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Scalability of a quantum computation requires that the information be processed on multiple sub-
systems. However, it is unclear how the complexity of a quantum algorithm, quantified by the number of
entangling gates, depends on the subsystem size. We examine the quantum circuit complexity for exactly
universal computation on many d-level systems (qudits). Both a lower bound and a constructive upper
bound on the number of two-qudit gates result, proving a sharp asymptotic of ��d2n� gates. This closes the
complexity question for all d-level systems (d finite). The optimal asymptotic applies to systems with
locality constraints, e.g., nearest neighbor interactions.
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The dominant theoretical model of quantum computa-
tion is the quantum circuit [1] acting on qubits. Multilevel
quantum logics have been proposed as an alternative to
qubits due to the trade off in the tensor structure. For state
space dimensions d > 2, there is a larger space of local
operations, and fewer entangling gates might be required to
realize a particular quantum computation. Some quantum
algorithms may be designed native to qudits, e.g., the
Fourier transform [2]. Additionally, in many candidate
systems for quantum computation the physical subsystems
encoding the quantum information have dimension d > 2.
Examples include charge-position states in quantum dots
[3], rotational and vibrational states of a molecule [4],
harmonic oscillator states [5], and hyperfine levels of alkali
atoms [6].

It has been shown that a necessary condition for good
resource scaling in quantum computation is the existence
of an underlying tensor product structure to the Hilbert
space [7]. Equivalently, quantum information should be
encoded and processed in multiple subsystems. But an
important question remains open: How does the complex-
ity of a quantum algorithm change with the size of the
subsystem dimension? The exact universality theorem for
quantum computation with qudits [8] states that any uni-
tary evolution on many qudits can be constructed to infinite
precision using a finite sequence of single qudit and two-
qudit unitaries or gates. The complexity of a unitary evo-
lution U on n qudits is that number ‘ for which we have a
minimum expression,

U � U1
j1k1
U2
j2k2

� � �U‘
j‘k‘
; (1)

with each Up
jk a two-qudit (d2 � d2) operator acting ex-

clusively on qudits j, k. Any two-qudit unitary can be
constructed using fewer than 4d4 controlled- one-qudit
phase gates ei�jd�1ihd�1j
jd�1ihd�1j and approximately 4d4

single qudit Givens rotations [9]. Thus, it does not change
the complexity to count only the number of two-qudit
gates.
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In this Letter, we close the complexity gap for the case of
algorithms that compute symmetryless unitaries on n qu-
dits. For qubits, Shende, Markov, and Bullock following
Knill have shown that ��4n� two-qubit gates and indeed
roughly 4n=4 quantum controlled-NOT’s (CNOT’s) are re-
quired [10,11], while a recent Letter [12] provided an
O�4n� gate construction. (Here, we use the complexity
theory conventions that f�n� is O�g�n�� if f�n�  Cg�n�
for some C, f�n� is ��g�n�� if f�n� � Cg�n� for some
other C, and f�n� is ��g�n�� if both hold.) These results
have quite recently been improved so as to no longer
require ancilla qubits and even attain a CNOT count of
roughly 4n=2 (e.g., [13]). For qudits, the best prior con-
structive upper bound is O�n2d2n� two-qudit gates [14],
leaving open a gap between a lower bound of ��d2n�. The
main result of our work is a constructive, ancilla-dependent
proof that ��d2n� two-qudit gates are required to exactly
simulate an arbitrary n-qudit evolution without symmetry.
En route, we also prove that ��dn� two-qudit gates suffice
for n-qudit state synthesis, i.e., any unitary extension of the
dn parameter map j0i ! j i. The algorithm that produces
the quantum circuit is a variant of the QR matrix-
decomposition, cf. [12,15,16]. Unlike an earlier qubit con-
struction [12], it does not rely on a GRAY code, either in
base two or base d.

