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Robust quantum computation with d-level quantum systems �qudits� poses two requirements: fast, parallel
quantum gates and high-fidelity two-qudit gates. We first describe how to implement parallel single-qudit
operations. It is by now well known that any single-qudit unitary can be decomposed into a sequence of Givens
rotations on two-dimensional subspaces of the qudit state space. Using a coupling graph to represent physically
allowed couplings between pairs of qudit states, we then show that the logical depth �time� of the parallel gate
sequence is equal to the height of an associated tree. The implementation of a given unitary can then optimize
the tradeoff between gate time and resources used. These ideas are illustrated for qudits encoded in the ground
hyperfine states of the alkali-metal atoms 87Rb and 133Cs. Second, we provide a protocol for implementing
parallelized nonlocal two-qudit gates using the assistance of entangled qubit pairs. Using known protocols for
qubit entanglement purification, this offers the possibility of high-fidelity two-qudit gates.
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I. INTRODUCTION

Quantum computation requires the ability to process
quantum data on a time scale that is small compared to the
error rate induced by environmental interactions �decoher-
ence�. Robust computation results when the rate of error in
the control operations and the rate of decoherence are below
some threshold independent of the size of the computational
register. The threshold theorem implies such rates exist, but
it assumes arbitrary connectivity between subsystems as well
as the ability to implement the control operations with a high
degree of parallelism �1�, allowing additional resources �e.g.,
lasers� to be used to reduce time. Quantum-computer archi-
tectures, therefore, should be designed to support parallel
gate operations and measurements. At the software level
some work has been done regarding parallel computation
with qubits. For example, certain quantum algorithms such
as the quantum Fourier transform can be parallelized �2�, and
there are techniques to compress the logical depth �i.e., time�
of a quantum circuit on qubits using the commutativity of
gates in the Clifford group �3�. Further, by using distributed
entanglement resources, some frequently used control opera-
tions can be parallelized �4�.

This work concerns parallel unitary operations on qudits,
i.e., d-level systems where typically d�2. There are several
reasons for considering such systems. Many physical candi-
dates for quantum computation with qubits work by encod-
ing in a subspace of a system with many more accessible
levels. Control over all the levels is important for state prepa-
ration, simulating quantum processes, and measurement. In

particular, encoding in decoherence-free subspaces usually
involves control over multiple distinguishable states. Addi-
tionally, for small quantum computations, a fixed unitary U
�U�d� for d small but larger than 2, can often be imple-
mented with higher fidelity in a single qudit rather than by
simulation with two-qubit gates. Further, at the level of ten-
sor structures, some quantum processing may be more effi-
cient with qudits, e.g., the Fourier transform over an Abelian
group whose order is not divisible by 2 �5�. It is straightfor-
ward to show that naive qubit emulation of qudits is ineffi-
cient �6�.

Fast single-qudit gate times are important in order to
implement quantum error correction before errors accumu-
late �7�. In Sec. II we derive parallel implementations of
general one-qudit unitary gates, where the quantum one-
qudit gate library is restricted to a small set of couplings
between two-dimensional subspaces �Givens rotations�. The
choice of this Givens library of one-qudit gates reflects stan-
dard coupling diagrams, i.e., the particular rotations obey
selection rules in the physical system that encodes the qudit.
Prior work considered minimum-gate circuits for such gen-
eralized coupling diagrams but did not further optimize these
circuits in terms of depth �8�. Parallelism is possible because
quantum gates acting on disjoint subspaces �i.e., qudits in
different states� can be applied simultaneously, at the ex-
pense of additional control resources. Our method is particu-
larly helpful for experimental implementations because it can
be applied to a large class of systems with different allowed
physical couplings. We provide examples for qudit control
with ground electronic hyperfine levels of 87Rb and 133Cs
and show that it is possible to achieve impressive speedup
with these systems using three pairs of control fields.

We hope this work is of interest to experimentalists and
others who might not want to study the mathematical formal-
ism on first reading. The heart of Sec. II is two state-
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synthesis examples, explained in Figs. 1–7 and Tables I and
II; then Sec. II D shows how to apply unitary transformations
using this state synthesis.

Further, in Sec. III we obtain depth-optimized �parallel�
implementations of nonlocal two-qudit gates. These opera-
tions generically require O�d3� controlled unitary gates �8�.
We show how this can be parallelized to depth O�d2� using
O�d3� maximally entangled qubit pairs �e-bits�. While the
protocol is not optimized in terms of e-bits consumed, it is a
step forward to the goal of high-fidelity two-qudit gates. This
is because the qubit resources can be chosen to be ancillary
degrees of freedom of the particle encoding the qudit. Thus
they can be prepared in entangled pairs nondeterministically
and purified before the nonlocal gate is implemented.

A third aspect of parallelism �2� involves reducing the
logical depth of a circuit by judicious grouping of single- and
two-particle gates that can be performed at the same time
step, assuming connectivity of the particles. This is roughly
analogous to classic circuit layouts and will not be consid-
ered here.

II. PARALLELISM IN STATE SYNTHESIS AND UNITARY
TRANSFORMATION FOR A SINGLE QUDIT

In typical physical systems encoding a single qudit, arbi-
trary couplings are not allowed. Whereas we can represent
any unitary U�U�d� as an operator generated from an ap-

propriate set of Hamiltonians, viz., U=exp�−i� j=0
d2

tjhj� where
tj �R and �−1hj �u�d� with hj =hj

†, it is generally not pos-
sible to turn on all the couplings hj at the same time. It is a
problem of quantum control to determine how to simulate a
single-qudit unitary using a sequence of available couplings.

