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On pure states af quantum bits, theoncurrence entanglement monotaeéurns

the norm of the inner product of a pure state with its spin-flip. The monotone
vanishes fon odd, but forn even there is an explicit formula for its value on mixed
states, i.e., a closed-form expression computes the minimum over all ensemble
decompositions of a given density. Foeven a matrix decompositior=k;ak, of

the unitary group is explicitly computable and allows for study of the monotone’s
dynamics. The side factokg andk, of this concurrence canonical decomposition
(CCD) are concurrence symmetries, so the dynamics reduce to consideration of the
a factor. This unitarya phases a basis of entangled states, and the concurrence
dynamics ofu are determined by these relative phases. In this work, we provide an
explicit numerical algorithm computing=k,ak, for n odd. Further, in the odd case

we lift the monotone to a two-argument function. Té@ncurrence capacitpf v
according to the double argument lift may be nontrivialiardd and reduces to the
usual concurrence capacity in the literaturericven. The generalization may also

be studied using the CCD, leading again to maximal capacity for most unitaries.
The capacity o ® 1, is at least that of, so odd-qubit capacities have implications
for even-qubit entanglement. The generalizations require considering the spin-flip
as a time reversal symmetry operator in Wigner’s axiomatization, and the original
Lie algebra homomorphism defining the CCD may be restated entirely in terms of
this time reversal. The polar decomposition related to the CCD then writes any
unitary evolution as the product of a time-symmetric and time-antisymmetric evo-
lution with respect to the spin-flip. En route we observe a Kramers’ nondegeneracy:
the existence of a nondegenerate eigenstate ofiarg/reversal symmetric-qubit
Hamiltonian demand§) n even and(ii) maximal concurrence of said eigenstate.
We provide examples of how to apply this work to study the kinematics and
dynamics of entanglement in spin chain Hamiltonians2@5 American Institute

of Physics[DOI: 10.1063/1.1900293

I. INTRODUCTION

The entanglement theory of two quantum bits is now well understoodplis a mixed
two-qubit quantum state, described by &4 Hermitian density matrix. Hill and Woottérs
describe all classes pfup to evolution by unitaries in terms of the concurrence. This concurrence
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is explicitly a function of the eigenvalues pf¥)®?p(0¥)®?, where the factop=(o¥)®?p(o¥)®?

may be interpreted as the spin-flip @f Further, for pure states the entropy of the partial trace to
either one-qubit subsystem is a one-to-one function of the concurrence, so that both measures
agree as to which two-qubit states are more or less entangled. Local ($taissr$ are unen-
tangled, while states locally equivalent to Bell states have maximal entropy and concurrence.

For other systems, entanglement theory is more complicated. Even fod-teweel systems
(qudits it is not typical to use a single function to quantify entanglenférsnd research into
generalized concurrences continG®énstead we focus on the multi-partite qubit case. The key
point is that it is not sensible in-qubits to speak of aniquemaximally entangled state. More
precisely, suppose nowis a 2' X 2" Hermitian density matrix describing a mixeequbit state. A
unitary evolution is given by a2 2" unitary matrix, sayv, with the evolution being+— vpv'. A
partial ordering of suckp as more or less entangled follows by stipulating ttiafor v:®?:1vj
local unitary,p and vpv' are equally entangled, whilgi) the p becomes no more entangled on
average after applying any sequence of local measurements and local unitaries, i.e., after applying
local completely positive maﬁQ.More entangled is a partial order which has distinct maximal
elements fom=3. For example, in three qubits, two states which are maximally entangled yet
locally inequivalent are given as follows&:

IGHZ) = (1A2)[|000 + |11D], W)= (1/V3)[|00D) +[010) +|100]. (1)

There are nine distinct maxima of the partial order in four qu‘ﬁ‘itmd strong theoretical evidence
suggests that the number of sushtanglement typegrows quite rapidly witm (e.g., Ref. 33

To quantify multi-partite entanglement, one often uses functions known as entanglement
monotones:** All such monotones must vanish on any local state. A monotone might also vanish
on certain entangled states but definitively reports that a state is not local should its value be
nonzero. The value on a mixed statés defined to be the minimum over all ensemble decom-
positions ofp of the ensemble weighted-average. A monotone is convex on density matrices, since
entanglement does not increase under mixing of states. Monotones are also noninaraasing
averageunder local quantum operations and classical communication. Among popular monotones
are Meyer'sQ-measuré;* the Schmidt measurg,and certain polynomial invariaritsf eigen-
values of density matrices representing stochastic mixtures of pure data states.

The n-qubit concurrence is an entanglement monotone. To define the monotone, we first note
thatthroughoutu refers to the spin-flip of th@-qubit state space. Concurrence for a pure Hate
is the component on a pure state of its spin-flip:

Cull) = Kol )l

where

o) = (i) = (= i) ). (2)

The concurrence of am qubit state withn odd vanishes identically. This monotone is noteworthy
for two reasons. First, there is an explicit, computable closed-form expression for the minimum
C,(p) which is again defined in terms of the eigenvaluegf p(a¥)®"p(a¥)®"."*? Second, in the
context of concurrence dynamics we may study entanglement dynamics. This paper concerns itself
with the latter topic, and we henceforth consider only pure states and unitary maps.

The primary mathematical tool used in this paper is the concurrence canonical decomposition
(CCD). This is discussed in detail in Sec. Il. Briefly, it is a way to decompose a unitanygoibits
into a factor that changes concurrence and factors that do notv:llét— H, be a unitary
evolution. Consider the CCb= klakz.8 Now k; andk, are symmetries of the concurrence, reduc-
ing concurrence dynamics to the second factor. Bhiigctor applies relative phases to a basis of
GHZ-like states. Such phases are not unique due to choices of diagonalization while computing
the CCD, but the spectrum sgga®) is uniquely determined by. Moreover, the two-qubit test for
maximal entanglement capaéﬁ)generalizes tan qubit concurrence capacitiesrifis even:
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Let v=k;ak, be a CCD ofv. Consider spg@?) as a subset of the unit circle. Then for
=2p, there is d¢) e H, with C,(|¢))=0 andC,(v|¢))=1 if and only if O is within the convex hull
of speca?).8*°

Alsoz,3 for evenn there is an explicit numerical algorithm for computing the CCD and hence
spec¢a?).

This work presents three new results. The first is an extension of concurrence capacities to the
casen odd. Forn even, the concurrence symmetry grokipto which k;, k, belong is up to a
similarity transform an orthogonal group. Forodd, K is not orthogonal but symplectig has
repeat eigenvalues, at}, 1(|1))=0 for all |4). Nonetheless, we define a two-argument lift of the
usual concurrence, s&¥(|®),|#)). [See Eq(7).] Suppose we define the amount of concurrence an
odd-qubit unitaryv creates to be

x(v) = maxC(v|¢), v[));C(| ). |4)) = O} 3
This generalized capacity has the following properties:

e For n even, the one-argument concurrence capacity and the two-argument capaeity of
coincide.

« For n odd, oftenx,(») # 0 for the pairwise capacity despi@,(|¢))=0. Further,x,(v)=1 if
and only if O lies within the convex hull of sp&®) for any CCD byv=k,ak,.

e Concurrence capacity monotonicityising double argument capacities, the capacityv of
®1, is always at least that af.

Hence there exists a theory of odd-qubit concurrence dynamics, even though concurrence vanishes
identically (on the diagonalin odd qubits.

