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In this paper, we study the complexity of Hamiltonians whose groundstate is a stabilizer code. We
introduce various notions of k-locality of a stabilizer code, inherited from the associated stabilizer
group. A choice of generators leads to a Hamiltonian with the code in its groundspace. We establish
bounds on the locality of any other Hamiltonian whose groundspace contains such a code, whether
or not its Pauli tensor summands commute. Our results provide insight into the cost of creating an
energy gap for passive error correction and for adiabatic quantum computing. The results simplify in
the cases of XZ-split codes such as Calderbank-Shor-Steane stabilizer codes and topologically-ordered
stabilizer codes arising from surface cellulations.
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1 Introduction

A Hamiltonian is realizable only if its complexity is low. We consider in this paper the problem of
determining lower bounds on the complexity of Hamiltonians whose groundstate is a stabilizer code.
We show that all such Hamiltonians must be at least as complicated as the underlying stabilizer group.
Our measure of complexity is locality, defined by two parameters: δ(G), the minimum weight of non-
trivial stabilizers of the group G, and η(G), the minimum integer k such that stabilizers of weight k
generate the entire group.

The notion of k-locality [2] has been introduced to estimate how physically plausible such a Hamil-
tonian H might be. To describe this, consider a collection of n qubits evolving under a constant Hamil-
tonian H. Write H1 = C{|0〉}⊕C{|1〉} and the n-qubit Hilbert space as Hn = (H1)

⊗n ∼=⊕2n−1
j=0 C{| j〉},

so that we might view H = ∑2n−1
j,k=0 h jk| j〉〈k| ∈ C

2n×2n as a Hermitian matrix. Let J be an n-long list of
elements of {0,x,y,z}. For such a J = j1 j2 . . . jn, we create an abbreviation σ⊗J = σ j1 ⊗σ j2 ⊗·· ·⊗σ jn

for the appropriate tensor product of Pauli matrices. Let J denote the set of all such indices J. We use
H (2n) to denote the vector space of Hermitian matrices. This sets notation for the equation

H (2n) =
M

J∈J
R {σ⊗J}. (1)
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Containment of the right-hand side follows since tensors of Hermitian matrices are Hermitian, while
the equality follows from linear independence given that the Pauli-tensors are orthogonal in the matrix
inner product A•B = Trace(AB

T
) for A,B ∈ C

2n×2n . Thus, H may also be written as

H = ∑
J∈J

tJσ⊗J , tJ ∈ R. (2)

If we use #J to denote the number of nonzero indices, then any summand tJσ⊗J of H denotes a #J-
body interaction among the qubits. We say H is k-local when k = max{#J | tJ 6= 0}.

Much recent work in quantum complexity theory considers the ground states of k-local Hamilto-
nians. For example, an adiabatic quantum computer [1, 2] must remain in the ground-state of a k-local
Hamiltonian at all times. Early works on anyonic excitations of topologically ordered Hamiltonians
[3, 4] used Hamiltonians whose addends were based on the local structure of some lattice. These
were usually k-local for k small. Square lattices produce four-local Hamiltonians while triangular
lattices and their dual hexagonal lattices each produce six-local Hamiltonians. Considerable effort
has produced results on quantum states that cannot be groundstates of k-local Hamiltonians Cf. [5].
That work measures the distance of the code from the groundstates of the Hamiltonian, while in the
present work we focus on the complexity of Hamiltonians that do have the code as their groundstate.
Recent attention has been given to the problem of realizing graph states as groundstates [6]. Real-
izing a graph state in this way is of interest since (i) the graph state is a nondegenerate groundstate
which in principle could be obtained from the physical system by cooling, and (ii) any quantum circuit
may be emulated using one-qubit rotations and measurements of a suitable state [7]. Thus realizing a
Hamiltonian for a large enough graph state, cooling the system, and then applying local control and
measurement is equivalent to universal quantum computation. Finally, recent work has considered a
constrained family of Hamiltonians in order to produce new results on allowed groundstates [8].

Label Pn as the group with elements {σ⊗J}J∈J up to phase multiple i, and consider a subgroup
G ⊂ Pn. The stabilizer code space of G is defined as

C (G)
def
=

{

|ψ〉 ∈ Hn | g|ψ〉 = |ψ〉 ∀g ∈ G

}

. (3)

The code space C (G) is nonzero if and only if G is commutative and −1 6∈ G [9]. Now suppose
we have a set S = {ga} that generates G, with each generator ga equal to ±σ⊗J and at most k-local.
Given commutativity, we may equally well think of the code space as the ground eigenspace of the
Hamiltonian

HC = −∑
a

ga. (4)

Even for rather small k, in fact even k = 3, engineering such a k-local Hamiltonian is challenging.
Hence one wishes to find a Hamiltonian with the same groundstate eigenspace as HC yet which is `-
local for ` < k. We call such a Hamiltonian an `-equivalent Hamiltonian for HC . This paper provides
conditions under which no such `-equivalent Hamiltonian exists.