Because quantum computations need only be simulated
up to a global phase, we restrict ourselves to implementa-
tions of a generic unitary U�SU�d�. One way to implement
U is by a covering with gates generated by the su�2� subal-
gebras g j,k acting on the subspaces spanned by the state pairs
��k� , �j��:

g j,k = 	i� j,k
x,y,z; � j,k

x = �j�
k� + �k�
j�, � j,k
y = − i��j�
k� − �k�
 j��,

� j,k
z = �j�
 j� − �k�
k�� . �1�

This is realized by a QR decomposition of the inverse unitary
into a product of unitary �Givens� rotation matrices that re-
duce it to diagonal form D†:

D† = � 
�=1

d�d−1�/2

Gj�k��U†. �2�

Here, each Givens rotation can be chosen to be a function of
two real parameters only:

Gjk��,�� = e−i��cos ��j,k
x −sin ��j,k

y �. �3�

Typically, parameters are chosen so that consecutive Givens
rotations introduce an additional zero below the diagonal of
the unitary. Thus a sequence of such rotations realizes the
inverse unitary up to relative phases, and the reversed se-
quence of inverse rotations realizes the unitary itself �up to a

diagonal gate�. There are d�d−1� /2 elements below the di-
agonal; hence the gate count in Eq. �2�. The entire synthesis
then follows by U=D��=1

d�d−1�/2Gj�k�
�. Using a Euler decom-

position of SU�2�,

ei�j,k
z � = Gj,k�− �/4,�/2�Gj,k��,0�Gj,k��/4,�/2� ,

the diagonal gate can be built using 3�d−1� Givens rotations.
A second way to synthesize a unitary transformation is to

use a spectral decomposition

U = 
�=0

d−1

W�C�W�
† �4�

where W� is a unitary matrix that maps the basis state �� � to
the eigenvector corresponding to the �th eigenvalue of U,
and C� is the identity matrix with its �� , � � element replaced
by the �th eigenvalue. Each matrix W�

† implements a state-
synthesis operation and can be implemented as a product of
Gjk�� ,��. In this section we consider parallelism, both in
state synthesis and in the two unitary constructions above.

Particular physical systems exhibit symmetries that con-
strain and refine the broad picture of unitary evolution pre-
sented so far �9,10�. This work focuses on systems in which
a limited number of pairs of states can be coupled at any
given time. The exemplar system is a qudit encoded in the
ground hyperfine state of a neutral alkali-metal atom, where
the number of pairs that may be coupled at once is deter-
mined by the number of lasers incident on the atoms. Other
candidate systems for quantum computation, such as flux-
based Josephson-junction qudits and electronic states of
trapped ions, may allow this type of control.

We recall how the selection rules on an atom with hyper-
fine electron structure constrain the allowed Givens evolu-
tions of the system �8,11�. A pair of Raman pulses can couple
states �F↓ ,MF�↔ �F↑ ,MF��. In the linear Zeeman regime, a
specific pair of hyperfine states can be addressed by choosing
the appropriate frequency and polarization of the two Raman
beams. The coupling acts on the electron degree of freedom
which imposes a selection rule �MF=MF−MF� = ±2, ±1,0.
To demonstrate the power of our unitary synthesis technique,
we restrict discussion to the selection rule �MF=MF−MF�
= ±1,0. This restriction is valid when the detuning of each
Raman laser beam from the excited state is much larger than
the hyperfine splitting in the excited state ���Eehf� �12�.
There is a practical advantage to restricting discussion to this
selection rule. Spontaneous emission during the Raman gate
scales as ��� �	1	2 � /�2, where 	1,2 are the Rabi frequen-
cies of the two Raman beams and � is the spontaneous emis-
sion rate from the excited state. Working in the limit of large
detunings reduces errors due to spontaneous scattering
events.

The hyperfine levels for a d=8 qudit and the induced
coupling graph are shown in Figs. 1 and 2. We assume that
the amplitude and phase of the Raman beams can be con-
trolled so that each Givens rotation Gjk�� ,�� can be gener-
ated in a single time step. Relative phases between a pair of
basis states can be achieved by a Euler decomposition of

e−i��j,k
z

using three Givens rotations. Alternately, relative
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phases might be introduced using off-resonant Raman
beams. Basis states can be phased using ac Stark shifts in-
duced by off-resonant �-polarized light, or time-dependent
magnetic fields. Whatever the technique used it is crucial to
keep track of phases accumulated on all the basis states. For
unitary synthesis using Given’s rotations, phases on states
other than the addressed pair can be corrected for in subse-
quent steps without undoing previous effort �see �8��.

It is notable that, while the multitude of hyperfine levels
in atomic systems provides a large state space of quantum-
information processing, these states are sensitive to errors.
For instance, it is possible to choose disjoint two-
dimensional subspaces, spanned by 	�F↓ ,MF� , �F↑ ,−MF��,
that are insensitive to small magnetic field fluctuations along
the quantization axis. Fluctuating fields along different axes
have negligible effect provided a large enough fixed Zeeman
field is applied. There are no such error-avoidance codes
when using the entire hyperfine manifold. Hence parallelism,
on a scale that can support error correction on a time scale
fast compared to environmental noise, will be crucial.

A. Achieving parallelism in state synthesis

To implement the unitary state-synthesis operator W�
†, we

construct a sequence of rotations taking a particular vector to
a given state �� �. Again, this is technically the reverse of
state synthesis: W � � �= �
� for a generic pure state �
� inverts
to a sequence of unitaries Gjk�� ,�� accomplishing W† �
�
= �� �. Thus in the application �� � will be the fiducial state,
and we attempt to treat all possibilities. We abbreviate the
rotation of Eq. �3� by Gjk.

One tool for identifying sequences of rotations that pro-
duce W�

† is the rotation or coupling graph, in which node j is
connected to node k if a rotation between rows j and k is
physically realizable �13�, or, in other words, if transitions
between the two states �j� and �k� are permitted. Then W�

† is
constructed by the sequence of rotations determined by con-
structing a spanning tree rooted at � and successively elimi-
nating leaf nodes by a rotation with their parent. We con-
struct a spanning tree from a graph that has d nodes by
keeping exactly d−1 edges while maintaining connectivity
among all of the nodes. One node � is designated to be the
root and is put at the top of the diagram. Every node except
the root is the child of its parent, the node closer to the root
with which it shares an edge. The leaves of the tree are the
nodes that have no children.

