrices. To understand its use, we
introduce the basic concepts of displacement theory for symmetric positive definite
(SPD) matrices (since M̂ is a SPD matrix). An extensive treatment of this topic can
be found in [9].

N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221 209

Let R be a SPD matrix and � be a strictly lower triangular matrix of order N̂ ,
respectively. Let κ be the number of subdiagonals below and including the main
diagonal of � equal to zero, i.e.,

� =

κ






0 0 · · · · · · · · · 0
... 0

. . . · · · · · · ...

0
. . .

. . .
. . . · · · ...

× 0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

× · · · × 0 · · · 0




.

The displacement of R, with respect to �, is defined as

∇�R ≡ R − �R�T. (7)

If ∇�R has low rank, independent of N̂ , then R is said to be structured with respect
to �, and the rank δ of ∇� is called the displacement rank of R. We observe that the
eigenvalues of ∇�R are real, and we define η to be the number of strictly positive
eigenvalues of ∇�R and γ to be the number of negative ones. Therefore, the dis-
placement rank is δ = η + γ and we can write

∇�R = R − �R�T = GTJG, where J = J T = (In ⊕ −Iγ) (8)

is a signature matrix, and G ∈ Rδ×N̂ . Without loss of generality, we suppose κ � η.
The pair {G, J } is called a ∇�-generator of R and G is called a ∇�-generator matrix,
or, if there is no ambiguity, simply a generator matrix. This representation is clearly
not unique; for example, {�G, J } is also a generator for any J -orthogonal matrix �
(i.e., for any � such that �TJ� = J), since

GT �TJ�︸ ︷︷ ︸
J

G = GTJG.

Thus we can choose G for computational convenience, and we will exploit this fact.
The first η and the last γ rows of G are called positive and negative ∇�-generators,
respectively, or, if there is no ambiguity, simply positive and negative generators. A
generator matrix is in proper form if

G =

κ






× · · · × × · · · ×
... · · · ...

... · · · ...

× · · · × × · · · ...

0 · · · 0 × · · · ...
... · · · ...

... · · · ...

0 · · · 0 × · · · ×




.

︸ ︷︷ ︸
κ

210 N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221

The computation of the LDLT factorization of R, in a standard way, where L is a
block lower triangular matrix and D is a nonsingular block diagonal matrix, with
the diagonal blocks of L and D of order κ , is accomplished in v = �N̂/κ� steps (for
simplicity, we assume v = N̂/κ). Since R is a SPD matrix, L and D can be chosen
equal to a lower triangular matrix and the identity matrix, respectively. In this case,
the computed factor L is the Cholesky factor of R.

At the first step, one computes L1, the first κ columns of L, and D1, the first block
diagonal of order κ of D, from the first κ columns (rows) of R. Let R1 = R. At the
second step, L2, the next κ columns of L, and D2, the next block diagonal of order
κ of D, are computed from the first κ columns (rows) of the matrix R2, the Schur
complement of R1 with respect to R1(1 : κ, 1 : κ),[

0
R2

]
= I

κ,N̂
(R1 − L1D

−1
1 LT

1)I
κ,N̂

, where I
κ,N̂

=
[

0κ

I
N̂−κ

]
.

The LDLT factorization of R is then accomplished applying the same machinery at
each step of the algorithm.

We now show that the same computations are made by GSA for computing the
LDLT factorization of R.

Using induction and the fact that � is nilpotent, one can derive from (8) that

R =
v−1∑
i=0

�iGTJG�iT
. (9)

Suppose we have computed G. (We discuss how to do this in Section 3.1) Let
G1 ≡ G, and let �1 be a J -orthogonal matrix such that

Ĝ1 = �1G1 =
[
Ġ1

G̈1

]
(10)

is in proper form and Ġ1 contains the first κ rows of Ĝ1, with det (Ġ1(1 : κ, 1 : κ)) /=
0. It turns out that

L1D
−1
1 LT

1 = ĠT
1 Ġ1, (11)

hence, D1 and L1 can be directly computed from (11). Taking (9) into account, R2
can be written in the following way,[

0
R2

]
=I

κ,N̂

(
R − L1D

−1
1 LT

1

)
I
κ,N̂

=I
κ,N̂

(
v−1∑
i=0

�i ĜT
1 J Ĝ1�

iT

)
I
κ,N̂

− I
κ,N̂

L1D
−1
1 LT

1 I
κ,N̂

=I
κ,N̂

[
ĜT

1 J Ĝ1
]
I
κ,N̂

+
v−1∑
i=1

�i ĜT
1 J Ĝ1�

iT − I
κ,N̂

L1D
−1
1 LT

1 I
κ,N̂

.