Second, we present an explicit numerical algorithm for computing the odd-qubit CCD. Vari-
ous matrix logarithms must be computed, after which one invokes work in the numerical analysis
literaturé”® to diagonalize a time reversal symmetric Hamiltonian using symplectic matrices.

We close with the third observation, which we will refer tokaamers’ nondegeneracy:

On then-quantum bit state space, suppose thattame reversal symmetric Hamiltonia#
has a nondegenerate eigenstate Then (i) n is even and(ii) C,(|]\))=1. In particular,|\) is
entangled, i.e|\) # ®[L,[¢).

The proof follows from viewings as a time reversal symmetry operator in Wigner’s axioma-
tization, a point of view which also simplifies the derivation of the CCD. Kramers’ nondegeneracy
leads one to wonder whether useful entangled states may be produced by cooling the system of
qubits coupled to a-time reversal symmetric Hamiltonian. We consider the perturbative stability
of this entanglement while breaking the time reversal symmetry here, while the thermal stability of
the Kramers’ nondegeneracy for the quantum XY model is considered elselvhere.

1. BACKGROUND AND PRIOR WORK

Since our key tool is a generalized canonical decomposfft'wa, review the canonical de-
composition literature. The two-qubit canonical decomposi(ob) states that any two-quantum
bit unitary evolutiony, i.e., any 4< 4 unitary matrixy, may be written:

v=€9(U; ® uya(ls ® U,). (4)

Hereu, u,, U, U, are one-qubit2 X 2) unitary matrices, which may be chosen to have determi-
nant one. The unitarg is diagonal in the Bell basis and may be thought of as applying relative
phases to this basis. However, it is better computationally to think a$ phasing thenagic
basig"?® instead:

Im0) = (J00) +[11)/V2, |m1)=(|0D) - [10))/12,
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Im2) = (i|00y = i|1D)/V2, |m3)=(i|0D) +i|10)/V2. (5)

Let E be defined byE|j)=|mj), and let SW2") denote the Lie group of determinant on&2"

unitary matrices, S@") denotes determinant one orthogonal matrices, af@l)Ddenotes the
diagonal 2 X 2" unitary matrices. A diagonalization argument shows(85 SQ(4)D(4)SOQ4).
Moreover, the magic basis has the property H:8U(2) @ SU(2)E=SQ(4), i.e., determinant one
tensors have real matrix coefficients in the basis. Thus the canonical decomposition may be
computed by transforming the diagonalization throlgh

SU4) =[ESO4)ET[ED(4)ET[ESO4)ET] = SU(2) ® SU(2)(ED(4)ENSU(2) ® SU(2).
(6)

We next provide a brief account and references for the best known applications and generaliza-
tions of the CD.

Makhlin®* anticipates the canonical decomposition by directly computing that the double
cosets[SU(2) ® SU(2)]\SU(4)/[SU(2) ® SU(2)] are parametrized by three real parameters, the
number of parameters egiven defa)=1. The CD appears explicitly in Kraus and Cifddn an
important paper, Khaneja, Brockett, and Glaser point out that one may view the CD as an example
of the G=KAK decomposition theorem fde=SU(4), K=SU(2) ® SU(2), andA=A the commu-
tative Lie group that phases the magic Bell) basis®* They also consider the matrix factorization
from the point of view of control theory in order to compute minimum times for applying a given
two-qubit unitary evolution. Zhang, Vala, Sastry, and Whaley made use of this observation to
describe which & 4 unitariesv are equivalent up to tensors of one-qubit rotations. The factor
ae A is not unique but depends on choices of diagonalization, and these are described geometri-
cally using Weyl chambers. Specifically, the Weyl group orbit of aqpyoduces all possibla, and
each orbit intersects the Weyl chamber once. GerSU(4), the Weyl chamber is a tetrahedr&h.

The terms canonical decomposition and magic basis are by now standard, and there are published
surveys(e.g., Ref. 13, Sec. Il.B Moreover, explicit control sequences for two-qubit unitary
evolution have been mapped using the 2f. 37, Eq(B2)].** The timing arguments of Khaneja

et al?* have been recently verified in liquid-state NMR.

There are many applications of the two-qubit CD. In addition to timing as above, they include
(i) studying the entanglement capacity of two-qubit operatfdr@) building efficient (smal)
guantum circuits in two qubit@,‘“’“'%and(iii) classifying which two-qubit computations require
fewer than average multiqubit interactioHs'®

Besides the CCBthere is anothen-qubit generalization of the canonical decomposition due
to Khaneja and Glasér.lt is also defined in terms of &=KAK decomposition. LabaN=2" for
the remainder. The type of @=KAK decomposition follows from a classification theorem of
Cartan involutions and determines the gropandA up to Lie isomorphism[The classification
appears in HelgasofRef. 21, p. 518, see the same for delajlGiven G=SU(N), the three
possible types demarki=SQ(N) (type Al ), K=Sp(N/2) a symplectic grougtype All ), or K
=S[U(p) @ U(qg)] for p+g=N a block unitary(type Alll ). In the All case, the structure of the
group also demands amye A has even-degenerate eigenvalues. The two-qubit canonical decom-
position is typeAl, and indeed the similarity transform fyshows SW2) ® SU(2) =SQO(4). The
CCD alternateAl and All asn is even or odd. The KGD of Khaneja and Glaser technically
contains twoG=KAK decompositions, the first of which is tygell for n>2. In fact, the KGD
is similar to the cosine sine decompositi@@SD) of numerical linear algeb?éand so may be
computed numerically. Physically, tie= S U(N/2) @ U(N/2)] group of the KGD may be viewed
as those unitaries commuting with measurements irzthasis of the least significant qubit, i.e.,
commuting withly,, ® 0%

We next recall notation from quantum computing. The one-qubit state spdde=i€{|0)}

@ C{|1)}. Forn quantum bitsH,=(H)®*"=H;® - -- ® H;. (See Ref. 36.A local state|) is any
state which may be written asL|¢;) for [¢;) € H,, while anentangledstate is any state which
is not local. Notations such as, e.{f) refer not to the state of a qudit but rather to a multiqubit
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state, e.g.[7)=|1)®|1) ®|1). Then-concurrence of Eq2) is an entanglement monotofi&esides
the well-known two-qubit concurrené@gven gubit concurrencesqubits[Ref. 48, Ref. 40—Eq.
(62), Ref. g have also been studied. Since the single-argument concurrence vanishesldome
introduce a two-argument generalization.

For v per Eq.(2), the concurrence bilinear forfhis the mapC,,: H, X H,— C given by

Call#).[9) = (lulh). ()

The complex conjugate forces the two-argument function to be complex bilinear rather than
complex bi-antilinear, and the concurrence monotone is the norm of the form on the diagonal:
CalloN=|Cn(|#),|#))|. The bilinear formC, is symmetric fom even and antisymmetric for odd,
which causes vanishing of the monotdm&t not the formin the odd-qubit case.

The CD is an example of the=KAK decomposition theorertRef. 21, Theorem 8.6, Sec.
VII.8) for G=SU(N). This theorem produces a decomposition of a reductive Lie gitgr any
0, a as follows:

e The map#d:g—g for g=Lie(G) is a Cartan involutionRef. 21, Sec. X.6.3, p. 518By
definition>° (i) 192=1g and (i) g X,Y]=[6X,0Y] for all X,Y eg. As is standard, we write
g=p @t for the decomposition of into the —1 and +1 eigenspace @f

e Given 6, aCp is a commutative subalgebra which is maximal commutative. in

Note thatt is closed under the Lie bracket, while this is trivially true forThus the exponential
of each is a group. Lab&=expt, A=expa, where for lineaiGC GL(n,C) the exponential may
be interpreted as a matrix exponential. The theorem then assert&tHaAK={k;ak;;k;,k,
eK,aeA}.