Consider, for example, the coupling graph of Fig. 2. To
perform state synthesis for �0�, we can form a spanning tree
by breaking the edge between 1 and 5, breaking one of the
edges in the cycle 0 ,5 ,2 ,4 ,1 ,6 ,0, and choosing the root to
be �0�. If we break the edge between 2 and 4, then the re-
sulting tree has three leaves, 7 �eliminated by G07�, 3 �elimi-
nated by G23�, and 4 �eliminated by G14�, We can then elimi-
nate the two resulting leaves 1 and 2, and then 6 and 5.
Therefore, we have constructed a rotation sequence

G05G06G61G52G14G23G07

that synthesizes �0� in seven time steps, hereafter just called
steps.

To understand the potential for parallelism, note that some
of these rotations commute and can therefore be applied in
parallel. This is a special case of the assertion that infinitesi-
mal unitaries ih1 , ih2�u�d� may be applied in parallel if and
only if �h1 ,h2�=0 if and only if eith1 and eith2 commute for all
t real. We rely on the following result.

Proposition 1. A subsequence of p rotations can be ap-
plied in parallel if and only if all 2p indices are distinct.

Proof. It is easy to verify that if all four indices are dis-
tinct, then GjkGnm=GnmGjk. Conversely, if the four indices
are not distinct, then the order of application matters and
therefore the rotations cannot be applied in parallel. The re-
sult follows by induction on p. �

Using square brackets to group rotations that can be ap-
plied in parallel, the seven-step rotation sequence of our ex-
ample becomes the four-step parallel rotation sequence

G05G06�G61G52��G14G23G07� . �5�

The next interesting question is how we might determine
an ordering of rotations to produce a parallel rotation se-
quence with a small number of steps. To answer this ques-
tion, we build upon an algorithm of He and Yesha ��14�, Sec.
III A�. Given a spanning tree, they create a binary computa-
tion tree �BCT� by working from the bottom up and replac-
ing every internal node in the spanning tree by a leaf con-
nected to a chain of p nodes, where p is the number of
children of the node. They then attach one child to each of
the new nodes. The final result is a binary tree. �This process
is illustrated in Fig. 3 for a spanning tree of the coupling
graph in Fig. 2 rooted at node 3.� The following proposition
shows that the number of steps in our parallel rotation se-

FIG. 1. A single d=8 qudit encoded in the ground-state hyper-
fine levels of 87Rb. A pair of lasers can couple states in different
hyperfine manifolds according to the selection rule �MF=0, ±1.

FIG. 2. Coupling graph for 87Rb. There is an edge between two
states if a pair of lasers can couple them as in Fig. 1.
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quence is equal to the height of the BCT, not the height of
the spanning tree.

Proposition 2. An ordering of the rotations can be ob-
tained by constructing the BCT for a spanning tree of the
coupling graph and scheduling each rotation at time step k
− j, where k is the height of the BCT and j is the distance of
the two leaves of the rotation from the root of the BCT. The
resulting number of steps is k−1.

Proof. In constructing the BCT, we have split each node
of the spanning tree that is involved in more than one rota-
tion into a chain of nodes, each on a distinct level. This
assures that rotations on the same level commute and there-
fore can be applied in parallel. �

The resulting ordering is within a factor of O�log2m� of
optimal, where m is the number of rotations �14�. We next
present a direct �in fact greedy� algorithm which also orders
the rotations for optimal parallelism.

At each step, consider each leaf of the spanning tree in
order of its distance from the root �more distant leaves first�,
and process �remove� any leaf whose rotation can be applied

in parallel with those already chosen for processing. The two
algorithms give the same number of steps but perhaps assign
a different timing to some rotations. For example, the greedy
algorithm applied to the spanning tree on the left of Fig. 3
yields

G32G24G25�G50G41��G07G16� ,

while the BCT on the right of the figure yields the schedule
shown in Fig. 4:

G32G24�G25G41��G50G16�G07.

Both rotation sequences require five steps.
Therefore, we can determine an ordering for the rotations

to perform state synthesis for �� � by considering in turn each
possible spanning tree rooted at �� �, constructing an ordering
for it, and choosing the ordering that provides the smallest
number of steps.

It is possible that resource constraints prevent us from
implementing a parallel ordering. Suppose for example a
limited number of laser beams allows us to apply only two
rotations a time. State synthesis for �0� �Eq. �5�� can still be
accomplished using a four-step rotation sequence, but it re-
quires a nontrivial rearrangement:

G05�G06G52��G61G07��G14G23� . �6�

In general, such a constrained scheduling problem is difficult
to solve exactly, although good heuristics exist.

B. Examples of parallelism in state synthesis

We apply our state synthesis algorithms to rubidium and
cesium.

1. Hyperfine levels of 87Rb. Only the nine transitions cor-
responding to the edges of the coupling graph of Fig. 2 are
allowed, and the edge between 1 and 5 will not be used in

TABLE I. Parallel rotation sequences for state synthesis using
laser Raman-coupled connections between hyperfine states of 87Rb.
They require five steps for �3� and �7� and four steps for the other
kets, rather than the seven steps of the sequential algorithm. The
sequence for �3� corresponds to the construction in Fig. 3.

�0� G05 �G06G52� �G61G07� �G14G23�
�1� G16 �G60G14� �G05G42� �G23G07�
�2� G25 �G24G50� �G41G23� �G16G07�
�3� G32 G24�G25G41��G50G16� G07

�4� G41 �G16G42� �G25G60� �G23G07�
�5� G50 �G52G07� �G06G24� �G61G23�
�6� G61 �G14G60� �G05G42� �G23G07�
�7� G70G06 �G61G05� �G14G52� G23

FIG. 3. A spanning tree �left� and a BCT �right� for node 3 of
87Rb. On the left, the graph in Fig. 2 is redrawn with state 3 at the
top, omitting the edges �0,6� and �5,1� in order to remove cycles and
make the graph a tree with two leaves, corresponding to �7� and �6�.
We obtain the BCT on the right by replacing each nonleaf by a leaf
connected to a chain of p nodes, where p is the number of children.
For example, node 2 in the spanning tree has two children, so at
right it is replaced with nodes 2, 2a, and 2b. We then attach one
child to each of the new nodes. The result is that, working from the
bottom up, rotations on the same level �for example, �2,5� and �4,1��
can be done simultaneously, accomplishing synthesis of �3�.