Two applications result. The first concerns error correction. The Hamiltonian whose groundstate
is a stabilizer code has created an energy gap to leaving the code. This energy gap might be viewed as
passive error correction, and our bounds on locality of `-equivalent Hamiltonians become minimum
expenses for obtaining such behavior. In particular, these results provide a quantitative argument
that the four-local costs for toric codes [3] and analogous codes for cellulated surfaces [4, 10] are
the best possible. A second application regards adiabatic computing, where attempts to drive down
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the required k-locality of adiabatic algorithms motivates the search for `-equivalent Hamiltonians
[2]. In that context, these arguments give lower bounds on the locality of `-equivalent Hamiltonians.
However, such bounds are only on `-equivalent Hamiltonians which do not exploit ancillae. Of course,
they still apply to systems with ancillae if the ancillae are included in a larger system. Together with
results in [2] and related work concerning ground states that can be approximated using ancillae, we
have bounds on what is and is not possible with k-local operators.

The manuscript is organized as follows. Two notions of locality of a stabilizer subgroup of the
Pauli group are introduced in §2, and each notion leads to a theorem constraining the inclusion of code
spaces in the groundstates of Hamiltonians which are excessively local. In particular, in Theorem 2
we show that a Hamiltonian whose groundstate is a stabilizer code C (G) must be at least δ(G)-local,
where δ(G) is the minimum weight of a non-identity generator of the subgroup G. We then show
in Theorem 3 that when the subgroup G can be generated by a set of generators that are at most η-
local, then the Hamiltonian need be at most η-local. We analyze the ability of ν-local Hamiltonians,
ν < η(G), to distinguish between the code space of G and that of other subgroups (Theorem 4 and
Corollary 5). A perturbative result (Theorem 6 and Corollary 7) in §3 shows that if the groundspace of
an excessively local Hamiltonian is too near the stabilizer code, then the gap between the groundstate
eigenvalue and the next distinct eigenvalue is pinched. Finally, we apply the results to XY-split codes
in §4 and consider two particular examples, namely Calderbank-Shor-Steane codes and stabilizer
codes arising from cellulations of surfaces. We end the paper with discussion and conclusions.

2 Stabilizer Codes as Exact Groundspaces

We write Pauli tensors as σ⊗J = σ j1 ⊗σ j2 ⊗·· ·⊗σ jn for J = j1 j2 . . . jn and each jk ∈ {0,x,y,z}, where
σ0 = 1 and the other letters denote the usual Pauli matrices. For J the set of all such indices J, the
Pauli group Pn is all power of i multiples of σ⊗J for J ∈ J . Thus |Pn| = 4 · 4n, and all elements of
Pn commute or anticommute. For G a subgroup of Pn, the stabilizer code of G is the subspace of Hn

which is the intersection of the +1 eigenspaces of all g ∈ G. It is known that the code space, say C ,
is nonzero if and only if G is commutative and −I /∈ G [9, p.455]. It is common to refer to G as a
stabilizer group of C when (conversely) C is the intersection of the +1 eigenspaces of g ∈ G. Being
less precise, a commutative subgroup G ⊆ Pn is a stabilizer group (of some nonzero C ).

The discussion requires additional background on stabilizer codes. In particular, we highlight the
following facts.
Lemma 1: [See [9, §10.5.1].] (i) Let G ⊆ Pn and ΠG = (1/|G|)∑g∈G g. Then for commutative G,
ΠG is a projector onto the code space of G. Else ΠG = 0. (ii) If σ and −σ are both in G, then the code
space is trivial.

Proof: The first item is proven in the citation. For the second, the hypothesis requires −1 = (σ)(−σ)∈

G. Thus Trace(Π) = Trace(1−1) = 0, since every element of Pn other than ±1 is traceless. Since the
projector Π is traceless, it is zero. Hence its target, the code space, is trivial. ¤

Use wt(g) for g ∈ Pn to denote the number of σx, σy, and σz factors of the tensor product. In
particular, wt(−1) = 0. Also, wt(g1g2) ≤ wt(g1)+wt(g2), since any qubit whose tensor factors are 1
in g1 and g2 will have tensor factor 1 in their product. Finally, for S ⊂ Pn, we use 〈S〉 to denote the
subgroup generated by the elements of S. This is standard notation from abstract algebra, and we hope
that context will make clear that it is not the Dirac notation for the expectation of an operator S.

Recall from Equation 1 that any Hamiltonian on n qubits may be written as a real linear combina-
tion of Pauli tensors. The Hamiltonian is k-local if the degree of no monomial summand exceeds k.
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This is a measure of complexity of the Hamiltonian and physical systems that realize it, in that k-local
Hamiltonians require at most k-qubits to interact during any infinitesimal time.