The CD is seen to be an example as follows, cf. Ref. 24. Talke(4) — su(4) by 6(X)
=(-i0Y)®?X(-ia¥)®? and a=spanfi|0)}0|—i|1){1|—i|2)(2|+i|3)(3|,i|0)3|+i|3)(0],i|1)(2| +i|2)
X (1]}. Extending these choices toqubits produces the CCD:

Definition 11.1: [CCD, Ref. § Define 6: su(N) — su(N) by 6(X) =[(=io¥)®"]"X(-io¥)®". Then
t denotes the +1-eigenspaceivhile p denotes the —1-eigenspace. Finally, in case even we
define

a=span({ili)([+iIN-j-I(N-j -1 -ilj+ D+ 1 -iN-j-2(N-j-2; O0<j=2""
—2U{iliXN-j -1 +iIN-j - 1)([;0<j<2""-1}) (8)

with A=expa. In casen odd, we drop the second set:

a=span(i[j)(j[+i[N-j—IXN-j -2 —il[j+ D+ 2 —i[N-j-2XN -] - 2;
O<j=<2"1-2). 9

The concurrence canonical decomposition (CCiD)n-qubits is the resulting matrix decomposi-
tion SUN)=KAK. Note thatn may be even or odd.

In an earlier work computations in Diradbra-ke} notation show that(X) is a Cartan
involution anda is maximal-commutative ip. The G=KAK theorem(Ref. 21, Theorem 8.6, Sec.
VII.8) then shows that the CCD exists. Further, the CCD may be computed numerically in the
even qubit casé.

The CCD is a useful tool for studying concurrence capacities sifreexpt) consists of
symmetries of the concurrence form of Ed), wheret is given per Definition 11.22

(veK) = [Cn(V|¢>uV|¢>) =Cn(|¢>!|¢>) for all |¢>1|¢> € Hnl. (10

In particular, the above may be used to verify that(®Y"CK as a subgroup of large codimen-
sion. One explanation for the fact thidtalternates between orthogonal and symplectic groups is
to note that the fornt, is symmetric or antisymmetric asis even or odd. Another outlook,
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illustrated in Sec. V, is that the spin-flip is a bosonic or fermionic time reversal symmetry
operator a1 is even or odd, i.ey™t=(-1)".

I1l. ODD-QUBIT CONCURRENCE CAPACITIES

The main results of this section are summarized in Theorem 1ll.11. Each is proven in turn.

A. Double-argument capacities generalize single-argument capacities

To begin, we introduce a pairwise concurrence capagijty) and denote earlier concurrence
capacitie® with a tilde,

Knl(v) = max{Cu(v[);(Yl) = 1.Co(|4)) = O},
(11
wn(v) = max|Cu(v] ), vi))]: (¢l d) = (lh) = 1.Cn(| h).| 1)) = O}

Due to Eq.(10), any CCD of a unitaryw=k,ak, implies %,(») =%,(a)® and Kn(V) Ky(a).
Proposition Ill.1: Suppose \2p is an even number of qubits. Theg(v) =«,(v).
The proof requires certain results from the literatit@.

» There is am=2p qubit entangleE, so that for anyk e K, EokEg is a real unitary matrix, i.e.,
orthogonal. The columns d, resemblgGHZ) states.

* For thisE,, any CCDv=k,ak, moreover hasl=E'aE for d= E odi[iX(j| diagonal. Asd is
unitary diagonal, eact; is on the unit circle withinC.

« The concurrence spectrum becomeby) ={d7} Ly Then,y()=1 if and only if O< C lies
within the convex hull ofA(v), a subset of the unit circleRef. 8, Lemma I11.2.

e Acorollary (Ref. 8, Scho. 2.180f the symmetry group theorem shows tEgtalso translates
betweenC,(-,-) and a simpler bilinear fornC,(Eqz,Eqz,) =212,

Example 111.2: We use the CD to compute a two-qubit concurrence capacity. Consider a
family of controlled-phase gates, e.gy(t)=e|0)0|+e ! 1)(1]|+e|2)(2|+e3!3)(3| with
defv(t)]=1. A possible CD is:

u(t) = (€7 @ 1)@ (], @ et (12)

The central factor is a valid choice farin v(t) =k;aks,, sincee!”® is also diagonal in the magic
basis. Thus\J»(t)]=spe¢e?to’®o) ={e?t et g2t 2ty Only fort e /47 do we have 0 within

the convex hull ofAJ#(t)], and the convex hull theorem assekigv(7/4)]=1. Indeed, up to

phasev(7/4)=|0)0|+|1){1|+|2)(2|-|3)(3|. Moreover, if

1(1 1)
H=—
y2\1 -1

is the Hadamard gaf’(?,a standard identity convertg#/4) into the quantum controlled-not:

CNOT =(00)(00] +[01)(01] +|10)(11 +|11}10| = (I, ® H)p(a/4)(1, ® H). (13)

Thus v(w/4) carnes an unentangled state to a maximally entangled state, since (ENOT
®1,)|00)= CNOT(l/\Z)(|OO)+|10) (1/\2)(|OO>+|11>) More intricate  examples in
two-qubits*°and an even number of qubitare available in the literature.

Lemma 111.3: Suppose the number of qubits is even. LeE?O aJ|J> Z,= E b,-|J'>, and z
=3N5'cili) throughout, and len (»)={\;}}5~ Then we have the following:

N-1

%y(v)=ma Ec)\ Z2,=1,202,=0¢,
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N-1

Kkp(v)=m > ab\|;Zz=22=122=0(. (14
j=0

Proof of Lemma II1.3:The first equation appears in Ref. 8; cf. Ref. 49. For the second, take
vectorsz,, z, and labelx=Eyz;, y=Eyz,. Then

[Ca(x,y) =0] = [Cn(Eqz1,E2y) = 0] = [2]2,=0]. (15

Moreover, without loss of generality by choice of, z,, and symmetry we may suppose
=EodE] for d?=2I\[j)j]. ThenCy(EdElX, EqdEly) =Cr(Eodz: , Eqdz) = (z1d")dz= =]y ).
Proof of Proposition Ill.1:Let a;, b; be chosen so as to maximize the expressmrk;‘,()v) per
Lemma .3, i.e.,x,(v)= |E -0 an N | Now choose complex numbecs so thatc =ajb;, and put
OC]|J> We note thalzgz3 0. Moreoverzsz3s1 for

N-1 N-1 N-1 N-1 1 1
P =X |7 = 2 [ajby| < X Zlay?+ Z[bP=1. (16)
i=0 =0 =0 02 2

Label t?=2z}zs, notingt?< 1. Then(t™z) (t™z5) =1, so by definition ofi,,(») we have

N-1

—2.2
=0

N-1
=t72 X ab\ | =t7%k,(v). (17)
i=0

Kn(v) = Kn(v) =

Thust=1 and hencex,(v)="k,(v). O

B. Monotonicity

We next demonstrate concurrence capacity monotonicity, i.e.jthat,,(v® |§J) is mono-
tonic. It provides another justification for odd-qubit concurrence capacities, d€spite=0. For
if Kkyp-1(v)>0, then there is a [2qubit state|y) with C,(|))=0 while Cy[(v®1,)|¢)]
= Kkop-1(V).