Physical implementation of symmetryless evolutions is
not practical when the number of qudits n is large, since the
number of gates required scales exponentially in n. Yet
circuits for generic unitaries are still of interest. First, they
may improve subblocks of larger circuits through a process
of peephole optimization: when many consecutive two-
qudit gates act on a small collection of qudits, we compute
the associated unitary evolution and substitute a circuit of
the sort presented here in hopes of decreasing the total
number of required operations. Second, they are useful in
translating circuits from gate libraries that include multi-
qudit gates to two-qudit gates when a physical system
conveniently allows only for pairwise interactions. They
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may also be used to translate an arbitrary gate library into a
fault-tolerant library of qudit gates [17]. The symmetries
that allow for polynomial-size quantum circuits are not
well understood. Producing efficient symmetryless circuits
may provide insights into general design principles that
might also be useful in constructing computations. Also
recall the sharp asymptotic for symmetryless n-qubit uni-
tary evolution: ��4n� two-qubit gates are required [12].

The lower bound argument uses Sard’s theorem from
smooth topology. A well-known corollary (e.g., [18]) de-
mands that for a smooth map f:M ! N that carries an
m-dimensional manifold M into an n-dimensional mani-
fold N form< n, the set image (f) must be a measure zero
subset of N. Thus, suppose that we consider an expression
associated with a fixed circuit topology for two-qudit gates.
Namely, suppose we factor a U 2 U�d2n� as in Eq. (1).
Moreover, suppose that we take ‘ and the tuples �jq; kq� for
1  q  ‘ to be fixed. Then by varying the Uq

jqkq
in U�d2�,

we obtain a map of smooth manifolds f:�U�d2��‘ ! U�dn�.
Now generically, dim�U�q�� � q2. Hence the smooth func-
tion implicit in the product of operators in Eq. (1) carries a
manifold of dimension ‘d4 into a manifold of dimension
d2n. In order for the set of unitary evolutions realized by
varying d2 � d2 unitaries in a fixed circuit diagram not to
measure 0, we require ‘ � d2n�4. As there are only finitely
many circuit topologies holding fewer than d2n�4 factors
per Eq. (1), we generically require ��d2n�4� � ��d2n�
gates of the two-qudit library to realize symmetryless
unitary evolutions within U�dn�. A similar argument pro-
duces a lower bound of ��dn� gates for state synthesis.

Consider two emulation schemes of qudits by qubits.
First, one might emulate each individual qudit with as few
qubits as possible, so that the local qudit structure is
respected. Second, one might rather pack the entire
dn-dimensional n-qudit state into the smallest possible
qubit state space, ignoring the local (tensor) structure.
We argue that the emulation circuit for the first scheme
does not attain the lower bound asymptotic, while in
essence the second scheme does not allow for circuit-level
emulation at all.

In the first scheme, label � � dlog2de, so that � qubits
are required to emulate a qudit. Now for the qubit circuit
diagram, some multiqubit gates will in fact be local to the
qudit, while others are genuine two-qudit gates. Hence, if
U is a dn � dn unitary matrix and the O�22�n� circuit is
applied after splitting each qudit into � virtual qubits, we
obtain an upper bound of O�22�n� two-qudit gates. This
asymptotic is worse than both O�d2n� and even O�nkd2n�
unless d is a power of 2. Thus, prior art does not suffice for
the upper bound asymptotic.

Regarding the second scheme, n qudits may be viewed
as dn Hilbert space dimensions. Ignoring the local struc-
ture, a unitary evolution of H �n; d� � Cdn may be real-
ized as a subblock of a unitary evolution of n� � dnlog2de
qubits rather than n� � ndlog2de as above. Indeed, with
this form of emulation, it is true that O�4n�� � O�d2n�
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virtual two-qubit gates would suffice by earlier methods.
However, in this mode of emulation a virtual two-qubit
gate need not correspond to a two-qudit gate. Indeed, it
might not even be a k-qudit gate for k small. Consider, for
example, a two-qutrit gate of the form I3 
 V acting on
H �3; 3�, where V 2 U�32�. This has a 9� 9 block struc-
ture, but emulating such a unitary using qubits is more or
less an arbitrarily difficult five-qubit evolution. It is cer-
tainly not a two-qubit gate. Similar reasoning shows that
emulation of computation over qudits of dimension d with
qudits of dimension d0 is usually inefficient, unless �d0�k �
d for some integer k.