N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221 211

We observe that

I
κ,N̂

[
ĜT

1 J Ĝ
]
I
κ,N̂

= I
κ,N̂

ĠT
1 Ġ1Iκ,N̂

+
[

0
G̈1

]T

J

[
0

G̈1

]
.

Hence taking (11) into account,

[
0

R2

]
=
[

0
G̈1

]T

J

[
0

G̈1

]
+

v−1∑
i=1

�i ĜT
1 J Ĝ1�

iT
.

Furthermore, since the first κ columns of G̈1 are 0,

�v−1
[

0
G̈1

]T

J

[
0

G̈1

]
�(v−1)T = 0.

Therefore, considering (10), we have

[
0

R2

]
=

v−2∑
i=0

�i

[
0

G̈1

]T

J

[
0

G̈1

]
�iT +

v−1∑
i=1

�i

[
Ġ1
0

]T

J

[
Ġ1
0

]
�iT

=
v−2∑
i=0

�i

[
0

G̈1

]T

J

[
0

G̈1

]
�iT +

v−2∑
i=0

�i

[
�Ġ1

0

]T

J

[
�Ġ1

0

]
�iT

=
v−2∑
i=0

�i

[
�Ġ1

G̈1

]T

J

[
�Ġ1

G̈1

]
�iT

=
v−2∑
i=0

�iGT
2 JG2�

iT
. (12)

Hence, the computation of a ∇�-generator {G2, J } of

[
0

R2

]
can be summarized

in the following steps,

• Step 1: reduction of G1 into proper form.
• Step 2: computation of the product �Ġ1.

Therefore, it turns out it is essential to consider a matrix � such that ∇�R has low
rank, and the product �Ġ1 can be computed efficiently.

Recursively proceeding, we obtain the LDLT factorization of R. The procedure
just described is better known under the name of generalized Schur algorithm.

There are two natural choices for the displacement operator � for image deblur-
ring: either the block shift matrix

212 N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221

Z =
[
Zn2

Zp2

]
, Zk2 =




0k

Ik 0k

. . .
. . .
Ik 0k




k2×k2

or the scalar shift matrix

Ẑ ≡




Ẑn

. . .

Ẑn

Ẑp

. . .

Ẑp




(n2+p2)×(n2+p2)

,

Ẑl =




0

1
. . .
. . .

. . .
1 0




l×l

.

Indeed, the rank of both matrices ∇Z(M̂) and ∇
Ẑ
(M̂) is δ = 2(n + p), but their

sparsity patterns are much different, as shown in Fig. 1. Moreover, in both cases,
the product of the shift operators times a vector is made without any computational
effort. Since M̂ has order Ñ ≡ n2 + p2 the computational complexity of GSA is
O(δÑ2) = O(n5), (n � p). We will show that, choosing the initial generators in
a suitable way, and implementing the algorithm taking into account the pattern of
these generators, the computational complexity of GSA can be reduced to O(n4). In
an analogous way, using the scalar displacement operator Ẑ, it is possible to derive
an implementation of GSA with the same computational complexity. For the sake
of brevity, only the implementation of GSA with respect to Z is considered in this
paper.

3.1. Choice of the initial generator matrix

Choosing the generators in an appropriate way, and preserving their structure
during the first n iterations of GSA, the computational complexity can be reduced.
This choice is a generalization of an algorithm of [14] from the scalar to the block
case.