This section presents two results which argue that Hamiltonians whose groundstate captures a
stabilizer code must be at least as complicated as the underlying stabilizer group. The complication
of Hamiltonians is measured in k-locality. On the other hand, two reasonable definitions of the k-
locality of stabilizer group are considered in separate subsections. These two measures are motivated
by earlier work [6] and so are denoted δ(G), a lower bound on the weight of g ∈ G, and η(G), in
principle an upper bound. We begin with δ(G).

2.1 Lower Bound Case

We now define a quantity δ(G) that may be viewed as a lower bound on the k-locality of a stabilizer
group.

Definition: Let G ⊆ Pn be a subgroup. Then δ(G) = min {wt(g) | g ∈ G,g 6= 1}.

The next result implies that any Hamiltonian H whose groundstate is the stabilizer code must be
at least δ(G) local. To see this, normalize so that H is traceless by subtracting the appropriate multiple
of 1. The groundspace of the traceless Hamiltonian is then a negative eigenspace.
Theorem 2: Let G be a stabilizer group and let H be a traceless Hamiltonian on n-qubits which is
k-local for k < δ(G). Let V− ⊂ Hn be the direct sum of eigenspaces of H corresponding to negative
eigenvalues. Then the code space of G is not contained within V−.

Proof: Let {|ψ j〉}
L
j=1 form a basis for the code space. Recall Π from the proof of the Lemma 1:

Π =
L

∑
j=1

|ψ j〉〈ψ j| = (1/|G|) ∑
g∈G

g .

While the second expression is an orthogonal decomposition of a projector, the third is a well known
formula for a projector onto the code space [9, §10.5.1].

Recall the decomposition of the Hamiltonian H according to Equation 2 in the introduction.

H = ∑
J∈J

tJσ⊗J , tJ ∈ R.

The traceless condition forces t00...0 = 0, since for J 6= 00 . . .0 we have Trace(σ⊗J)= ∏n
k=1 Trace(σ jk)=

0. If some coefficient tJ is nonzero, then by hypothesis #J ≤ k < δ(G).
The estimate follows by considering Trace(σ⊗Jg) for g ∈ G and tJ 6= 0. Then σ⊗Jg 6= ±1 ∈ Pn,

since the product has weight at least one. For g has weight at least δ(G) while σ⊗J has weight at
most k < δ(G), and σ⊗J = σ−1

⊗J , hence wt(g) = wt(σ−1
⊗Jσ⊗Jg) ≤ wt(σ⊗Jg)+wt(σ⊗J) or wt(σ⊗Jg) ≥

δ(G)− k. Therefore Trace(σ⊗Jg) = 0 since Trace(h) = 0 for any h ∈ Pn −{±1}. The right hand
equality of the equation below follows.

L

∑
j=1

〈ψ j|H|ψ j〉 = Trace
(

ΠH
)

= (1/|G|) ∑
g∈G

Trace
(

gH
)

= 0 . (5)

Now if {|ψ j〉}
L
j=1 ⊆ V−, then each term at the far left of Equation 5 would be negative, leading to a

contradiction. ¤
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How might one compute δ(G)?

We now sketch how one might compute δ(G), using the stabilizer check matrix A of the stabilizer code.
Thus A = (AX |AZ) ∈ (F2)

m×n corresponding to the choice of generators {g j}
m
j=1, i.e. G = 〈{g j}

m
j=1〉.

A 1 in row k of column j of AX corresponds to a factor of σx in qubit position k of generator g j, and AZ

is similar. (See [9, eqn. (10.112)] or [7, §2.2.3].) Since m is the number of generators for G and g2 = 1
for any g ∈ Pn, one way to calculate δ(G) would be to enumerate all 2m products of generators. A
possible optimization of this approach would be to delete generators until the set {g j}

m
j=1 is minimal,

i.e. until the number of rows of A is also its rank.
We present a different approach. Namely, suppose that a p-local tensor product g = ±σ⊗J is in

G. The support of g will be given by supp(g) = {k ∈ {1,2, . . . ,n} | jk 6= 0}, so that |supp(g)| = p.
Then for v an indicator vector of which generators occur in the product for g, vT A = (wX |wZ) has
wX and wZ zero outside entries indexed by S. Now label AS as that matrix with the columns of AX

and AZ corresponding to S replaced by zero entries. Then vT is a left-null vector of AS but not of A.
On the other hand, any left-null vector of A, say w with wT A = 0, must also satisfy wT AS = 0. Thus
rank(AS) < rank(A). This algorithm is defined more formally below, and we illustrate its use in an
example.

Example: Consider G = 〈X ⊗ I ⊗Z, I ⊗Z ⊗X〉, for which δ(G) = 2. Taking a basis for A according
to the generating set above yields the equation

A =

(

1 0 0 0 0 1
0 0 1 0 1 0

)

. (6)

Say S = {1,3}, since the first row of A recovers the two-local X ⊗ I ⊗Z supported on these qubits.
Then

AS =

(

0 0 0 0 0 0
0 0 0 0 1 0

)

. (7)

Thus the existence of this two-local element of G has caused rank(AS) < rank(A), which might also
be inferred due to the left-null vector vT = (10).