FIG. 4. �Color online� State synthesis timing diagram for �3� for
the rubidium alkali-metal atom using two-way parallelism. The time
steps, indicated in bold, are taken from the BCT in Fig. 3, working
from the bottom up. All transitions are directed toward �3�. FIG. 5. �Color online� Coupling graph for 133Cs.
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our algorithms, since it does not lead to speedup �15�.
Optimal parallel rotation sequences, constructed using

Proposition 2, are given in Table I.
2. Hyperfine levels of 133Cs. The coupling graph of al-

lowed transitions for 133Cs is given in Fig. 5. We partition
these transitions into three groups.

�i� The outer chain of �red� transitions between �15�, �0�,
�13�, �2�, �11�, �4�, �9�, �6�, and �7�.

�ii� The inner chain of �blue� transitions between �14�, �1�,
�12�, �3�, �10�, �5�, and �8�.

�iii� A ladder of transitions between the two chains.
Since d=16, state synthesis requires 15 rotations. If the

desired state is �3�, for example, then we can use the outer
chain of transitions to depopulate �7�, �6�, �9�, �4� �in order�
and then �15�, �0�, �13�, �2�, and then use the ladder transition
from �11� to �3�. Similarly, the inner chain of transitions can
be used to empty �14�, �1�, �12�, �8�, �5�, and finally �10�. This
pattern of using the outer chain, the inner chain, and a single
ladder transition accomplishes state synthesis for an arbitrary
state.

Complete parallelism is possible in the application of ro-
tations from the outer chain with those in the inner, since no
state is involved in both chains. If two rotations can be ap-
plied at once, then we need nine steps for state synthesis to
�15� or �7� and eight steps for the other kets. We illustrate
such a scheme in Figs. 6 and 7, marking each transition with
the step at which it is used.

C. Parallelism in one-qudit unitary transformations

Recall that a state-synthesis algorithm yields algorithms
for realizing arbitrary one-qudit unitary evolutions in
�at least� two different ways: by invoking the QR matrix
decomposition �Eq. �2�� or by the spectral theorem �Eq. �4��.
The number of parallel steps for a generic unitary can be
significantly greater when using the spectral theorem. For
example, for 87Rb, the spectral decomposition would take 68
steps plus the steps needed to apply the phases. The number
of steps to apply parallel QR is much less; with three-way
parallelism it is at most 2d−3=13 �d=8� plus the steps to
apply the phases. Also note that the sequential QR requires
d�d−1� /2=28 steps, so this is a considerable speedup.

A rotation sequence that achieves this bound of 13 steps
for QR can be constructed using the precedence graph for the
computation �16�. Suppose we order the rows as
7 ,5 ,0 ,6 ,1 ,4 ,2 ,3. We usually use rotations that eliminate an
element in any row by a rotation with the element directly
above it, but in the first column we use the rotation sequence

G70G05G06�G52G61��G14G23� .

This sequence specifies predecessors for each rotation in the
first column. Define the predecessors of a rotation for col-

umns after the first to be the rotations zeroing elements to the
south, west, and northwest, if those rotations exist. Each ro-
tation can be performed after all of its predecessors are com-
pleted. Therefore, the numerical value of each entry below
the diagonal in the following matrix denotes the step at
which the entry can be zeroed:

7

5

0

6

1

4

2

3

�
x x x x x x x x

4 x x x x x x x

5 8 x x x x x x

3 7 9 x x x x x

2 6 8 10 x x x x

1 5 7 9 11 x x x

2 4 6 8 10 12 x x

1 3 5 7 9 11 13 x

� .

Thus, using three-way parallelism, an arbitrary unitary can
be applied in 13 steps, plus the steps for phasing.

If only two-way parallelism is allowed, then more steps
are necessary. We schedule rotations by cycling through the
columns in round-robin order �right to left�, scheduling at
most one rotation per column, until all rotations are sched-
uled. If the predecessors of the column’s next rotation are
scheduled, then that rotation is scheduled for the earliest
available time step after their scheduled steps. The resulting
time steps are

7

5

0

6

1

4

2

3

�
x x x x x x x x

4 x x x x x x x

6 10 x x x x x x

3 8 11 x x x x x

2 7 9 12 x x x x

1 5 8 11 13 x x x

2 4 6 9 12 14 x x

1 3 5 7 10 13 15 x

� .

These 15 steps are optimal for two-way parallelism; the last
two rotations must be applied sequentially, so the 28 rota-
tions cannot be applied in 14 steps.

FIG. 6. �Color online� State-synthesis timing diagram for �1� for
the cesium alkali-metal atom using two-way parallelism. All transi-
tions are directed toward �1�.