First, we observe that n of the positive and negative generators can directly be
computed from the first n rows (columns) of the displacement matrix ∇Z(M̂), i.e.
the first n rows (columns) of M̂ (see Fig. 1). We do this by observing that if γ is a
scalar and d is a vector, then

N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221 213

10 20 30 40 50 60 70 80 90 100

100

90

80

70

60

50

40

30

20

10

10 20 30 40 50 60 70 80 90 100

100

90

80

70

60

50

40

30

20

10

Fig. 1. Left: sparsity pattern of the displacement matrix ∇Z(M̂). Right: sparsity pattern of the displace-
ment matrix ∇

Ẑ
(M̂).

[
γ dT

d 0

]
=
[√

γ

d/
√

γ

] [√
γ dT/

√
γ
]−

[
0

d/
√

γ

] [
0 dT/

√
γ
]
,

and sparsity of d is preserved in this representation. Since the entries from np + 1 up
to n2 in rows 1 through n of ∇Z(M̂) are zero, the corresponding entries of the first n
positive and negative generators are zero.

The remaining initial generators are computed from the rows n2 +k, k = 1, . . . , p,
of ∇̂Z(M̂), the matrix obtained from ∇Z(M̂) after setting to zero the first n rows and
columns. This computation is accomplished in an iterative fashion. The (n + 1)th
positive generator and the (n + 1)th negative generator are chosen as the generators
of the rank-two matrix formed from row and column n2 + 1 of ∇̂Z(M̂). It turns out
that this pair of generators differs only in entry n2 + 1.

The next generators are computed in a similar way from the rank-two matrix
made by the row and column n2 + 2 of ∇̂Z(M̂), after setting row and column n2 + 1
to zero. In this case, the generators differ only in the entry n2 + 2. We continue in
this way to compute the remaining generators.

Summarizing, the first n pairs of positive and negative generators have entries
from np + 1 through n2 equal to zero. Moreover, each of the remaining n + k pairs
of generators, k = 1, . . . , p, differs only in the entry n2 + k.

Let us call G the generator matrix built in this way. The sparsity of the generators
is crucial for considering an implementation of GSA with reduced computational
complexity.

3.2. GSA for computing the Cholesky factorization

In this section the implementation of GSA for computing the Cholesky factoriza-
tion of M̂ with respect to Z is described.

214 N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221

Let Jn,P = (In+p ⊕ −In+p). A matrix Q ∈ R2(n+p)×(n+p) is Jn,p-orthogonal if

QTJn,pQ = Jn,p. Let GP ∈ R(n+p)×Ñ be the positive generator matrix for M̂ with

respect to Z, and let GN ∈ R(n+p)×Ñ be the negative generator matrix.
Define

G ≡
[
GP

GN

]
.

The generalized Schur algorithm is summarized in the following scheme. A matrix
Ĝl is in proper form if

Ĝl(i, j) = 0,

{
i > j, j � n, if l � n,

i > j, j � p, if l > n,

i.e., if l � n, the entries of the first n columns of the Ĝl below the main diagonal
are zero, and if l > n, the entries of the first p columns of the Ĝl below the main
diagonal are zero.

Proper form of the matrices Ĝl, l = 1, . . . , n + p, can be accomplished in dif-
ferent ways. A straightforward way is to choose Ql as the product of n stabilized
hyperbolic Householder transformations Ql,k, k = 1, . . . , n [20]. The kth hyper-
bolic Householder transformation puts zeros below the main diagonal in column k.
Note that the first transformation ruins the sparsity of the generator matrix, since
2p generator rows are dense. The number of rows in the generator matrix at the
iteration k, k = 1, . . . , n, is Ñ − n(k − 1). Hence the kth iteration can be accom-
plished in O((n + p)(Ñ − n(k − 1))) flops and, therefore, the first n iterations of
GSA have a computational complexity of order O(n5 + pn4). We observe that, since
n � p, the computational complexity of the last p iterations of GSA is negligi-
ble with respect to the first n ones. In order to improve the operations count
below O(n5), we will need to rearrange the transformations so that sparsity is pre-
served.