Algorithm: Computing δ(G)

For k = 1, . . . ,m
For each S ⊆ {1, . . . ,n} with #S = k do:

Compute AS by zeroing columns of A corresponding to S.
If rank(AS) < rank(A) then
Return δ(G) = k and exit.

End for.
End for.

The algorithm above for computing δ(G) is polynomial in n, at least if δ(G) ∈ O(1). (Cf. [6].)
Note however that it is not a polynomial time algorithm should δ(G) ∈ Ω(n), since then the loop will
loop over (a nonnegligible fraction of) the power set of {1,2, . . . ,n}.

2.2 Upper Bound Case

This section considers η(G), which is an upper bound on the k-locality of G. However, we do not
define η(G) to be the maximum of weights of g ∈ G. For |+〉⊗n = [2−1/2(|0〉+ |1〉)]⊗n spans the one-
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dimensional code space of the stabilizer group generated by the n Hermitian Pauli tensors (σx) j =

1⊗1⊗·· ·⊗σx⊗·· ·⊗1 with a single Pauli-X on qubit j. Then G contains σ⊗n
x of weight n, yet |+〉⊗n

is local. Thus to get a useful definition of an upper bound we resort to a minimax construction, taking
the minimum over all generating sets of G of the maximum k-locality in a given set. The following
definition (Cf. [6]) is equivalent to that minimax, and it gives us an upper bound on the locality of the
Hamiltonian.

Definition: For S ⊆ Pn, let 〈S〉 denote the subgroup generated by S. Let G ⊆ Pn be a stabilizer group
with nontrivial code space. Then η(G) is the minimal ν such that 〈{g ∈ G | wt(g) ≤ ν}〉 = G.
Theorem 3: There is a Hamiltonian of locality η(G) whose groundstate is the stabilizer code of G.

Proof: This follows from the construction in equation (4). ¤

Next we define certain stabilizer groups, related to those in [6], that arise after choosing a particular
generating set for G.
Definition of G±: Let G ⊆ Pn be a commutative subgroup and ν < η(G). We label
Gν = 〈{g ∈ G | wt(g) ≤ ν}〉. Fix a minimal generating set so that (i) Gν = 〈{g j}

s
j=1〉 and (ii) wt(g j)≤

ν for each j. Extend this to a minimal generating set so that G = 〈{g j}
t
j=1〉, where the g j = ±σ⊗J

may be Pauli tensors of any degree if j > s. Finally, let bs+1, . . . , bt be some choice of t − s bits.
Associating these bits to sign conventions on Pauli tensors produces a stabilizer group:

G± = 〈{g1,g2, . . . ,gs,(−1)bs+1gs+1, . . . ,(−1)bt gt}〉. (8)

The generating set for G± above is also minimal [9]. The dependence of G± on ν, the (ordered)
sequence of generators {g j}

t
j=1, and bs+1, . . . ,bt will be left implicit.

Say ν < η(G). We next argue that the eigenspaces of ν-local Hamiltonians may not distinguish G
and other extensions G±. This might be of independent interest and will also imply a result similar to
the previous one.
Theorem 4: Let ν < η(G). Let ΠG and ΠG± be projectors on the respective code spaces, for any G±

as above. Then for any traceless ν-local Hamiltonian H,

Trace
(

ΠGH
)

= Trace
(

ΠG±H
)

. (9)

Proof: Let σ ∈ Pn such that wt(σ) ≤ ν. It suffices to show that Trace
(

ΠGσ
)

= Trace
(

ΠG±σ
)

. We
prove this formula using a case study.
Case 1: Suppose either σ ∈ G or −σ ∈ G or both. Each such element is in Gν due to its weight, hence
each such element is also an element of G±.

Since by hypothesis G has a nontrivial code space, both σ and −σ are not in G. (Else −1 ∈ G and
Trace(ΠG) = 0 contradiction.) As a remark, Trace

(

ΠGσ
)

= Trace
(

ΠG±σ
)

nonetheless holds in this
subcase as 0 = 0.

Thus say σ ∈ G with −σ 6∈ G or vice-versa. Then each trace is ±2t−n, since (i) Trace(g1g2) = 0
whenever g1,g2 ∈ Pn and g1 6∈ {g2,−g2} and (ii) the size of the minimal generating sets demand
2n−t = #G = #G± [9].
Case 2: Suppose σ 6∈ G and −σ 6∈ G. Then Trace

(

ΠGσ
)

= 0. It would suffice to show that σ 6∈ G±

and −σ 6∈ G±.
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Assume by way of contradiction that σ ∈ G±. Then for a bit-string cs+1cs+2 . . .ct , we have

σ =
s

∏
j=1

gs
j

t

∏
j=s+1

(

(−1)b j g j

)c j

. (10)

Since ∏t
j=s+1(−1)b jc j ∈ {1,−1}, either σ ∈ G or else −σ ∈ G. Contradiction. The case that −σ ∈ G±

is similar. ¤

Corollary 5: Suppose that H is a traceless, ν-local Hamiltonian for ν < η(G).