FIG. 7. �Color online� State-synthesis timing diagram for �7� for
the cesium alkali-metal atom using two-way parallelism.
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A similar construction using the cesium coupling graph shows that at most 29 steps are required using seven-way paral-
lelism. We order the rows as 15,14,0,13,1,12,2,11,3,10,4,9,5,8,6,7. The rotations used in the first column are

G15,0G0,13G13,2G2,11G11,4G4,9G9,5G9,6 �G0,14G13,1G2,12G11,3G4,10G5,8G6,7� ,

while in other columns we use rotations that eliminate an element in any row by a rotation with the element directly above it.
The time steps are as follows:

15

14

0

13

1

12

2

11

3

10

4

9

5

8

6

7 ⎣
⎢
⎢
⎢
⎡

x x x x x x x x x x x x x x x x

1 x x x x x x x x x x x x x x x

9 16 x x x x x x x x x x x x x x

8 15 17 x x x x x x x x x x x x x

1 14 16 18 x x x x x x x x x x x x

1 13 15 17 19 x x x x x x x x x x x

7 12 14 16 18 20 x x x x x x x x x x

6 11 13 15 17 19 21 x x x x x x x x x

1 10 12 14 16 18 20 22 x x x x x x x x

1 9 11 13 15 17 19 21 23 x x x x x x x

5 8 10 12 14 16 18 20 22 24 x x x x x x

4 7 9 11 13 15 17 19 21 23 25 x x x x x

3 6 8 10 12 14 16 18 20 22 24 26 x x x x

1 5 7 9 11 13 15 17 19 21 23 25 27 x x x

2 4 6 8 10 12 14 16 18 20 22 24 26 28 x x

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 x ⎦
⎥
⎥
⎥
⎤

.

If fewer parallel resources are available, we can again reschedule our steps as done above for rubidium. For three-way
parallelism, for example, we can schedule the rotations as

15

14

0

13

1

12

2

11

3

10

4

9

5

8

6

7 ⎣
⎢
⎢
⎢
⎡

x x x x x x x x x x x x x x x x

4 x x x x x x x x x x x x x x x

19 24 x x x x x x x x x x x x x x

17 22 26 x x x x x x x x x x x x x

3 19 24 28 x x x x x x x x x x x x

2 17 21 26 30 x x x x x x x x x x x

11 15 19 23 28 32 x x x x x x x x x x

6 13 16 21 26 30 34 x x x x x x x x x

2 11 14 18 23 28 32 35 x x x x x x x x

1 10 13 16 21 25 30 33 36 x x x x x x x

5 8 11 14 18 23 27 31 35 37 x x x x x x

4 7 9 12 16 20 25 29 33 36 38 x x x x x

3 6 8 10 14 18 22 27 31 34 37 39 x x x x

1 5 7 9 12 15 20 25 29 33 36 38 40 x x x

2 4 6 8 10 13 17 22 27 31 34 37 39 41 x x

1 3 5 7 9 12 15 20 24 29 32 35 38 40 42 x ⎦
⎥
⎥
⎥
⎤

.
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A summary of the tradeoff between resources and gate
times with qudits encoded in ground hyperfine levels of 87Rb
and 133Cs is given in Table II. As noted above, the two-way
construction of 15 steps for 87Rb is optimal. Similar reason-
ing gives the two- and three-way lower bounds for 133Cs; for
example, 118 rotations divided by 3 gives 40 steps plus two
final steps for the last two rotations. The other lower bounds
in the table are obtained assuming a completely connected
coupling graph and �d /2�-way parallelism. In that case, if
d=2p, we can insert d /2 zeros in the first column at step 1,
up to d /4 zeros in the first two columns 2 at step 2 , . . . ,1
zero in the first p columns at step p, and then start the re-
duction in the jth column for j= p+1, . . . ,d−1 at step
log2 d+2� j−log2 d�, for a total of log2d+2�d−1−log2d�
steps. Other choices of rotation sequences may reduce some
entries in the table.

D. Parallel diagonal gates

Up to this point our discussion has counted the number of
parallel steps needed to construct any single-qudit unitary up
to a diagonal gate D. Synthesizing the diagonal gate is un-
necessary if the target qudit will remain dormant until a mea-
surement in the computational basis. However, if the qudit
will be targeted by subsequent operations then it will be nec-
essary to phase the basis states of the qudit appropriately. We
next consider parallel constructions for D. There are two
variations of this problem to discuss. In the first, we define a
gate to be an evolution by the generator � j,k

z , where j and k
are paired levels. In the second, the gate library is restricted
to Givens rotations �Eq. �3�� as is the case in systems con-
trolled with on-resonant Raman laser pairs. Here one cannot
realize a diagonal Hamiltonian directly but rather may simu-

late eit�j,k
z

using a Euler angle decomposition.
First, note that the D gate itself need only be simulated up

to a local phase: e.g., we may chose D�SU�d�. Simulating a
diagonal gate with d−1 independent phases should require
appropriate couplings between d−1 pairs of states. There
is a large amount of freedom in the choice of the set of
the d−1 state pairs: any D�SU�d� can be written

D=m=1
d−1 ei�jm,km

�jm,km

z
, provided the set of edges E= 	� jm ,km��

creates a spanning tree of the coupling graph. For
	i� j,k

z : � j ,k��E� spans the diagonal subalgebra of su�d�, and
therefore we may construct 	� jm,km

� by solving d−1 linear
equations �8�. Since diagonal gates commute, the simulation
�in terms of � j,k

z � is maximally parallel, requiring one step. If
only k-wise parallelism is allowed, then the number of steps
is ��d−1� /k�.

We next consider the case that only � j,k
x and � j,k

y are al-
lowed. Again choose any spanning tree for the coupling
graph and construct 	� jm,km

� by solving d−1 linear equations.
Color the edges of the tree so that no node has two edges of
the same color. �For example, in Fig. 3 we need three colors
because node two has three edges.� Now for any edge � j ,k�,
we may indeed realize ei�j,kt�j,k

z
=eit1� j,k��j,k

x
eit2� j,k��j,k

y
eit3� j,k��j,k

x

for appropriate timings. Evolutions eit1�j,k
x

and eit2�j,k
y

do not
commute and may not be applied in the same time step. Yet
we may group the evolutions for a single color—black, for
example—in three time steps as

� 
� j,k� black

ei�j,kt1� j,k��j,k
x �� 

� j,k� black
ei�j,kt2� j,k��j,k

y �
�� 

� j,k� black
ei�j,kt3� j,k��j,k

x � . �7�

Given a sufficient number of operations per step, this realizes
D in 3c parallel steps, where c is the number of colors,
regardless of the number of levels in the spanning tree.
Hence, the construction is optimized by choosing a spanning
tree that minimizes the number of colors. The number of
colors c is bounded by the maximum valency cm of any node
in the coupling graph; if the coupling graph itself is a tree,
then the number of colors is exactly cm. When control re-
sources are limited, we make a similar coloring, but limit the
number of edges of a given color to the maximum number of
operations allowed per step.