To do this, we choose in each of the first n iterations to operate on the sparse
rows first using hyperbolic Householder transformations (Step l.1 in algorithm GSA
below). This still leaves 2p rows to be reduced. Then we apply a Givens rotation to
the first positive generator and the first dense positive generator in order to annihilate
the first nonzero entry of the latter generator. We follow this by a hyperbolic rotation
between the first positive generator and the first dense negative generator to annihi-
late the first nonzero entry position of the latter generator. We repeat this procedure
for the first position of each of the other p − 1 dense generator pairs, and then for
the other n − 1 columns in the first block, to complete the reduction to proper form
(Step l.2). The last p2 dense columns are easily handled in a separate loop.

We cannot afford to explicitly update any of the dense generator rows, but it turns
out that each pair of generators has the effect of multiplying the entries from np + 1
to n2 − p2 − 1 by a product of cosines, and this product is accumulated and applied
only when the entries are shifted to be below a dense block in the other generators.

N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221 215

This procedure is summarized in algorithm GSA, with more details given follow-
ing it.

Generalized Schur algorithm (GSA)

input : Ĝ, the generator matrix of M̂ with respect to Z
output : L, the Cholesky factor of the matrix M̂ .
G0 ≡ Ĝ

for l = 1 : n,
Step l.1

find a Jn,p -orthogonal matrix Q̃l such that
G̃ = Q̃lGl−1 and G̃l([1 : n, n + p + 1 : 2n + p], :) is in proper form

Step l.2
find a Jn,p-orthogonal matrix Q̂l such that

Ĝl = Q̂lG̃l is in proper form

L(n(l − 1) + 1 : Ñ, n(l − 1) + 1 : nl) = Ĝl(1 : n, :)T

C = Ĝl(1 : n, :)Z(n(l − 1) + 1 : Ñ, n(l − 1) + 1 : Ñ)T

Gl =
[

C(:, n + 1 : Ñ − n(l − 1))

Ĝl−1(n + 1 : 2(n + p), n + 1 : Ñ − n(l − 1))

]
∈ R2(n+p)×(Ñ−nl)

end
for l = 1 : p,

find a Jn,p-orthogonal matrix Qn+l such that

Ĝn+l = Qn+lGn+l−1 is in proper form
L(n2 + p(l − 1) + 1 : Ñ, n2 + p(l − 1) + 1 : n2 + pl) = Ĝl(1 : p, :)T

C = Ĝn+l (1 : p, :)Z(n2 + p(l − 1) + 1 : Ñ, n2 + p(l − 1) + 1 : Ñ)T

Gl

[
C(:, p + 1 : p2 − p(l − 1))

Ĝn+l−1(p + 1 : 2(n + p), p + 1 : p2 − p(l − 1))

]
∈ R2(n+p)×(p−l)p

end

Step l.1 can be accomplished by applying n hyperbolic Householder transfor-
mations Q̃l,k to the left of Gl−1, determined to annihilate the entries in the non-
dense rows of the kth column below the main diagonal, for k = 1, . . . , n. Hence
Q̃l ≡ Q̃l,nQ̃l,n−1 . . . Q̃l,1 and G̃l ≡ Gl,n. We observe that the generator subma-
trix Gl−1([n + 1 : n + p, 2n + p + 1 : 2n + 2p], :) is not involved in this reduction.
Moreover, only the first np and the last p2 entries of the involved generators are dif-
ferent from zero. Step l.2 must be implemented in such a way that the latter structure
is preserved, for l = 1, . . . , n. In this case, any of these steps can be accomplished
in O(pn3 + p2n2) flops.

Note that the submatrix G̃l(n + p + 1 : 2n + p, :) is already in proper form after
step l.1, and hence it is not involved in step l.2. An efficient implementation of step
l.2 can be accomplished by the following procedure:

216 N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221

% Step l.2
Ĝl ≡ G̃l

for i = 1 : n,
for k = 1 : p,

Step l.i.k
find a Jn,p-orthogonal matrix Qlik such that
Ğl([i, n + k, 2n + p + k], i : Ñ − n(l − 1))

= QlikĜl([i, n + k, 2n + p + k], i : Ñ − n(l − 1))

is in proper form
Ĝl ≡ Ğl

end
end

The generators i, n + k, 2n + p + k involved in Step have the following structure

(1) The entries of Ĝl(i, np + 1 : n2 − n(l − 1)) are zero.
(2) Ĝl(n + k, :) and Ĝl(2n + p + k, :) differ only for the entry n2 + k − n(l − 1).