• If the code space of G is is a subspace of the groundstate eigenspace of H, then so is the code
space of any G±.

• For fixed j (no more than the number of negative eigenvalues of H), let V be the direct sum of
the eigenspaces of the j smallest eigenvalues of H (counting multiplicities). If the code space of
G is a subspace of V , then the same holds for G±.

Proof: The first part is a special case of the second part. For the second part, let k be the rank of ΠG

and ΠG± . One may show that the minimum of Trace(ΠH) over all projectors Π of rank k is attained
if and only if the range of the projector is the subspace of V corresponding to eigenspaces of the
k lowest eigenvalues (counting multiplicities). The minimum value is the sum of the corresponding
eigenvalues of H. Given the hypothesis, ΠG attains this minimum. Thus ΠG± achieves it as well,
implying that its image is a subspace of V .

Remark: During review, a referee pointed out another corollary of the theorem. No traceless ν-local
Hamiltonian H as above has the code space as its groundstate eigenspace. For if so, then stabilizer
codes of G and G± are both contained in this groundstate eigenspace, yet they are orthogonal due
to one stabilizer holding some gs+ j and the other −gs+ j for 1 ≤ j ≤ s− t. Dimension counting then
produces a contradiction. Note that to apply this result, one must verify that H is both local in a certain
sense and has eigenspace degeneracies bounded in terms of the dimension of the code space of G.

How might one compute η(G)?

Recall the earlier algorithm to compute δ(G) using A = (AX |AZ) ∈ F
m×n
2 . This section produces a

similar algorithm for η(G) using linear algebra. However, we first need some more notation. Namely,
although the subset of k-local elements within G do not form a subgroup, those elements which only
affect any collection of k-qubits do. The algorithm for η(G) represents these subgroups as matrices
and then uses algebra to decide whether their union generates G.

Definition: Recall the notation σ⊗J = σ j1 ⊗ ·· · ⊗σ jn for J = j1 j2 . . . jn and jk ∈ {0,x,y,z}, where
σ0 = 1 and the other sigmas denote the appropriate Pauli matrices. The support of ±σ⊗J , supp(±σ⊗J),
is S = {k | jk 6= 0} ⊆ {1,2, . . . ,n}. Label the subgroup PS = {g ∈ Pn | supp(g) ⊆ S}. Also set GS =

G∩PS.

Henceforth, suppose G is fixed with nontrivial code space, so that by Lemma 1, g ∈ G demands
−g 6∈G. This creates a map from the row space of A to G. Indeed, since rows of A represent generators
of G, the fact that the row vector (b1b2 · · ·bnc1c2 . . .cn) lies within the row space implies ±(σb1

x ⊗σb2
x ⊗

·· ·⊗σbn
x )(σc1

z ⊗σc2
z ⊗·· ·⊗σcn

z ) is an element of G. Furthermore, although the 2n bitstring does not
make clear the choice of sign, Lemma 1 asserts that it is unique. Now recall that AS is the matrix A
except that columns corresponding to S ⊆ {1,2, . . . ,n} have been replaced with zero columns. As a
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consequence of the unique sign choice of Lemma 1, any 2n-bit string in the rowspace supported on
positions corresponding to S likewise determines an element of GS. For S the complement of A, such
an element of the rowspace might be constructed by creating a left-null vector of AS .

The following algorithm computes η(G). Note the rank of the stabilizer check matrix of a sub-
group is equal to that for a group if and only if the subgroup is the group. We check this condition for
increasing values of k, by forming the stabilizer check matrix Ak for the subgroup of G generated by
k-local Pauli tensors in G (i.e., the group generated by {g ∈ G|wt(g)≤ k}). Once rank(Ak) = rank(A),
they both generate G, so that value of k is η.

Algorithm: Computing η(G).

for k = 1 : n
Ak ∈ F

0×2n
2 (i.e., an empty matrix);

for S ⊆ {1,2, . . . ,n} with |S| = k
Compute NS, a matrix whose rows span the left-null space of AS .
Compute BS = NSA, the matrix encoding GS.

Set Ak =

(

Ak

BS

)

.

End for.
if rank(Ak) = rank(A)

return η(G) = k
End if.

End for.

3 Gap-Pinching when Approximating Stabilizer Codes

Our two earlier results limit those cases in which a stabilizer code lies within the groundstate of a
Hamiltonian whose k-locality is less than some measure of the locality of the stabilizer group. The
two measures of the group’s locality were δ(G) and η(G), where δ(G) ≤ η(G). Neither of these
results was perturbative. We next present a result which limits those cases in which a stabilizer code is
merely close to the groundstate of a Hamiltonian which is more local than the code. More precisely,
we argue that the groundstate eigenspace of such a Hamiltonian lacks stability, in that the gap between
the lowest two distinct eigenvalues is small when compared to the total energy of the system. Similar
results regarding stabilizer codes for graph states are known [6].