The spanning tree of Fig. 3 for 87Rb requires three colors
for the edges. A diagonal computation can be done with the

gate sequence D= �ei�3,2�3,2
z

��ei�2,5�2,5
z

ei�0,7�0,7
z

ei�4,1�4,1
z

�
��ei�5,0�5,0

z
ei�2,4�2,4

z
ei�1,6�1,6

z
�, which requires nine parallel

Givens rotations, for each bracket in the expression for D
requires x, y, and x steps. Similarly, cesium requires nine
parallel Givens rotations.

The above treatment works for synthesizing an arbitrary
diagonal gate D without prior processing. However, generi-
cally, the gate D follows the diagonalization process de-
scribed in Sec. II C. In that case some pairwise phasing op-
erations can be subsumed in earlier steps, therefore reducing
the total number of pulse sequences. First, since Proposition
1 can be extended to any unitary, not just rotations of the
form Gjk, we can apply a phase correction using edge � j ,k�
as soon as we are finished with those two rows in the diago-
nalization. Second, we are allowed to choose an edge set for
phasing different from the one we used for diagonalization.
For example, using three-way parallelism for rubidium, at
times 11,12, and 13 of the diagonalization, we can apply a
phase correction using edge �0,6�; at times 14, 15, and 16

TABLE II. Number of parallel steps �time� to synthesize a ge-
neric unitary operation U, up to a diagonal gate D, on a single
atomic qudit. The number in parentheses is our best lower bound.
Each Raman pair of laser beams counts as a single resource, and the
first column indicates the number of pairs used in our QR diagonal-
ization of U. The tradeoff between time and resources is evident.

Steps

Parallelism 87Rb �d=8� 133Cs �d=16�

seven-way 13 �11� 29 �26�
six-way 13 �11� 30 �26�
five-way 13 �11� 31 �26�
four-way 13 �11� 35 �26�
three-way 13 �11� 42 �42�
two-way 15 �15� 62 �61�
one-way 28 �28� 120 �120�
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we can use �7,0� , �6,1�, and �5,2�; and at times 17,18, and
19 we can finish by using �0,5� , �1,4�, and �2,3�. A similar
idea works for cesium using seven-way parallelism: at
times 27, 28, and 29 use edge �0,14�; at times 30, 31, and
32 use �15,0� , �14,1� , �13,2� , �12,3� , �11,4� , �10,5�, and
�9,6�; and at times 33,34, and 35 use �0,13� ,
�1,12� , �2,11� , �3,10� , �4,9� , �5,8�, and �6,7�. In rubidium,
an extra six Raman pulse sequences is optimal for phasing
when nodes �2� and �3� are involved in the last rotation, and
six pulses ending on �6� and �7� is optimal for cesium. We
require no more than three and seven simultaneous cou-
plings, respectively, which is also the number required for
optimal diagonalization.

III. PARALLELIZED NONLOCAL TWO-QUDIT GATES

In this section we propose an implementation of an arbi-
trary nonlocal unitary U�U�d2� between two qudits A and
B. We suppose the qudits are spatially separated in some
quantum-computing architecture, yet this architecture has �i�
the capability to prepare a large reservoir of maximally en-
tangled �d=2� qubits and �ii� the ability to shuttle halves of
such Bell pairs so that they are spatially close to qudits A and
B. Hence, part of the costing is the number of such Bell pairs
�e-bits� consumed in the nonlocal gate. To be clear, we de-
scribe only a nonlocal two-qudit gate rather than a teleported
two-qudit gate meaning that quantum operations are per-
formed on two qudits rather than four. The optimization of
such a nonlocal gate presented here arises by considering its
component rotations in terms of the QR decomposition.

Before stating the protocol, we argue for why it is needed.
Two criteria must be satisfied to realize high-performance
two-qudit gates. First, nonlocality itself is desirable; most
quantum-computer architectures impose spatial limitations
on interqudit couplings. It is very inconvenient to simply
accept this limitation, since fault-tolerant computation re-
quires connectivity �17�. Now one might also suggest di-
rectly swapping qudits in order to achieve the required con-
nectivity. Yet the swap gate itself may be faulty, and thus the
resources required to make swapping fault tolerant might be
prohibitive.

Second, reliable computation requires high-fidelity two-
qudit gates. Usually, Hamiltonians capable of entangling dis-
tinct qudits are difficult to engineer �at any fidelity� and
would require effort to optimize for fidelity. Thus, one would
likely choose a particular physically available entangling
two-qudit Hamiltonian, e.g., perhaps the controlled-phase
gate P0=ei��0�
0�� �0�
0�, and then exploit this with local unitary
similarity transforms to achieve arbitrary Givens rotations
between qudit levels. The entire process might simulate any
U�U�d2� �8�. Local unitary similarity transforms arose
naturally in this discussion, and this further implies that two-
qudit nonlocality in such a scheme would follow, given a
nonlocal protocol for a single entangling Hamiltonian.

It is difficult to design an architecture for two-qudit uni-
taries which allows for both high fidelity and high connec-
tivity. Some possibilities are noteworthy. As opposed to a
chain of swapping operations, distant qudits might be
swapped using entanglement resources. Then a nonlocal gate

between qudits A and B can be done by teleporting A to a
location neighboring B, performing an entangling gate be-
tween A and B and teleporting back. Typically, entangled
qudits �e-dits� rather than e-bits are used to teleport qudits;
i.e., each teleportation is performed with the assistance of a
maximally entangled two-qudit resource ��d

+�= 1
�d

� j=0
d−1 � j� � j�

�18�. While the amount of entanglement consumed using the
resource ��d

+� is low, i.e., one e-dit=log�d� e-bits, such a
protocol would still require high fidelity �local� two-qudit
gates between A and B. As hinted at in the first paragraph of
this section, a second alternative is to teleport the gate itself
using an adaptation of the two-qubit gate teleportation pro-
tocol �19,20� ��21�, Sec. II�. In such an implementation one
would build a generic two qudit gate between A and B using
multiple applications of a gate teleport sequence where each
sequence consumed two e-dits. Such a protocol would re-
quire the preparation of high fidelity e-dits and the imple-
mentation of generalized two-qudit Bell-measurements be-
tween a memory qudit and one-half of an e-dit.