Exploiting the particular structure of Ĝl , a technique has been developed in [14,
13] to compute the reduction to proper form of the matrix involved in step in O(np +
p3) flops, by preserving the initial structure in the generator matrix. Each of these
steps is accomplished choosing Qlik as the product of the hyperbolic rotation Hlik

with the Givens rotation Glik computed such that HlikGlikĜl([i, n + k, 2n + p +
k], i : Ñ − n(l − 1)) is in proper form. In particular,

Glik =

 clik slik

−slik clik

1




is computed such that

G̃l([i, n + k, 2n + p + k], i : Ñ − n(l − 1))

= GlikĜl([i, n + k, 2n + p + k], i : Ñ − n(l − 1))

and G̃l(n + k, i) = 0. It turns out that

G̃l(i, i) =
√

Ĝ2
l (i, i) + Ĝ2

l (n + k, i),

clik = Ĝl(i, i)

G̃l(i, i)
, slik = Ĝl(n + k, i)

G̃l(i, i)
, (13)

Moreover,
G̃l(i, np + 1 : n2 − n(l − 1)) = slikĜl(n + k, np + 1 : n2 − n(l − 1))

and
G̃l(n + k, np + 1 : n2 − n(l − 1)) = clikĜl(n + k, np + 1 : n2 − n(l − 1)).

N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221 217

To complete the step, the hyperbolic rotation

Hlik =

 c̃lik −s̃lik

1
−s̃lik c̃lik




is computed such that

Ğl([i, n + k, 2n + p + k], i : Ñ − n(l − 1))

= HlikG̃l([i, n + k, 2n + p + k], i : Ñ − n(l − 1))

and Ğl(2n + p + k, i) = 0. It turns out that

c̃lik = G̃l(i, i)√
G̃2

l (i, i) − G̃2
l (2n + p + k, i)

= G̃l(i, i)

Ĝl(i, i)
,

s̃lik = Ĝl(2n + p + k, i)√
G̃2

l (i, i) − G̃2
l (2n + p + k, i)

= Ĝl(2n + p + k, i)

Ĝl(i, i)
,

and

Ğl(n + k, i) = Ĝl(n + k, i).

Moreover, taking (13) into account,

Ğl(i, np + 1 : n2 − n(l − 1)) = Ĝl(i, np + 1 : n2 − n(l − 1)),

Ğl(2n + p + k, np + 1 : n2 − n(l − 1))

= clikĜl(n + k, np + 1 : n2 − n(l − 1)).

and

Ğl(2n + p + k, np + i + 1 : n2 − n(l − 1))

= G̃l(n + k, np + i + 1 : n2 − n(l − 1)). (14)

Hence, at the end of the kth step, the entries in the ith generator from np + 1 up to
n2 − n(l − 1) are still equal to zero. Moreover, we observe that it is not necessary to
update the whole vectors in (14). In fact, at the end of each iteration l, l = 1, . . . , n,
the first n positive generators, according to GSA, are computed by first multiplying
them to the right by Z(n(l − 1) + 1 : Ñ, n(l − 1) + 1 : Ñ) (the effect of this multi-
plication is to displace the first np entries of these generators n positions to the right),
and then removing the first n columns of the whole generator matrix. At iteration
l + 1, the first n positive and the first n negative generators have the entries from
np + 1 up to n2 − ln equal to zero. Hence, to proceed it is necessary only to update
the entries of the generators (14) corresponding to the nonzero entries of the first n
positive and the first n negative generators and store the product of the coefficients
clik into a temporary variable in order to dynamically update the latter generators at
each iteration.

218 N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221

Therefore, applying the above mentioned technique, Step l.2 can be accomplished
in O(n2p + np3) flops and the computational complexity of the first n iterations of
GSA is reduced to O(n4).

The implementation of GSA is weakly stable [16] if each of the hyperbolic rota-
tions is performed in a stable way [1] and only stabilized hyperbolic Householder
transformations [20] are considered.