The notation below will be fixed while discussing the perturbative result.

• Let q = dimCC (G), with C (G) the stabilizer code of G. For a graph state, q = 1.

• Defining ν < η(G) and Gν as above, we let r = dimCCν where Cν = C (Gν). Similarly let
C = C (G). Since Gν ⊆ G, also Cν ⊇ C and thus r ≥ q.

• Consider H a ν-local Hamiltonian with ΠH the projection onto its groundstate eigenspace.

• ΠG and ΠGν are projections onto the appropriate stabilizer code spaces.

• The trace norm ‖∗‖tr on Hermitian matrices is that norm induced by the inner product H1•H2 =

Trace(H1H†
2 ) = Trace(H1H2).



S.S. Bullock and D.P. O’Leary 495

In addition to the setup, we should note that one way to quantify the distance between the code of G
and the groundstate of H is to compute the trace norm of the difference of the projectors onto each
space.

Theorem 6: Let G ⊆ Pn have a code space of dimension q > 0. Let ν < η(G). Then any traceless ν-
local Hamiltonian H whose groundstate eigenspace is q-dimensional satisfies the following inequality
on the trace norm distance between the projectors ΠG and ΠH onto the code space of G and the
groundstate eigenspace of H respectively.

‖ ΠG −ΠH ‖tr ≥
q

‖~E‖2

(

E0 +E1 +E2 + · · ·+Er−1
r

−E0

)

. (11)

Here, E0 ≤E1 ≤ ·· · ≤E2n−1 is the eigenspectrum of H (with multiplicity) and ‖~E‖2 = Trace(H2)1/2 =

(E2
0 + E2

1 + · · ·+ E2
2n−1)

1/2. Also, r denotes the dimension of the code space of the group Gν ⊆ G
generated by ν-local elements.

Proof: The first step is to check that due to the locality condition on H, we have Trace(ΠGH) =

(q/r)Trace(ΠGνH). Since all elements of G and Gν that are at most ν-local coincide, the following
traces are equal.

Trace
(

H ∑
g∈G

g

)

= Trace
(

H ∑
g∈Gν

g

)

. (12)

The projectors should be normalized by #G and #Gν respectively. If m is the number of rows of a
stabilizer check matrix for G arising from a minimal generating set and mν is similar for Gν, then
#G = 2m and #Gν = 2mν [9]. Furthermore q = 2n/2m and r = 2n/2mν . Thus appropriately normalizing
the above equation produces the desired equality.

Now let Π be any projection onto an r-dimensional space. Since E0 ≤ E1 ≤ ·· · ≤ Er−1 are the r
least eigenvalues of H, we have the inequality

Trace(ΠH) ≥ (E0 +E1 +E2 + · · ·+Er−1). (13)

Recall that the inner product associated to the trace norm has a Schwarz inequality. This is the
final fact required for the following sequence of inequalities.

‖~E‖2‖ΠG −ΠH‖tr = ‖H‖tr‖ΠG −ΠH‖tr
≥ Trace

(

(ΠG −ΠH)H
)

= (q/r)Trace(ΠGν H)−Trace(ΠHH)
≥ (q/r)(E0 +E1 +E2 + · · ·+Er−1)−qE0.

(14)

Appropriate manipulations of the inequality between the first and last expression of the sequence
above produces the result. ¤

Corollary 7: Let the traceless Hamiltonian H and code G satisfy all hypotheses of Theorem 6,
including excessive locality of H as compared to η(G). Label the spectral gap of H as ∆E = Eq −E0,
recalling E0 = E1 = E2 = · · · = Eq−1. The following estimate holds:

‖ ΠG −ΠH ‖tr ≥ q ‖~E‖−2
2
(

(r−q)/r
)

∆E. (15)

In particular, if ε > ‖ ΠG −ΠH ‖tr and r and q are treated as constants, then the gap is pinched in the
sense that ∆E ∈ O(ε‖~E‖2

2).
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Proof: Notice that for j ≥ q, E j ≥ E0 +∆E. The term inside the parentheses of Theorem 6 is bounded
below by a multiple of this gap (Cf. [6]):

(

E0+E1+E2+···+Er−1
r

)

−E0 ≥
(

(q/r)E0 +((r−q)/r)Eq
)

−E0

=
(

(q− r)/r
)

E0 +
(

(r−q)/r
)

Eq

=
(

(r−q)/r
)

∆E.

(16)

¤

The pinching bound of Corollary 7 is weak in the following sense. (Cf. [6].) Effective Hamiltoni-
ans are used to approximate lower energy eigenstates while ignoring higher energy eigenstates. Thus
the large total energy ‖~E‖2

2 is not a concern. On the other hand, Corollary 7 also argues that the higher
energy eigenstates can not be (entirely) irrelevant to such approximations.