Proposition I1l.4: Let n be either even or odd € SU(N) an n-qubit computation, and let,|
denote the trivial one-qubit computation. Thep(v®1,) = k,(v).

Proof: Choose|¢), |#) such thatk,(v)=C.(v|¢), v|1)) while Cn(|#),|¢))=0. Then|p)®|0)
and|#) ®|1) are a null-concurrent pair ¢h+1)-qubit states:

Creal|) @ |00, ) @ 1)) = (] © (O (= i)™ (g ® [1)) = [Col| ), [ ](Ol(= i0”)|1)).
(18

Now <_0|(—icry)|1>=1, so the above expression[&](1)=0. A similar argument demonstrates that

Conal (v ® 1)(|¢) ® |0)), (v ® 1) (|4} @ [1)] = [Ca(¥] ), v N[C1(|0), |1))]. (19

The second term of the product is one, while the firstj&’). Thus we have exhibited a pair for
which v® 1, raises the pairwise concurrence by at leggi). Sincex,.1(v®1,) is the maximum
over all null-concurrent pairs, whilgp) ®[0), |#) ® |1) is such, we se&,(v®1,)=ky(v). O

C. Parity-independent concurrence spectra

We extend the maximal concurrence capacity condition of Ztedrad. and Bullock, Brennéh
to odd-qubit systems. The first step is a definition valid in either parity.

Definition 111.5: Let v € SU(N), N=2". Forn of either parity, the concurrence spectragiv)
is the seth(v)=sped[(-io¥)*"'v(-ia¥)®"T). Viewing v as anR-linear map, equivalently
N(v)=specruriul).
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We briefly show this coincides with the definition of the even-qubit concurrence spectrum of
the literaturé® The definition ibid. states that the concurrence spectrum is the spectrum of
(ESvEQ)(EJVE,)T. Indeed, givenEyE]=(-ia¥)®" per the classification oE with ESON)E'=K
ibid.,

spedELvEq) (ESvEy)T = spedELvE ENE,) = spet(EqE) vEELr'] = spef(~ic¥)®"v(~ ia¥)®"].
(20)

In fact, the same argument shows thatv) is the spectrumiETvE)(ETvE)T for any E as above, cf.
Ref. 31.

The odd-qubit case requires different similarity matrices, B&yvhich translatek not into an
orthogonal group but rather a symplectic group per @8). For the concurrence ford,(—,-)
n-odd is antisymmetric, and symplectic rather than orthogonal groups are the appropriate symme-
tries of antisymmetric bilinear form@.e., two-formg. For a standard similarity matrix, we take

N/2-1
Fo= 2 [DGI+IN=j= D]+ 4([iXN2 +j[ = [N=j = IXN/2 +])]),
j=0
where

N/2-1
{5 C{£1} by (-i0*)®"= 20 G(N == 1) =[N =] - 1)). (21)
=
Also, label throughoutly=(-i¢¥) ® l,,. Before showing thaf translatesK into the standard
symplectic group, we show thé&, carriesC(-,-) to the standard two-formd(-,-).
Lemma I11.6: For A(|¢), 1)) =& Nl ), Cn(Fol#),Folt))=A(#),|) for all |¢),[y) € Hy.
Proof: Cn(Fo|#),Folth) =(d|Fi(-ia¥)"Fgl ). Now FodyFg=(-io¥)®" [Ref. 8, Proposition
11.14], whenceF{(—ia¥)®"Fo=Jy. O
Now SpN/2) is that copy of the symplectic group which embeds within(SUas the
symmetries ofA(—,-), i.e., satisfyingA(v|¢),v|¥)=A(¢),|y)) for all |¢),|y) € H,. In block
form:

SpN/2) ={v e SU(N); v Iyv =I5}

A B A'C is symmetricB™D is symmetric,
= e SUN); -~ (22)
C D A'D-C'B=I

As E;SQIN) EJ=Kj,, S0 t00FoSPIN/2) F§=Kap-1.
We next associatk,(v) to spe¢a®) for v=k,ak, in the odd-qubit case. Suppose we labDeto
be the following diagonal subalgebra of 8U:

N/2-1 N/2-1

D=1 2 di(li)il+IN2+pN2+jl); TT d=+1¢. (23
j=0 j=0

Now there is a standard $N)=KAK decomposition which follows frondy, (iH):JN(—iHT)JL

(Ref. 21, Sec. X.2, p. 452anda=log D as above. Given ae SU(2?P™Y), it writes v=w,dw,, with

w; € SEN/2), j=1,2 andd e D.

Suppose giverny e SU(2%%), we then writeF§vFo=w;dw,, with w; e SPN/2), j=1,2 and
deD. The odd-qubit CCD again follows by a similarity transform=(Fqw.Fg)(FodF})
X (Fow,FJ) with a=FodF{ € A, kj=Fow;F{ €K, j=1,2 is aCCD. Note thata is diagonal on the
GHZ-like basis state$F|j)}.

Lemma I11.7: Let r=2p-1. Then forv=(Fow,F})(FodF))(Few,Fj) the CCD as above with
d=SM7"d([j)(j| +IN/2+j)(N/2+]j|) diagonal and determinant one, we have(v)
={d?}e M L{d}¥5 ™ (counted with multiplicity

Downloaded 01 Jun 2005 to 129.6.88.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



062104-9 Time reversal and n-qubit canonical decompositions J. Math. Phys. 46, 062104 (2005)

Proof: Given A, B, invertible, spe@AB)=spe¢BA). Also, Eq.(10) is equivalent to a matrix
equationk’(—ia¥)®"k=(-io¥)®" for all k e K. RecaIIFOJNFg:(—iay)‘@”. Then
Ae(v) = sped[(=ia”) " v(=10¥) ™) = spe¢[ (- i0¥) " Tkyaky(~ i0¥)*"k3a'ky)
= speck[ (- id")®"kaky (- i0¥)*"'kja") = specki[ (= ia¥)*"kal k(- ic¥)*"k,]"a")
= sped¢[(-i0¥)®"al (- i0¥)*"]"a") = spec- [FoInFolFodF[FodnFalFod Fo)
= spe¢- FodydJyd'F) = spec— JydJd) = specd?). (24)

The last equality makes use dfe D repeat diagonal. O

D. A convex hull argument in odd qubits

Definition 111.8: Supposen= 2p 1. Thereduced concurrence spectrmp(v) of ve SU(N) is
the set{\}5™ for v=ky(FodF{)k, a canonical decomposition of and d=3Ng", (i)

+|N/2+j)(N/2+j|). The convex huIICH[XC(v)] of Xc(v) is the set of convex linear combinations
of the points ofAy(v), i.e.,

N/2-1 N/2-1
CHIN(M]=) 2 tA;0<t<1, X =1\ e[V (. (25)
j:O J:O

Proposition 111.9: Suppose n2p-1 is an odd number of qubits. Throughout, labgl z
=3 ayli), =2 lj), and N =1\, }¥8%. Then the following hold:

* Kkn(v) maxﬂzN/Z >\j(§N/2+jbj‘aij/2+j )| 21Inz,=0,22,=22,=1},

* (ky(1)=1) = (0 CHA(V)]).

Proof: The first item follows from Lemma I11.6, substituting=Fyz;, y=Fyz,. We continue to
the next item.