The solution of (6) is computed solving the following triangular linear systems

Lẑ = P2M
Tv,

LT(P2z) = ẑ

with O(n3 + n2p2) flops, since only the first n + p subdiagonals and the last p2

rows of L are different from zero.
The matlab files of the RSTLS algorithm, with the fast implementation of the

GSA described in this section, can be obtained from the authors upon request.

4. Numerical results

We demonstrate the accuracy of the RSTLS approach on two image deblurring
problems. In our implementation, we stop the RSTLS algorithm after 200 iterations,
or sooner if

‖[�αT�xT]‖2 < 0.01.

Moreover, the reduction of the computational complexity by means of the fast imple-
mentation of RSTLS is shown in Example 3.

Example 1. In this example a 20 × 20 image is considered. Fig. 2 shows the original
(a) and blurred (b) images. The point-spread function was Gaussian with p = 5.
The noise added to each element of the blurred image and the point spread function
was normally distributed with mean zero and standard deviation σ = 0.02. In Fig.
2 the images reconstructed by using the STLS algorithm (c) and the RSTLS algo-
rithm, with regularization parameter λ = 0.18 (d) are depicted. The STLS algorithm
converges within 22 iterations, the RSTLS algorithm within 29 iterations.

Fig. 2. (a) True 20×20 image. (b) Blurred image with p = 5. (c) Reconstructed image by the STLS
algorithm. (d) Reconstructed image by the RSTLS algorithm with λ = 0.18.

N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221 219

Fig. 3. (a) True 64×64 image. (b) Blurred image with p = 5. (c) Reconstructed image by the STLS
algorithm. (d) Reconstructed image by the RSTLS algorithm with λ = 0.175.

10 20 30 40 50 60 70 80 90 100
105

106

107

108

109

1010

1011

n

SGSA
FGSA

Fig. 4. Plot of the flops required to compute the R factor of the QR factorization of M for p = 5 and for
different values of n by the fast implementation of GSA (continuous line) and the implementation of GSA
without exploiting the structure of the generators (dashed line) in logarithmic scale.

Example 2. In this example a 64 × 64 image is considered. Fig. 3 shows the original
(a) and blurred (b) images. The point-spread function was Gaussian with p = 5. The
noise added to each element of the blurred image and the point spread function was
normally distributed with mean zero and standard deviation σ = 0.12. In Fig. 3 the
images reconstructed by using the STLS algorithm (c) and the RSTLS algorithm,
with regularization paramenter λ = 0.175 (d) are depicted. For this image, STLS
algorithm requires 82 iterations to converge, RSTLS algorithm requires 167 iteration
to converge.

Example 3. In this example we show the reduction of the computational complexity
by means of the fast implementation of RSTLS algorithm described in this paper.

220 N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221

The number of flops needed to compute the R factor of the QR factorization
of the matrix M , by the GSA algorithm implemented without the exploitation of
the structure of the generators (SGSA), and the algorithm described in the paper,
the GSA algorithm implemented exploiting the structure of the generators (FGSA),
for different values of n, is depicted in Fig. 4. The value of p is equal to 5. These
simulations were performed in Matlab 5.3.

5. Conclusions

We have shown that image deblurring problems can be formulated as a Structured
Total Least Squares problem. Since the involved matrices are often ill-conditioned,
regularization is needed to have meaningful results. An iterative algorithm for the
Regularized Structured Total Least Squares problem has been designed that requires
a solution of a structured least squares problem at each iteration. A fast implemen-
tation of the generalized Schur algorithm has been proposed for solving the latter
problem. Moreover, the accuracy of the RSTLS estimator with respect to the STLS
estimator is shown by means of two different image deblurring problems.

References

[1] A.W. Bojanczyk, R.P. Brent, P. Van Dooren, F.R. de Hoog, A note on downdating the Cholesky
factorization, SIAM J. Sci. Statist. Comput. 8 (1987) 210–220.

[2] A.W. Bojanczyk, A.O. Steinhardt, Stabilized hyperbolic householder transformations, IEEE Trans.
Acoustics Speech Signal Process. ASSP-37 (1989) 1286–1288.

[3] H. Fu, J.L. Barlow, A regularized structured total least squares algorithm for high resolution image
reconstruction, Linear Algebra Appl. 391 (2004) 75–98.