Although the complexity bound is phrased in terms of
two-qudit operators, our QR factorization algorithm pro-
duces a quantum circuit of k-controlled one-qudit opera-
tors. Our gates are controlled V operations, meaning V is
applied to a target qudit based on a string of n� 1 controls.
Each control is either �, to denote a match with an arbitrary
value (no control), or is chosen to be one of 0; 1; . . . ; d� 1,
to force a specific matching value (control). We define a
controlled one-qudit gate

V
�C;V� as follows. Let V be a

d� d unitary matrix, i.e., a one-qudit operator. Let C �
�C1C2 � � �Cn� be a length-n control word composed of
letters from the alphabet f0; 1; . . . ; d� 1g t f�g t fTg,
with exactly one letter in the word being T. By #C we
mean the number of letters in the word with numeric
values (i.e., the number of controls), and the set of con-
trol qudits is the corresponding subset of f1; 2; . . . ; ng
denoting the positions of numeric values in the word.
A control word matches a string of dits if each numeric
value matches. Then the controlled one-qudit operatorV
�C;V� is the n-qudit operator that applies V to the qudit

specified by the position of T iff the control word matches
the n-dit string. Alternatively, if Cj � T�j < n�, we con-
sider the unitary (permutation) operator �nj that swaps

qudits j and n. Then,
V
�C;V� � �nj

V
� ~C;V��nj , where

~C � �C1C2 � � �Cj�1CnCj�1 � � �Cn�1T�. Any
V
�C;V�

gate can be implemented using r � d�#C� 1�=�d� 2�e
ancillary qudits and 2r�d� 1� � 1 two-qudit gates [14].

The key component of our universal qudit circuit is a
subcircuit for quantum state synthesis: given a state vector
j i 2 H �n; d�, we construct a unitary extension of the
mapping j0i ! j i. For d � 2, several works address this
topic, e.g., [11,13,19]. Our state synthesis algorithm con-
structs a sequence of p gates, each a controlled one-qubit
operator depending on j i, such that �p

k�1

V
�C�p� k�

1�; V�p� k� 1��j i � j0i. The unitary
V
�C�k�; V�k��

denotes the controlled operation at step k. Inverting the se-
quence, �p

k�1

V
�C�k�; V�k�y�j0i � j i. For our state syn-

thesis algorithm, all the controlled operators are singly con-
trolled. Since our construction realizes any j i in �dn�1�=
�d�1�2O�dn� gates, then given the ��dn� lower bound,
qudit state synthesis generically requires ��dn� gates.

An important primitive gate we make use of is the one-
qudit Householder reflection [[20], Sec. 5.1] Suppose
j’i 2 H �1; d�, perhaps not normalized. We construct a
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unitary operator V such that Vj i is a multiple of j0i. This
V depends on an auxiliary state j"i:

j"i � j’i �
������������
h’j’i

q h0j’i
jh0j’ij

j0i;

V � Id � �2=h"j"i�j"ih"j:
(2)

Then Vj’i is a multiple of j0i.
We next describe the algorithm for state synthesis of an

n-qudit state via the mapping �p
k�1

V
�C�p� k� 1�;

V�p� k� 1��j i � j0i with #C�k�  1. In Algorithm 1,
the total number of one-qudit Householder gates is p �
�n
k�1d

n�k � �dn � 1�=�d� 1�. The algorithm loops over
dit strings i1i2 � � � i‘�1j‘0 � � � 0. The target qudit position,
indicated by the subscript of the free index j, shifts left
from qudit ‘ � n to qudit ‘ � 1 as successive components
of j i are zeroed. In each dit string, the control position k is
the rightmost qudit for which ik � 0. If all ik � 0, no
control is needed. For the tth dit string, an appropriate
one-qudit Householder