For the second item, we first prove. If «,(v)=1, then we may choosg, z, so that

N/2-1
> \j(an2+ib; — ajbnyzs)
=0

Ni2-1
< > |ansbj — abwazsi]
-0

N/2-1
< 2 Vg + laz Vb2 + byzf? < 1. (26)
j=0

Here, note that the second inequality is an iterat€0f), |4)) < (o | p)}¢| ), for all |¢),|¢)
€ H;. The last inequality in Eq(26) is the Schwarz inequality.
Now label aj=ayy,+j0;—ajby/p4j, for 0<j=<N/2-1.Then by Eq.(26),

N/2-1

> N
j=0

N/2-1 N/2-1

= 2 Negl= 2 ayl. 27

=0 j=0

Thus there must exist sonze= C, zz=1, so thatk;a;=2|a;, and moreoveE /s Ya;|=1. On the

other handz{J\z,=0 demands that 055 --zEN_’S 1|a]|)\ Multiplying by Z and taking the
complex  conjugate, 0=)/5 ey WhICh given 3NG" l|aJ|—1 by Eg. (27) demands 0

eCH[)\ (v)].
Consider now the converse case, i.es OH[\,(»)]. Then there exist; real, non-negative so
that 0=S)/3"';\;. For O<j<N/2-1, label complex numbersy,=t\;, so that we have 1

=3 1|aj| and moreover 0=83N27t\;=3¥2"1y, We are reduced to the following question:
May we choosea;}iy, (b} so that
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N-1 N/2-1
;= ayosb — Ay, X [P = X [b2=1. (28)
=0 =0

To do_this, write a;=|a;lé @9, and take a;=V|ej|, anp+=0, bj=0, and by
=—€ @99|qj|. Then we see thay,.;b;—aby+j=a;. Moreover,

Ni2-1
lajl? + lanasil? = eyl, 012+ (o2 = e, 2 |l =1. (29
i=0

Thus the vectorg,, z, per the statement of the proposition are normalized to be norm ohé.

Hence, as in the even-qubit case, a convex hull criterion on the middle factor of the CCD
determines which odd-qubit unitarieshave concurrence capacity equal to the maximal possible
capacity, i.e., one. The new feature, doubly degenerate eigenvalugévjnarising from theD
above required for typall will a posterioribe an instance of Kramers’ degeneracy; see Sec. V.

Corollary 111.10: For n=2p-1, lim,_,..da{ae A; k,(a)=1})=1.

The proof of the Corollary follows by considering probability density functions on the unit
circle® given that the number of concurrence eigenvalues grows exponentiallynwitius most
unitary evolutions for large (of either parity are maximally entangling as measured by concur-
rence. It would be interesting but technically challenging to restate this in terms of Haar measure
duon SUN). The difficulty is that the pullback measure from &< AX K to SUN) is singular,
namely singular near the set where théactor is an identity. For future reference, we summarize
the concurrence capacity results of this section.

Theorem II1.11: Let «,(v), k,(v) be the pairwise concurrence capacity and concurrence
capacity, respectively

1. The pairwise capacity and the capacity are equal in any even number of qubits. Thus,

()= {Kn(V), n=2p even

30
0, n=2p-1odd (30
2. For n either even or odd, any CCD ykjak, satisfiesk,(v=k;aky)=«,(a).
3. For any n, we must have,.1(v®1,) = ky(v).
4. Suppose Aa2p-1is odd. Then for da the Haar measure on A,
lim Prokk,(a) =1) = lim da({a € A; k(@) =1}) = 1. (32

p»—)oc p»—):x:

IV. AN ALGORITHM COMPUTING THE ODD-QUBIT CCD

In this section, we close a gap in the literature. Specifically, we present an algorithm for
computing the CCD when the number of qubits is odd. We make use of an algjor’riliym
Dongarra, Gabriel, Koelling, and Wilkinson cited in a surVayf diagonalization arguments. The
algorithm,15 which appears in the numerical matrix analysis literature, improves the numerical
stability and computational efficiency of the earlier work on time reversal by D¥/son.

Recall from Sec. Il C that it suffices to compute the standard &ipeKAK decomposition
given by SUN)=SpN/2)DSp(N/2) with D the repeat diagonal subgroup of ®U). For given
v e SU(22P7Y) for which we wish to compute the CCD, suppose we obEjpF,=w;,dw,, with
;€ SPIN/2), j=1,2 andd e D. Then v will have CCD v=kjak,=(Fow;F{)(FodF{)(FowaFY).
Before computing SIN)=Sp(N/2)DSp(N/2), we make one new definition.

Definition IV.1: Let H e CN*N be Hermitian. Recally=(-io¥) ® I\,. We say that the Hamil-
tonianH is Jy-skew symmetridf HJy—-JyH'=0.

Remark 1V.2:In Ref. 15, the above is the definition oH"has a time reversal symmetry.”
Indeed, time reversal symmetry follows for the operdberJy7, (7 complex conjugationper the
upcoming Definition V.1. Moreover, for the standard tybké Cartan involution(Ref. 21, p. 452

Downloaded 01 Jun 2005 to 129.6.88.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



062104-11  Time reversal and n-qubit canonical decompositions J. Math. Phys. 46, 062104 (2005)

Onil (X)=JNXJL, letsu(N)=pay @ tny for the corresponding Cartan decomposition into -1 and +1

eigenspaces. TheH is Jy skew-symmetric if and only ifH € p, . Indeed onsu(N), X=-X".
Hence +H =J\iHJ]=-J\iHTJ, if and only if HJy=JH.

A. Algorithm for the standard All  KAK decomposition, SU (N)=Sp(N/2)DSp(N/2)

The outline below for computing the standard (8l=KAK decomposition of typ&ll (see
Sec. Il O is similar to theAl case used in Ref. 8 to compute the even-qubit CCD. The added
difficulties are(i) a more complicated formula fgp? and (i) a more delicate diagonalization
argument forp? once computed. In fact, the latter requires the symplectic diagonalization argu-
ment referenced above.

Lemma IV.3: Suppose e SUN) with v=pk for p=expiH) with H a J, skew-symmetric
Hamiltonian and ke Sp(N/2). Then g=-vJyv'J\.

Proof: We have H'=-JyHJy, given J{=J\=-Jy. Thus for anyteR, [exp(iHt)]"
=JL exp(iHt)Jy=-Jy exp(iHt)Jy. This holds in particular fop. Now putw=1v", so thatw=Kp for
k=k', p=p'. Thusp'=J{pJy. Moreoverk e SpN/2) demand’Jyk=Jy, as SN/2) is a group.

Thus Jyw'Jyw=p. Taking the adjoint of each side produces the result. O
With this lemma, we now present the algorithm for computing the standardAtifpdecom-
position.

1. Suppose=pk per Lemma IV.3. Comput@?=—vJyv'J\.

2. We may writep=exp(iH) for someJy skew-symmetric Hamiltoniahl. Compute a logarithm
of p?=exp(2iH). The diagonalizing matrix implicit in computing the matrix log need not be
symplectic, and generic logarithms will take the forrH2for some (2)H which is Jy
skew-symmetric.

3. Compute a symplectic matrie; € SEN/2) so tha’[iH2=wJ{(iH)w1 is repeat diagonal, per
Sec. IV B.

4. Labelp=w, exp(iH,) ol andd=exp(iH,). Computew;=p'v. Thenw; e SPN/2).

5.  Putw,=wwse SPIN/2). Note thatw;dw]=p. Thus the typeAll decomposition is'=[w,]
X [d][(l)I(})g] = wdw,.

This concludes the overview of computing ®)=Sp(N/2)DSp(N/2). The next section details
step 3.