Here we describe a simple protocol for implementing a
nonlocal two qudit gate, using high-fidelity e-bit resources.
This has practical advantages over teleportation with e-dits
because there exists advanced technology for producing
high-fidelity “flying” photonic e-bits in the laboratory. Quan-
tum memory might be stored in spatially separated qudits. A
nonlocal gate between a pair could be realized by coupling
each qudit to one-half of a polarization-entangled pair of
photons, e.g., using hyperfine state-dependent coupling of an
atom trapped in an optical cavity �22�. Furthermore, this
scheme can be parallelized so that the entire implementation
time for the nonlocal gate, as measured by the number of
steps involving controlled rotation gates, is reduced by a fac-
tor of O�d�.

A. A nonlocal controlled unitary gate

Consider a one-qudit unitary gate controlled on dit �d
−1�:

∧1�V� = �
j=0

d−2

�j�
j� � 1d + �d − 1�
d − 1� � V .

We label the control qudit A and the target qudit B. This
subsection describes how such a gate can be implemented
using:

�1� Operators local to A and B.
�2� An e-bit. The ancilliary e-bit is encoded in a pair of

qubits, say A1 and B1, again with A1 neighboring A and B1
neighboring B. The joint state of the ancilla is the Bell pair
��+�= �1/�2� ��00�+ �11��A1,B1

.
�3� A controlled-NOT gate controlled on the qudit and tar-

geting an ancilliary qubit. As a formula, this gate is ∧1�x�
= � j=0

d−2 � j�
 j � � 12− �d−1�
d−1 � � x.
�4� A spatially local controlled V gate with control an

ancilla bit. As a formula, this is ∧1�V�= �0�
0 � � 1d+ �1�
1 �
� V.

The controlled gate of item 3 should be considered to be
primitive and highly engineered as discussed in the previous
section. The controlled gate of item 4 might be decomposed
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into local gates and the gate of item 3 using standard tech-
niques �8–10�.

The procedure for realizing ∧1�V� is as follows.
�1� Apply ∧1�A1

x � with A as control and A1 as target.
�2� Measure �12+A1

z � /2. Send the one-bit �c-bit� classical
measurement result m1 to the side of qudit B.

�3� Perform ei�m1B1

x /2 on the B side of the architecture.
�4� Apply the operation �0�
0 � � 1d+ �1�
1 � � V with B1 as

control and B as target.
�5� Measure �12+B1

x � /2 and send the c-bit measurement
result m2 to A.

�6� Apply a relative phase to state d−1 of A if and only if
m2=1, i.e., apply Pd−1=ei�m2�d−1�AA
d−1�.

B. Bootstrap to nonlocal two-qudit state synthesis

We next consider the question of building a nonlocal two-
qudit state-synthesis operator. We may write any two-qudit

state �
�=� j=0
d−1 � j� � �
 j

˜ �, where the kets �
 j
˜ � are unnormal-

ized. We also take the convention that W �
�= �0� so that
W† �0�= �
�. Using the partition of the state vector, one may
show that any two-qudit state-synthesis operator W can be
decomposed into d−1 elementary controlled-rotation opera-
tors as follows �6�:

W = �Vd � 1d�
j=0

d−2

��Fd−1−j � 1d�∧1�Vd−1−j��Fd−1−j
†

� 1d��

��1d � V0� . �8�

Here we intend Fj = �j�
d−1 � + �d−1�
 j � +�k�j,d−1 �k�
k� to be
a state-flip operator. The single-qudit operators Vj are chosen

so as to perform Vj �
 j
˜ �=rj

1/2 �0�, where 

 j
˜ �
 j

˜ �=rj �8�. Then
V0 clears the remaining nonzero amplitudes.

The last subsection implicitly describes a nonlocal imple-
mentation of a controlled �one-qudit state synthesis� operator
W, in that it details a scheme for the nonlocal ∧1�Vd−1−j�. The
resulting circuit for W is shown in Fig. 8 and requires d−1
e-bits and 2�d−1� c-bits. Remarkably, the protocol can be
parallelized to seven computational steps. Here by a single
step we mean a set of operations that is no more time con-
suming than a controlled one-qudit rotation ∧1�V�, which
itself can be decomposed into controlled-phase gates and
single-qudit Givens rotations if so needed. The only nonob-
vious parallel step is step 4. Note that the operators Vj gen-
erally do not commute. However, just before and just after
this step, the usual teleportation case study shows that the
state of the system lies within the span of those �k�= �k0�A

� j=1
d−1 �kj�Bj

� �kd�B in which at most a single kj is one for
1� j�d−1. Let P denote the projection of Hilbert space
onto the span of all �k� as above. If Q denotes the central
product of Eq. �8�, we have

PQP = 
j=1

d−1

e−itj��1�BjBj

1��hj , �9�

for the map of Hamiltonians h� PhP has image equal to the
span of all �1�BjBj


1 � � h. Moreover, for j1� j2 and any Her-

mitian h1 ,h2, we have ��1�Bj1
Bj1


1 � � h1 , �1�Bj2
Bj2


1 � � h2�=0.

Hence we can generate the gates in step 4 in parallel if we
choose tj and hj such that Vj =e−itjhj,. The operations in step 5
correspond to measurement of qubits Bj in the Hadamard
basis and count as a single parallel operation.