V
�C�p� t� 1�; V�p� t� 1�� is

applied to the current state j ti � �t�1
k�1

V
�C�p� k� 1�;

V�p� k� 1��j i. For example, consider State-synth with
an input of five d � 6 qudits, at the step t corresponding to
the dit string 510j40. The control position is two and the
target position is four. The singly controlled one-qudit
Householder

V
f��; 1; �; T; ��; V�p� t� 1�g at this step

zeros the d� 1 state vector components fh510j40j ti;
j4 > 0g. The Householder is explicitly determined by
forming the one-qudit state j’i � �5

j�0h510j40j tijji
Listing 1. Algorithm1: State-synth (j i; d; n) produces a series
of singly controlled Householder reflections whose product U
has Uj 0i � j0i. For more details, see [21]

t � 0
for i1 � 0:d� 1
for i2 � 0:d� 1

. .
.

for in�2 � 0:d� 1
for in�1 � 0:d� 1
t � t� 1
Use a one-qudit Householder to zero
fhi1i2 � � � in�1jnj ti; jn > 0g

end
t � t� 1
Use a one-qudit Householder to zero
fhi1i2 � � � in�2jn�10j ti; jn�1 > 0g

end
..
.

end
t � t� 1
Use a one-qudit Householder to zero
fhi1j20 � � � 0j ti; j2 > 0g

end
t � t� 1
Use a one-qudit Householder to zero
fhj10 � � � 0j ti; j1 > 0g.
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and using Eq. (2) to build V�p� t� 1� such that V�p�
t� 1�j’i � j0i. A sequence of elementary gates to build a
controlled one-qudit Householder is given in [9].

Figure 1 illustrates the order in which the HouseholdersV
�C;V� are applied in the State-synth sequence for d � 3,

n � 3. Each box represents a one-qudit Householder and is
labeled by the string i1i2j, i1j0, or j00 from the corre-
sponding step in the algorithm. The Householder is con-
structed to use the first entry in the box (j � 0) to zero the
others (j > 0). The algorithm traverses the graph in depth-
first order, left to right. To understand the controls, notice
that the leftmost Householders on each level of the graph
(j00, 0j0, and 00j) require no control. For example, the
Householder labeled 0j0 is applied to nine sets of ele-
ments: 0j0, 0j1, and 0j2, all zeroed, and 1j0, 1j1, 1j2,
2j0, 2j1, and 2j2, not yet zeroed. For Householder boxes
that are not leftmost in their level, the control is indicated
in boldface. For the leftmost Householder in a group of d
(10j or 20j, for example), we do not want to touch ele-
ments in boxes to the left of it, so we set the control to stay
within the group; for example, the Householder labeled 10j
is also applied to elements in 11j and 12j. For other
Householders in a group, the corresponding elements in
boxes to the left are completely zero, and in boxes to the
right are as yet unzeroed. For example, the Householder
labeled 11j is applied to 01j (all zero since 0j0 has already
been applied) and 21j.

We can now count the number of two-qudit gates in
State-synth. Let h�n; k� be the number of k-controls re-
quired in the State-synth reduction of some j i 2 H n. By
construction h�n; k� � 0 for k � 2. Moreover, at the steps
of the algorithm corresponding to dit strings of the form
�00 � � � 0j0 � � � 0�, no control is needed, and there are n
such sequences. Thus, as the number of Householder re-
flections is �dn � 1�=�d� 1�, we see that

h�n; 1� � �dn � 1�=�d� 1� � n; h�n; 0� � n: (3)

State synthesis can be generalized to mapping any n-qudit
logical basis state jji � jj1j2 . . . jni to j i, by conjugation
FIG. 1. Sequence of one-qudit Householders to reduce j i to a
multiple of j0i for d � 3, n � 3. Each box represents a
Householder

V
�C;V� and is labeled by a dit string. The control

position is indicated by the boldface entry in the label and the
target position is indicated by the free index j. The

V
�C;V� is

constructed to use the state vector component in the top row of
the box to zero the d� 1 components below it.
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with local gates: Wj � �
nk�1 � �jk��W0�

n
k�1 � �d� jk��,

where W0 is a unitary extension of the mapping j0i ! j i
and � denotes addition modulo d.