4 Application to XZ-Split Codes

This section considers the computation of the quantities δ(G) and η(G) used in the Hamiltonian
locality bounds in the special case that the code is XZ-split. This is a broad class of codes that
includes CSS codes and also topological orders on surfaces.
Definition: Let PX ,n = 〈{σx, j}

n
j=1 ∪{−σx, j}

n
j=1〉 be the subgroup of Pn containing Pauli tensors with

only Pauli X factors, and let PZ,n be similar. A stabilizer group G is XZ-split if G = 〈{g j}
m
j=1〉 where

for each j either g j ∈ PX ,n or g j ∈ PZ,n. Perhaps upon reordering, this produces a block-diagonal
stabilizer check matrix with blocks AX and AZ defined by the following equation:

A =

(

AX 0
0 AZ

)

. (17)

We also label GX = PX ,n ∩G and GZ = PZ,n ∩G.
Next, we study δ(G) and η(G) for XZ-split codes.

Theorem 8: Suppose that G has nonzero code space. Label GX GZ = {gxgz | gx ∈ GX ,gz ∈ GZ}.

• (G is XZ-split) ⇐⇒ (G = GX GZ).

• If G is XZ-split, then δ(G) = min {δ(GX ),δ(GZ)}.

• If G is XZ-split, then η(G) = max {η(GX ),η(GZ)}.

Proof: For the first item, since GX ⊆ G and GZ ⊆ G, we must have GX GZ = {gxgz ; gx ∈ GX ,gz ∈ GZ}

within G. For the opposite containment, the generators guaranteed by the XZ-split condition show
that G = 〈GX GZ〉. On the other hand, finite products of elements in GX GZ lie in GX GZ , since G is
commutative.

For the second item, the minimum is greater than δ(G) since GX ⊆ G and GZ ⊆ G imply δ(GX ) ≤

δ(G) and δ(GZ)≤ δ(G). On the other hand, let g∈G. Then g = gxgz and wt(g)≥max{wt(gx),wt(gz)}

since any qubit on which either gx or gz has a nontrivial tensor factor will have a nontrivial factor in
the product for g.

For the last item, let GX = 〈{gx, j}
mx
j=1〉 and GZ = 〈{gz, j}

mz
j=1〉 be generating sets chosen to be at

most η(GX ) local and η(GZ) local. Since G = GX GZ , we have G = 〈{gx, j}
mx
j=1 ∪{gz, j}

mz
j=1〉. Thus

η(G) ≤ max{η(Gx),η(Gz)}.



S.S. Bullock and D.P. O’Leary 497

Fig. 1. A counterexample to the conjecture that δ(G) is the minimum of the valences of the one-skeleta of the
cellulation Γ and the dual cellulation Γ∗. Cellulate (partition) the surface of a sphere as shown on the left, where
a schematic of the upper hemisphere is shown on the right. Then δ(G) = 2, where the minimal boundary is the
two-edge circle around the equator of the sphere. Yet the minimum of the valences is three.

On the other hand, assume by way of contradiction that G = 〈{g j}
m
j=1〉 where every g j has

weight strictly less than max {η(GX ),η(GZ)}. Writing g j = g j,xg j,z produces generating sets GX =

〈{g j,x}
m
j=1〉 and GZ = 〈{g j,z}

m
j=1〉, each of which has weight less than the maximum. Contradiction.

Thus we have also shown η(G) ≥ max{η(Gx),η(Gz)}. ¤

Next we apply this result to Calderbank-Shor-Steane codes and to topological orders from surface
cellulations.

4.1 Calderbank-Shor-Steane codes

All Calderbank-Shor-Steane codes [9, §10.4.2] [11, 12] are XZ-split. Indeed, suppose CSS(C1,C2) is
the code arising from classical codes C1 and C2, where C1 corrects bit-flips and C2 phase-flips. Then
for A1 the parity check matrix of C1 and A2 the parity check matrix of the dual code C⊥

2 , we have
a stabilizer check matrix A = diag(A1,A2) for CSS(C1,C2). The converse only holds in a technical
sensea.

4.2 Topological orders from surface cellulations

This section considers δ(G) and η(G) in the case in which the stabilizer code G results from the
cellulation of a surface without boundary [4, 10]. The topological order case requires further attention,
in that answers should be computable using only the cellulation of the surface. The codes depend on
the cellulation rather than the topology (i.e. genus) of the surface, and δ(G) and η(G) also depend on
this cellulation.