C. Spectral decomposition bootstrap to nonlocal gates

This protocol can be extended to implement an arbitrary
nonlocal unitary U�U�d2� between A and B. Consider the

spectral decomposition Eq. �4� U=�=0
d2−1W�C�W�. Each

controlled-phase operator C� is locally equivalent to the op-
erator ∧1�1d+ �ei�−1� �d−1�
d−1 � � and thus can be imple-
mented in one step using one e-bit and two c-bits. Using our
resource count for state-synthesis operators W� any two-
qudit unitary can then be built using �=7�2d2+d2=15d2

parallel operations with the assistance of 2� �d−1��d2

+d2=2d3−d2 e-bits and twice that number of c-bits. To
gauge the speedup, we note that a generic two-qudit opera-
tion without the assistance of ancillae requires O�d4� single-
qudit operations and O�d3� controlled-unitary gates ∧1�V�
�8�. As measured by the number of sequential controlled-
unitary gates, the circuit depth is then parallelized by a factor
O�d�.

Recently, an alternative construction of two-qudit opera-
tions using qubit entanglement resources was proposed �23�.
That work describes how a single e-bit and two c-bits suffice
to implement a one-parameter subgroup of U�d2� between
two distant qudits A and B with probability 1. Specifically,
the protocol realizes unitaries of the form V���=exp�i�UA

� UB� where the operators UA ,UB are unitary and Hermitian.
However, that work does not provide an algorithm for gen-

FIG. 8. A nonlocal two-qudit gate U=W† that realizes the state
synthesis U �0�A,B= �
�A,B on qudits A and B using d−1 ancillary
qubit pairs �indicated by sawtooth lines� each prepared in the state
��+�Aj,Bj

=1/�2��00�+ �11��Aj,Bj
. Each qubit Aj�Bj� in the entangled

resource can constitute a new particle or a distinct degree of free-
dom of qudit A�B�. Controlled-NOT gates between A and Aj are
conditioned on the basis state �j�A, as indicated by the shading of the
control bubble. Double lines denote classical controlled operations
dependent on qubit measurement outcomes, H=ei��x+z�/2�2, and
Pj =ei��j�
 j�. The sequence of steps that can be implemented in par-
allel is indicated at the bottom.
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erating an arbitrary two-qudit unitary nor is there a count of
the number of e-bits consumed in a covering of U�d2� with
such unitaries.

D. Improved fidelity by purification

The requirements for a successful implementation of the
nonlocal gate described above are high-fidelity local unitar-
ies and qudit-qubit operations. In practice, the most error-
prone operations will be the latter because coupling two spa-
tially distinct particles involves interactions mediated by a
field which can also couple to the environment and thus de-
cohere the system. A way to obviate this problem is to make
the qubit degrees of freedom “local” to the qudits in such a
way that those coupling operations can be made error toler-
ant. This can be accomplished by encoding a qudit A�B� and
the qubits 	Aj��	Bj�� in one and the same particle. That is, we
chose to encode quantum information in particles each en-
dowed with a tensor product structure H=Hqudit � Hancillae so
that one subsystem is used to encode the qudit and the an-
cillary subsystem with state space Hancillae= � jHqubit j is used
to assist in two-qudit gate performance.

Dür and Briegel �24� showed that when the single-particle
Hilbert space decomposes as H=Hqubit � Hancillae one can
perform extremely high-fidelity two-qubit gates. In their pro-
tocol, information is encoded in a two-dimensional degree of
freedom of each particle, say spin. Entanglement between
particles is generated using coupling between ancillary de-
grees of freedom local to each particle such as quantized
states of motion along x̂ , ŷ, or ẑ. The prepared entanglement
may not be perfect. Yet by using nested entanglement puri-
fication with two or more degrees of freedom, one can pre-
pare a highly entangled state in the ancillary degrees of free-
dom with nonzero probability. If a purification round fails,
then the entangled state can be prepared again without dis-
turbing the quantum information encoded in the other �spin�
degree of freedom. Given this, a nonlocal controlled-NOT

gate can be implemented between the encoded qubits. This
protocol is readily extended to nonlocal gates between qudits
using the quantum circuit above. The only additional require-
ment is a degree of freedom that has a state space with di-
mension d. This could be accommodated using a truncated
Fock space of a harmonically trapped particle or using a
particle with internal structure having spin �d−1� /2. Gates
between different degrees of freedom of the same particle,

such as coupling spin to motion in trapped ions �25� or atoms
�26�, may be implemented with high precision using well-
developed mechanisms for coherent control.

IV. CONCLUSIONS

Quantum computation with qudits requires more control
at the single-particle level than with qubits. It might be ex-
pected that the additional time needed to control all the lev-
els would be prohibitively long in terms of memory decoher-
ence times. We have shown how parallel �time-step
optimized� one-qudit and two-qudit computation help sur-
mount such difficulties. Given a qudit with a connected cou-
pling graph, the time complexity for constructing an arbitrary
unitary can be reduced at the expense of additional control
resources. Even for systems with little connectivity between
states, such as in the case of a qudit encoded in hyperfine
levels of an alkali-metal atom, the number of parallel el-
ementary gates can be made close to the optimal count for a
maximally connected state space. For the purposes of two-
qudit gates, we found a nonlocal implementation of an arbi-
trary unitary using O�d2� parallel steps. The protocol uses
O�d3� e-bits which could in principle be prepared and dis-
tributed ahead of time with high fidelity.

Some outstanding issues remain. First, our treatment fo-
cused on systems with allowed couplings between pairs of
states. In other systems, the selection rules may dictate a
different set of subalgebras to be used for quantum control,
e.g., spin-�d−1� /2 representations of the algebra su�2�.
Some particular computations may be realized with much
greater efficiency using such generators. Second, fault-
tolerant computation relies not on exactly universal compu-
tation, but rather on approximating unitaries using a discrete
set of one- and two-qudit gates. It would be worthwhile to
investigate optimal protocols for implementing a discrete set
of fault-tolerant nonlocal two-qudit gates using entangled qu-
bit pairs.
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