Efficient state synthesis circuits imply efficient unitary
evolution circuits. This observation follows directly from
the spectral decomposition [11] of a unitary U, i.e., U �

�dn�1
j�0 e

i'j j(jih(jj. Then U � �dn�1
j�0 WjPjW

y
j , where Wj is

any unitary extension of the mapping of the logical basis
state jji to the eigenvector j(ji, and Pj � ei'jjjihjj are
diagonal unitaries locally equivalent to the �n� 1�-
controlled one-qudit phase gate. Each such phase gate
can be implemented using O�n� two-qudit gates. In turn,
each Wj admits a size O�dn� circuit obtained from State-
synth. The two-qudit gate count for an exact unitary im-
plementation is

‘�2d2n=�d�1��dn�2r�d�1��2=�d�1��2n�1�;

(4)

with assistance of r � d�n� 2�=�d� 2�e ancillary qudits.
Finally, the asymptotic gate count is not affected by

architectural constraints. Consider a graph with qudits as
nodes and physically allowed interactions between nodes
as links. Then the connected graph with largest diameter,
or longest shortest path between nodes, is a linear chain of
qudits restricted to nearest neighbor interactions. When the
control and target qudits are separated by a distance k, the
total cost is 2k� 1 two-qudit gates including swap gates.

We count the total cost for state synthesis on n qudits
as follows. Let a�d; n; k� denote the number of singly
controlled Householder gates with separation k between
the control position and the target. The steps in the State-
synth algorithm where a gate is applied are uniquely
labeled by a sequence of n-dit strings of the form
i1i2 � � � ir0 � � � 0js0 � � � 0. The separation of the control
and target at each step is k � s� r. If no control is needed
the separation is k � 0. The function a�d; n; k� can be
solved by recursion on n. For a dit string on n� 1 qudits,
a separation k operation results from k� 1 consecutive
zeroes immediately to the left of the target. This can
happen in one of two ways: a length n term of the form
i1i2 � � � ir0 � � � 0js0 � � � 0 is prepended to become
i1i2i3 � � � ir�10 � � � 0js�10 � � � 0; or the length n term of
the form 0 � � � 0js0 � � � 0 is prepended to become
i10 � � � 0js�10 � � � 0, for i1 � 0. The structure of the se-
quence produces the following recursion relations:

a�d; n� 1; k� � �d� 1� � da�d; n; k�;

a�d; n; 0� � n; a�d; n; k� � 0 if k � n� 1:
(5)

The recursion implies a�d;n;k���d�1��n�k�1
‘�0 d‘�

dn�k�1. This implies that the number of nearest neigh-
bor two-qudit gates for quantum state synthesis is
�n�1
‘�0�2k�1�a�d;n;k���n�1

‘�0�2k�1��dn�k�1�2O�dn�.
For arbitrary unitary synthesis there will also be a cost
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incurred due to swapping when implementing the (n� 1)-
controlled phase gates. However, the cost of swapping to
ancillary qudits is linear. Thus, the asymptotic gate count
remains O�d2n� with locality restrictions.

We conclude with some remarks. Locality in quantum
mechanics is a function of the tensor (Kronecker) product
structure of the state space in question. In quantum com-
puting, the Hilbert space factors are often finite dimen-
sional. Measuring difficulty by counting two-particle
interactions, we have generalized a recent optimal asymp-
totic of ��22n� for two-level quantum bits to a new optimal
asymptotic ��d2n� for d-level quantum dits. The result is
exponentially better (asymptotically) than that obtained by
emulating such qudits with qubits, given d � 2‘.
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