We will not review the theory of cellulations or their duals, except to note that the dual cellulation
associates a vertex to each face of the original and a face to each vertex (E.g. [13]). The relevant
definitions will imply that δ(G) is the number of edges in the smallest bounding chain in either the
cellulation or its dual. We also provide a counterexample to the conjecture that δ(G) is the minimum
of the valences of the one-skeleton and dual one-skeleton, although this is frequently the case in
examples.
a Any XZ-split code might be associated to CSS(C1,C2) for some classical codes C1 and C2, yet the ratio of logical to encoding
bits of these classical codes would be arbitrary. Thus we retain XZ-split as a separate concept.
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Let S be an oriented surface with no boundary, and let Γ be a two-complex which is a cellulation
of S. Let V (Γ), E(Γ), and F (Γ) denote the vertices, edges, and faces of Γ respectively. We also
suppose a dual cellulation Γ∗ with bijections V (Γ∗) ↔ F (Γ), E(Γ∗) ↔ E(Γ), and F (Γ∗) ↔ V (Γ)

(E.g. [13]).
Consider the quantum system which associates a qubit to each edge of Γ (or Γ∗). A well known

topologically ordered stabilizer code has a code space whose dimension is dimF2H1(Γ,F2), where the
latter is a cellular homology with bit coefficients [4, 10]. To review this briefly, the generators are
indexed by the unions of the faces and vertices of Γ. Let q(e) denote the qubit of an edge e ∈ E(Γ)

and σx,q denote the Pauli tensor which is an identity except for a single σx factor on qubit q. Then
the generator associated to a face f ∈ F is σ⊗ f

x = ∏e∈∂ f σx,q(e). The generator associated to a vertex
v ∈ V (Γ) may be defined in terms of the dual face v∗ ∈ F (Γ∗). Namely, let σ⊗v

z = ∏e∗∈∂v∗ σz,q(e), or
equivalently tensor over all qubits on edges incident on the vertex. The stabilizer code is then G =

〈{σ⊗ f
x } f∈F (Γ)∪{σ⊗v

z }v∈V (Γ)〉. Such a code is XZ-split. As an aside, the associated Hamiltonian H =

−∑ f∈F (Γ) σ⊗ f
x −∑v∈V (Γ) σ⊗v

z is of interest independent of its homologically structured degenerate
groundstate, in that the excitations out of this groundstate are abelian anyons with Z/2Z gauge [3].

Before considering the topological order as an XZ-split stabilizer code, we set the following nota-
tion for homological boundary operators.

∂2 : span
F2 F (Γ) → span

F2 E(Γ),
∂∗2 : span

F2 F (Γ∗) → span
F2 E(Γ∗).

(18)

Consider matrices DX and DZ for ∂2 and ∂∗2 respectively. Consider a column of DX . It contains entries
of 1 ∈ F2 at precisely those positions corresponding to edges e ∈ E such that e ∈ ∂2 f for f ∈ F the
column label. A similar comment applies to DZ , so that the stabilizer check matrix of G has this form:

A =

(

DT
X 0

0 DT
Z

)

. (19)

Here, the superscript T denotes transpose. Also, we list face operators before vertex operators when
forming the matrix, else an antidiagonal matrix results. Thus, in the special case of a topological
order, it is possible to compute δ(G) and η(G) using only homological inputs, namely the matrices of
the appropriate boundary maps in the cellulation and cocellulation.

However, δ(G) and η(G) clearly depend on the cellulation rather than the topology of the under-
lying surface. To emphasize that point, note that for g ∈ Gx we may associate |supp(g)| to the size of
a boundary in spanF2 E(Γ), while a similar comment applies to gz and spanF2 E(Γ∗). Hence, δ(G) is
the minimum of the smallest number of edges required to support a boundary in either Γ or Γ∗. Since
one may always subdivide an edge, this is not a topological invariant.

It is tempting given the last paragraph to conjecture that δ(G) is the minimum of the valences of
the one-skeleta of Γ and Γ∗, i.e. of the graphs which result by ignoring faces (two-cells) in either. In
fact, this is incorrect. Figure 1 provides a counterexample, in that the boundary with the least number
of edges in Γ does not bound a single face.

5 Discussion and Conclusions

Since the locality of a Hermitian matrix might serve as a crude figure-of-merit for its experimental
difficulty, theorists hope to find interactions which are both highly local and have robust stabilizer
quantum codes as their groundstate eigenspaces (E.g. [14]). This manuscript constrains such efforts
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by arguing that excessively local Hamiltonians with the desired groundstate either do not exist or else
have undesirable properties. The three main results argue that (i) no Hamiltonian may be more local
than the minimum locality of any element of the corresponding stabilizer group, (ii) Hamiltonians
which do not allow for more nonlocal Pauli tensors in the stabilizer group must also be `-equivalent
Hamiltonians for many other stabilizer groups, and (iii) approximating a stabilizer code using an
excessively local Hamiltonian leads to gap pinching. Nonetheless, the technical statements given here
might lead to new examples.

Speculating in a slightly broader context, there are two ways one might attempt to use k-local
Hamiltonians to simulate ` > k-local systems of interest. One might (a) exploit crosstalk mediated
by an ancilla or (b) pulse noncommuting Hamiltonians (absent ancilla). Our results do not account
for clever use of ancilla. Indeed, ancillae have been used successfully to construct Hamiltonians
with specified groundstate [2, 15, 16]. On the other hand, our results argue that Hamiltonians whose
addends are noncommuting Pauli tensors must nonetheless obey certain locality constraints on their
groundspaces. Thus, the ancilla-based approach might be preferable.
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