[4] G.H. Golub, C.F. Van Loan, An analysis of the total least squares problem, SIAM J. Numer. Anal.
17 (1980) 883–893.

[5] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., The John Hopkins University Press,
Baltimore, MD, 1996.

[6] R.C. Gonzalez, P. Wintz, Digital Image Processing, second ed., Addison-Wesley, 1987.
[7] P.C. Hansen, Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion,

SIAM Monographs on Mathematical Modeling and Computation, SIAM, Philadelphia, 1998.
[8] P.C. Hansen, Deconvolution and regularization with Toeplitz matrices, Numerical Algorithms 29

(2002) 323–378.
[9] T. Kailath, Displacement structure and array algorithms, in: T. Kailath, A.H. Sayed (Eds.), Fast

Reliable Algorithms for Matrices with Structure, SIAM, Philadelphia, 1999, pp. 1–56.
[10] A. Kalsi, D.P. O’Leary, Algorithms for structured total least squares problems with applications to

blind image deblurring, CS-TR-4390, University of Maryland, August 2002.
[11] R.L. Lagendijk, J. Biemond, Iterative Identification and Restoration of Images, Kluwer Academic

Publishers, Boston, 1991.
[12] P. Lemmerling, S. Van Huffel, B. De Moor, Structured total least squares problems: formulations,

algorithms and applications, in: S. Van Huffel (Ed.), Recent Advances in Total Least Squares Tech-
niques and Errors-in-Variables Modeling, SIAM, Philadelphia, 1997, pp. 215–223.

N. Mastronardi et al. / Linear Algebra and its Applications 391 (2004) 203–221 221

[13] N. Mastronardi, Fast and reliable algorithms for structured total least squares and related matrix
problems, PhD thesis, Faculty of Engineering, K. U. Leuven, Leuven, Belgium, May 2001.

[14] N. Mastronardi, P. Lemmerling, S. Van Huffel, Fast structured total least squares algorithm for solv-
ing the basic deconvolution problem, SIAM J. Matrix Anal. Appl. 2 (22) (2000) 533–553.

[15] N. Mastronardi, P. Lemmerling, S. Van Huffel, Fast regularized structured total least squares
algorithm for solving the basic deconvolution problem, Internal Report 02-162, ESAT-SISTA,
K. U. Leuven, Leuven, Belgium, 2002. Accepted for publication in Numerical Linear Algebra with
Applications.

[16] N. Mastronardi, P. Van Dooren, S. Van Huffel, On the stability of the generalized Schur algorithm,
Lecture Notes in Computer Science 1988 (2001) 560–567.

[17] M.K. Ng, R.J. Plemmons, F.A. Pimentel, A new approach to constrained total least squares image
restoration, Linear Algebra Appl. 316 (2000) 237–258.

[18] A. Pruessner, D.P. O’Leary, Blind deconvolution using a regularized structured total least norm
approach, SIAM J. Matrix Anal. Appl. 24 (2003) 1018–1037.

[19] C.M. Rader, A.O. Steinhardt, Hyperbolic Householder transformations, SIAM J. Matrix Anal. Appl.
9 (1988) 269–290.

[20] C.M. Rader, A.O. Steinhardt, Hyperbolic householder transformations, IEEE Trans. Acoustics
Speech Signal Process. ASSP-34 (1986) 1584–1602.

[21] J.B. Rosen, H. Park, J. Click, Total least norm formulation and solution for structured problems,
SIAM J. Matrix Anal. Appl. 17 (1996) 110–126.

[22] S. Van Huffel, J. Vandewalle, The total least squares problem: computational aspects and analysis,
Frontiers in Applied Mathematics Series, vol. 9, SIAM, Philadelphia, 1991.

[23] S. Van Huffel, H. Park, J.B. Rosen, Formulation and solution of structured total least norm problems
for parameter estimation, IEEE Trans. Signal Process. 44 (1996) 2464–2474.

	Introduction
	The RSTLS problem for image deblurring
	Generalized Schur algorithm for image deblurring
	Choice of the initial generator matrix
	GSA for computing the Cholesky factorization

	Numerical results
	Conclusions
	References