B. Symplectic diagonalization

In this section we address the problem of finding the eigendecomposition of a iHatiiich
is Jy skew-symmetric. Generically, these techniques work on any square matrix with an even
number of rows and columns, and there are no simplifications when the size is a power of two.
Thus we describe the generic case where

0 -1l e)
Jo, =
2 (u 0
andH=HT" is alsoJ,, skew symmetric.
Explicitly, Jo,-skew symmetric means

whereA=A" andB=-BT are ¢ X ¢ matrices. We will construct a unitary skew-symmetric Hamil-
tonian matrixe of the form
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wz(-uv é)

so that the columns ab are the(right) eigenvectors oH. Each eigenvalug, for k=1, ... £ of
H is real and of multiplicity 2. In particular, both thigh and the(€+k)th columns ofw are
eigenvectors oH corresponding to\,. Also, given the block formw e Sp(N/2) up to global
phase.

The algorithm of Dongarrat al’® proceeds in two major steps. First we redirtéo block
diagonal form using a similarity transformation, and then we use the QR algorithm to find the
eigenvalues of the blocks. We consider each of these phases in turn.

First, we construct a skew-symmetric Hamiltonian unitary mafief the form

Q Q
“\-o o
so that
QHQT=(T 0)
0OT

whereT is real, symmetric, and tridiagonal. We initialigzto be the Z X 2¢ identity matrix. In
order to preserve the structure, we consti@Qcs the product of two simple types of matrices:

e The product of % 2 skew-symmetric Hamiltonian matrices is also skew-symmetric Hamil-
tonian, and if we let?=|al?+|b|?, then a matrix of the form

(Er —b/r)
E/r alr

alr —bir (a b) (r o)
Er alr —H§_Or

so the unitary matrix can be used to introduce zeros. Chpbseveen 1 and and construct

is unitary. In addition,

a matrix R as the Z X 2¢ identity matrix except that entrieRy,; ;= -—a/r and Ry ¢4
= R{;ﬂ ¢+j=—b/r. Then the producRH is equal toH except that the entrles in rowsand
{+] become
(RH)jx  (RH); ¢4 alr —bir Ak Bk
=|— — — . (32)
(RH)g4jk  (RH) g4 04k b/r alr -Bix Ak

k=1, ... £. Since this product is skew-symmetric Hamiltonian, sBk4 and it can be shown
in a similar way that(RH)R' is skew-symmetric Hamiltonian. Thus we can Reas a
similarity transformation that preserves the structure.

e Let Sbe a real orthogonal matrix of dimensién< €. Then

s o\[ A B\/s" o SAS sBS
_ )= — _ (33
0 S/\-B A/\0 S -SBS' sAs'
is skew-symmetric Hamiltonian.
Using these matrices, our construction takesl steps. We describe the first step in detail.
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The first step places zeros in the first column of the matrix in rows 3 throtighid?put a zero
in position (€+j,1) (j=1,...,n), we construct arR matrix involving rowsj and €+j. If rJ-2
=|A; 1°+|B; /% then this matrixR; is the identity matrix except that entri€.; ¢.;=R; ;=A; 1/1]
andRj ¢4j=—Ry4j ¢+j=—B;j 1/r;. We replaceH by (RHR' and updateQ by premultiplying byR;,
repeating this foj=1, ... (.

We complete the first step by putting zeros in rows 3 throtgli column 1. Note that these
elements are now real, since elements 2 throtighe just the values,. Thus we can construct a
real orthogonal reflection(Householder matrix of the form S=1-2ss’ where $=[0,r,
+|r||,r3, ... ,r,JT ands=8/||§|. A similarity transformation oH by

o 9

produces the required zeros, a@ds updated by premultiplying by this matrix.
Steps 2 througli — 1 are similar; in stef we first put zeros in th8 portion of columnrk using
R matrices and then zero elemekts2 through¢ of the A portion using a reflection matrix. The

final result is that the transformed has a real tridiagonal matrik in place ofA andA and zeros
elsewhere.

The QR algorithm is considered to be the algorithm of choice for determining all of the
eigenvalues and eigenvectors of a real symmetric tridiagonal matrix. We use the algorithm to form
X, the matrix of eigenvectors df. Implementation of the algorithm requires care, and high quality
implementations are available, for example,LiA:PACK.2 Other codes are available at http://
www.netlib.org.

We construct the eigenvector matricdsand V as U:QIX and V:QZTX. Note that most
implementations of the QR algorithm do not guarantee that the eigenvalues are ordered, so a final
sort of the eigenvalues and the columndbfndV should be done at the end if desired.

V. TIME REVERSAL, THE CCD, AND KRAMERS' NONDEGENERACY

The section presents three topics, all following from an interpretatianfobm Eq. (2) as a
time reversal symmetry operator. First, the Cartan involution defining the CCD may be rewritten
entirely in terms of the spin-flip, and the eigenspace®(dfl) are associated to time symmetric
and antisymmetric Hamiltoniand in a natural way. Second, a well-known procedure exists to
convert anyG=KAK decomposition into a polar decomposition, and the polar decomposition
associated to the CCD writes a unitaryg SU(N) as a product of two factors, one evolution by a
time symmetric Hamiltonian and one evolution by a time anti-symmetric Hamiltonian. Third, we
demonstrate the entangled eigenstates of Kramers’ nondegeneracy as described in the introduction
and consider the perturbative stability of this entanglement under time reversal symmetry break-

ing.

A. Spin-flips as time reversal symmetry operators

Recall theBloch spherele.g., Ref. 36 which provides a picture of the data space of one
qubit. As a remark, the Bloch sphere may be thought of as a parametrization of the complex
projective lineCP* (e.g., Ref. 34, Sec. 40Briefly, CP! is the set of all equivalence classes of
vectors inC? up to multiple by a nonzero complex scalar. To associate such a class with a Bloch
vector, normalizey) as above so as to writes)=re'[cod /2)|0)+€¢ sin(4/2)|1)]. The Bloch
sphere vector o), say[|¢)], is given in spherical coordinates by, 6, ¢) (Ref. 36, p. 15. Recall
also that the north pole {$0)] and[|1)] is the south pole.

Now letb e (F,)" be ann-bit string. The typical procedure when quantizing a classical com-
putation is to extend the classical outputs linearly without phases. Thus, a reasonable interpretation
of quantum bit-flip would bec*)®". This is the common interpretation, but note that in one qubit
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o* is not reflection on the Bloch sphere and indeed has a fixed (sldt&)(|0>+|1>). Rather, the
odd reflection of a single qubit under the Bloch parametrizationCtf is the spin-flip
[y = (=ioY)|h)=(=ia)| ).

The appropriate physical interpretation of the spin-flip is as a time reversal symmetry operator
(Ref. 47, Chap. 26, Ref. 19, pp. 314-322, Refs. 27 and\W®®@ner defined a generic time reversal
symmetry operato® as anyR-linear involutive map of the quantum Hilbert space which is

antiunitary, i.e., complex anti-lined® («a|y,)+ B|yn) = a®|yn)+ BO|yr)), and orthogonal in the
induced real inner-product oR?°=CP. Generic time reversal symmetry operators are usually
denoted by a capit®; we ask the reader’s forebearance in distinguishing this from the lower-case
0 describing a Cartan involution.

Such a time reversal symmetry opera@maps the state of a system to its motion-reversed
state, so that momentum eigenstates transforf|ps=|—p). In particular, if our qubit is a spié
particle, e.g., witN0y=|1) and|1)=|]), thenu per Eq.(2) reverses the one-qubit spin vector on
the Bloch sphere and so is the natural quantum angular momentum revemsaumts Indeed,
the total spin angular momenturﬁ E”_l&J is inverted under time reversalSy~1=-S, Spin-flip
operators may be defined fdrlevel systemgqudity but may not both preserve pure states and
commute with local unitarie®

We note in passing that the spin-flip picture also allows one to quickly rederive one of the
monotone properties. Namely, antipodal points in the Bloch sphere parametrization of the complex
projective lineCP! correspond to Hermitian-orthogonal statestof. Hence,C,(|4))=[(u|4)|
=0 if [y)=®[L,|¢) (the monotone properfysince in this eventyiu|y) has a factor(y;|u|¢;)
=0. More generallyC,(|#)) =0 whenevety)=|yn) ® |i,) for |) € H,_1 and[|#)] a point on the
Bloch sphere. However, the latter is not an equivalence nfogven. ConsidefW,)=(1/2)

X (|000+]0010+|0100 +|1000).

B. Time reversal and the CCD Cartan involution

We next show that physically, the eigenspaces of the Cartan involution producing the CCD
correspond tas-time symmetric ands-time antisymmetric Hamiltonians. They are then explicitly
described in the Pauli-tensor basissafN) in much more compact form than in Dirac notatfon.

Definition V.1:ConsiderH a Hamiltonian on a finite dimensional Hilbert spaigi.e., H is
self-adjoint within End(#) C End;(H). Then H is time reversal symmetric with respect to
iff H=@HO®™* as elements of Erd). A Hamiltonian is time reversal anti-symmetric with
respect to® iff H=—-OHO™.,

Proposition V.2: Let 6(X) per Definition I.1. Label su(N)=p®t as the -1 and
+1-eigenspaces of. Let u be the spin-flip. Then (i) for H a traceless Hamiltonian, so that iH
e su(N), 4(iH)=u(iH)u™%, with the right-hand side viewed as a compositionRefinear maps.
Also (ii) (H has time reversal symmetry with respectup = (iH e p), and (iii) (H has time
reversal anti-symmetry with respectdd = (iH e £). o

Proof: Let 7 denote the complex conjugation operatph)—|¢). Then v=(-ic¥)*"r
=1(-i0¥)®", given -io¥ real. Sou = (=io¥)®"]". Moreover,[(=ic¥)®"]"=(=1)"(~ic¥)®". Fi-
nally, (iH)7=iH. Thus,

u(iH)u™ = (= i) iH) A (= i) "' = (= 19" (= i) *"(H)[(- i) *"] = 6(iH).  (34)

The latter two items follow at once. O

With the above proposition, we may describe the infinitesimal Cartan decompositioh
=p @t directly in terms of tensors of Pauli operators. ljedlenote either 0x, y, or z, with o
=l, in casej=0 and Pauli matrices™, oY, or o as appropriate otherwise. A multi-indek
=j1j2" "k **Jn denotes a string of length andJ will be said to be nonzero if sonjg# 0. Finally,
let ic®? denotei®p_,(a'¥). Then su(N)=& 4 nonzerosR{ic®’}. We have the following corollary,
discovered independently by Bremredral. (Ref. 5, Theorem bwhich has recently reappeared in
a different contextRef. 1, p. 243.

Corollary V.3: Continue the convention of the previous paragraph, and write
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su(N) :( & R{ia®J}) @ ( & R{ia®J}). (35)
#J=0 mod 2 #J=1 mod 2
The above is the infinitesimal Cartan decompositiord@H ), i.e., =S40 mog A{ic®7}, andt
=By3-1 mog B{i®’}. In particular, K is the Lie group of those unitaries which are exponentials of
Hamiltonians with time reversal anti-symmetry with respect to
Proof: Distinct Pauli matrices anti-commute, each tia9?=1,, ando” is purely imaginary
while ¢, ¢%, andl, are real. Considering the tensors case by case completes the proof[]

C. A time reversal polar decomposition

We next consider the polar decomposition which may be derived from the CCD. In most
treatments, the polar decomposition of a general Cartan involution is proven and t@en a
=KAK theorem is derived from it. We next use the CCD to produce a polar decomposition for time
reversal symmetry. This practical decision avoids rearguingGh&AK theorem for compact
groups(Ref. 21, Theorem 8.6, Sec. VI).8

Corollary V.4: Supposer e SU(N) is a phase normalized quantum computation in n qubits.
Then we may writey=exp(iH,)exp(iH,) for some Hamiltonians }J H, such that H has time
reversal symmetry and thas time reversal anti-symmetry with respect to the spineflip

Proof: Let v=k;ak, be the CCD ofv € SU(N). Then in particularu:(klakI)(klkz). SinceK is
a group,k;k; is a time antisymmetric evolution by Proposition V.2. Moreover,deexpiH for
iH e aCp a time symmetric Hamiltonian. A#1 € p, we haved(iH)=[(=io¥)®"](iH)(-io¥)®"=
—-iH. Moreover, ke K is a symmetry of the concurrence forfg. (10)] which as a matrix
equation demands’(—ia?)®"k=(-io¥)®". Hencek](-ia¥)®"=(-i0¥)®"k!, and fork,iHk] e p:

B(kyiHKD) = [(= 10¥) "y (H)K] (= 10%)®" = Ky (= 10¥) ®"]T(iH) (= 10¥) K] = — Ky (iH )KL

(36)
Thuskl(iH)kI has time reversal symmetry, and the usual matrix exponential foriwala since
SU(N) is linear showsk,ak! =exdk,(iH)k}]. O

Remark V.5:Note that the vector space decompositiiN)=p & ¢ makes clear any such
may be approximated by rapid pulsing of the time symmetric and anti-symmetric factors, by
applying the Trotter formulde.g., Ref. 36, Sec. 4.1.2However, the decomposition above re-
quires no such pulsing of the time-symmetric and time-antisymmetric Hamiltonians.

D. Kramers’ nondegeneracy

Finally, we rederive Kramers’ degeneracy in the casasand note a furthery-specific
nondegeneracy property. Recall Kramers’ degené?é&proves that the eigenstates of a collec-
tion of an odd number of spi§ electrons become doubly degenerate in the exclusive presence of
a time-reversal-symmetric interaction, such as an electric field. The degeneracy is broken with the
introduction of a magnetic field. In terms of an energy Hamiltortinf the system, the degen-
eracy corresponds to 2 or greater dimensional eigenspace for energy eigenstates.

Lemma V.6: Suppose thht) € H,, is an eigenstate of some traceless Hamiltonian H which
has time reversal symmetry, with eigenvalue R. Then the spin-flips| ) is also an eigenstate of
eigenvalue. o

Proof: SinceiH has time reversal symmetrg(iH)=—-iH. Thus (-=ig¥)®"(iH) +(iH)(=ig¥)®"
=0, and taking a complex conjugate produdess¥)®"(iH)+(iH)(-io¥)®"=0. Now (iH)|)

=\|#), so that
(iH)oly) = (H)(=i0")*Mg) = = (i) *(H)]g) == (=) N =irolg). (37
This concludes the proof. O

Theorem V.7 [cf. Kramers’ degeneracy—Refs. 26, 27, and(89281)]. Let H be a traceless
Hamiltonian on some number n of quantum-bits. Suppose H has time reversal symmetry with
respect ta. Let\ be a fixed eigenvalue of.Hhen either (i\ is degenerate with even multiplicity
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or (i) the normalized eigenstata) has G,(]\))=1.For n odd, case (i) holds: all are degenerate
with even multiplicity

Proof: Let \; be some eigenvalue dfi. By Lemma V.6, both|)\) and U|)\> are energy
eigenstates. Should these two states be linearly independent;tieedegenerate. If any eigen-
value is nondegenerate, say, then by antiunitarity ofs, we must haves|\,)=€¢|\,) for some
global phaser. Using C,(|\0) =|{\(Ju|\| we see that this eigenstate must have concurrence one.

Suppose in particulan=2p-1. ThenC,(-,-) is antisymmetric and vanishes on the diagonal,
implying (\;|u|\;)=0 for all j. Consequently\;) andu|\;) are Hermitian orthogonal and may not
be dependent, implying casp. O

Thus, for the spin-flipy there is in addition to the Kramers’ degeneracy a Kramers’ nonde-
generacy. As always, if is odd so that the total-qubit system is a fermion, then a time reversal
symmetric Hamiltonian implies that all energy eigenstates are degenerate. Yet moreover in the
specific case of andn evena nondegenerate eigenstate must also have maximal concurrence and
hence be entangled.

We provide some illustrative examples. First note that there are many systems endowed with
time reversal symmetric Hamiltonians. In particular, any system (eiiclusively pairwise near-
est neighbor coupling between qubits fidss p, by Corollary V.3. An example of an interaction
that occurs in many solid state systems is the quantum XYZ model:

Hyyz = 2 Jajoi+ dyofoy + 070 (38)
.k

with J,, , € R where the sum is taken over all nearest neighbor pairs and the boundaries may be
fixed or periodic. In one dimension, these nearest neighbor coupled systems are known as spin
chains. Spin chain Hamiltonians are of great theoretical interest, for under the appropriate param-
eter regime they exhibit long range classical correlations near a quantum phase trahiteon.
can characterize the dynamics of entanglement in spin chains using the concurrence capacity. With
this goal in mind we observe the following useful fact:

Proposition V.8: Letp, ¢ be as in Corollary V.3. If iHe p and He RN*N, then A (u=e™t)
={e"?M} where te R parameterizes time ang; € R are the eigenvalues of H

Proof: By Definition Il1.5 the concurrence spectrum of the unitary generateitHby=e""t is

c(u) spe@( o-y)®nTe|Ht( Uy)®”(e"Ht)T] spe(lie"Ht —iH t)

= spe¢e 2Ht) ={e @M\ e spe¢H)}. (39
We have used-ia¥)®"iH (-io¥)®"=—iH and thereford—i¥)®"H(=i¢¥)®"=H becausé is real.
The third line is a consequence ldfbeing Hermitian. O

The quantum XYZ Hamiltonian has time reversal symmetry with respect to the spin-flip
We next demonstrate how to build up entanglement with such a system. Consider a collection of
n qubits laid out in a cyclic array interacting under the Ising class of Hamiltonians givéty by
with J,=J,=0: H,s:=X{.,J,0707,,, where we identifyoy, = o7.

The eigenvalues are given i} ={J,(N- 254}y ® jis1) ;] =jaj2- - -inh where the addition is
done modulo 2 over the componeniof the binary expansion gf Forn even, each eigenvalue
\; is paired with another of opposite sign and in particulgr —\y-; With [\o|=n|J,|=\"* The
concurrence spectrum of=e s js composed of complex conjugate pairs and the concurrence
capacrtyKn (u) may be computed explicitly. Théky,(u)=max| =i 5 a’e?NY; 7'z=1,2"2=0} where

EJNOla]“) per Eq.(14). Maximum capacity is obtained when the convex hull condition is
satisfied which occurs precisely when the concurrence spectrum extends outside the right half of
the complex plane. The minimum time at which this occurs is givereﬁ?maxtmiti or tmin
=1/ 4|\g|=1/4n|J,.

The existence of a time reversal symmetry in the interaction between qubits gives us impor-
tant information about the nature of quantum correlations in the energy eigenstates. Applying
Theorem V.7, we immediately find that the ground state of a Hamiltohiamith time reversal
symmetry has maximum-concurrence if it is unique. Examples of interactions satisfying these

Downloaded 01 Jun 2005 to 129.6.88.16. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



062104-17  Time reversal and n-qubit canonical decompositions J. Math. Phys. 46, 062104 (2005)

conditions are the XYZ Hamiltonian wittJ,=J,=J,=J>0), denoted the XXX Hamiltonian, and
the XY Hamiltonian (J,=J,,J,=0). 0n partlcular the XXX Hamiltonian withJ>0 has been
shown to have nondegenerate ground states in any number of dimensions, with or without periodic
boundary conditions, provided the underlying lattice has a reflection symmetry about some plane
(ibid.).

To illustrate this phenomenon we consider what happens when the time reversal symmetry is
broken by adding a time-antisymmetric term to the XY Hamiltonian:

L1 1- h,
H=Y J( R TR ,+1) et (40)

j=1
whereoy,;=07. The presence of the linear term proportional to the total spin projection operator
SZZE?:lof, breaks the time reversal symmetry so tithts p whenh,=# 0. For zero magnetic field
and O=g<1, the Hamiltonian is time reversal symmetric and the ground state is nondegenerate
meaning the concurrence is maximal. In the isotropic ¢gs#®), the Hamiltonian commutes with
S, and eigenstates are independenhpfFor magnetic field strengths below some critical value,
|h| <hg;: the ground state corresponds to an eigenstate with eigensai@eof the operatos,.
This ground state has maximal concurrence. Rg>hg;;, the ground state corresponds to an
eigenvalues,# 0 and the concurrence is zefo.

VI. CONCLUSIONS

We show that the odd-qubit concurrence canonical decomposition admits generalizations of
all constructions studied on the even qubit CCD. In particular, a generalized pairwise concurrence
capacity may be defined, and the operators for which this is maximal are characterized by a
convex hull condition on the concurrence spectrum. Again for an odd number of qubits, we find
that for large oddh most unitaries have maximal concurrence capacities. Moreover, we provide an
explicit algorithm for computing the odd-qubit CCD.

These advances are complemented by new interpretation of the original inputs @ the
=KAK theorem which define the CCD. Specifically, they may be rewritten in terms of time
reversal symmetry which is the spin-flip inn quantum bits, and the CCD is best understood in
terms of such symmetries. For example, the odd-qubit CCD is aAypeKAK decomposition,
and as such must have degenerate eigenvalues. In fact, this recaptures Kramers’ degeneracy for the
odd-qubit spin-flip, and a more careful study of the arguments reveals a Kramers’ nondegeneracy:
Nondegenerate eigenstatesidime reversal symmetric Hamiltonians only exist when the number
of quantum bits is even andoreovermust be highly entangled. Specifically, suah are highly
entangled in the sense that the concurre@g\)) =|(\|u|\)|=1. Finally, the polar decomposition
extracted from the CCD in the usual way accomplishes the following: any umitgubit evolu-
tion is a product of precisely one time reversal symmetric and one time reversal antisymmetric
evolution.
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