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Abstract The variable projection algorithm of Golub and Pereyra (1973) has
proven to be quite valuable in the solution of nonlinear least squares problems
in which a substantial number of the parameters are linear. Its advantages
are efficiency and, more importantly, a better likelihood of finding a global
minimizer rather than a local one. The purpose of our work is to provide
a more robust implementation of this algorithm, include constraints on the
parameters, more clearly identify key ingredients so that improvements can
be made, compute the Jacobian matrix more accurately, and make future
implementations in other languages easy.
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1 Introduction

Fitting a model to measured data provides the most basic tool in science and
engineering, essential to discovering and analyzing patterns and causality. Soft-
ware that accomplishes this task should be both efficient and robust, providing
reliable estimates of the model’s parameters in a reasonable amount of time.

Yet data fitting problems are often quite challenging numerically. In fitting
exponential models, for example, small changes in the data can make large
changes in the optimal parameters. Equally serious is the fact that data fitting
problems are most often nonconvex, so a set of parameters can be optimal
among nearby sets of parameters without being globally optimal, and software
can be fooled into accepting a suboptimal solution.

We focus in this work on fitting nonlinear models in a (weighted) least-
squares sense. Most nonlinear models have some parameters – perhaps quite a
few – that appear linearly. For example, in fitting a sum of two exponentials,
the model for the data observations y(t1), . . . , y(tm) might be

y(t) ≈ c1e
α1t + c2e

α2t ≡ η(α, c, t). (1)

The parameters c = [c1, c2]T appear linearly, so for every choice of nonlinear
parameters α = [α1, α2]T , optimal values for c can be found by solving a
linear least-squares problem, a rather simple computational task. How can this
be used to our advantage? Consider the nonlinear least-squares problem

min
α,c

‖y− η(α, c)‖22, (2)

where the ith component of the vector y is the observed value y(ti), and the
ith component of the vector η is the model prediction at ti (i = 1, . . . ,m).
Then the solution to (2) is the same as the solution to

min
α
‖y− η(α, c(α))‖22, (3)

where η(α, c(α)) denotes the model predictions when, given α, we determine
the parameter values c optimally.

This simple observation was made and exploited in 1971 by Lawton and
Sylvestre [16], who credit Norman E. Dahl for the idea, in an unpublished 1965
manuscript. In 1973 Gene Golub and Victor Pereyra [12] made these same
observations, but whereas Lawton and Sylvestre were satisfied with approxi-
mating derivatives for (3) using finite differences, Golub and Pereyra showed
how these could be computed exactly from the derivatives of (2). This was an
important step for efficiency and reliability of the method. They called (2) a
separable least squares problem and proposed solving it using the variable pro-
jection algorithm (3). In 1974, Fred Krogh [15] discussed some implementation
issues and noted that this approach solved problems for which the standard
nonlinear least squares algorithm failed. The original Fortran implementa-
tion of the variable projection algorithm [11] was modified by John Bolstad [7],
including changes to improve memory management, use ideas of Linda Kauf-
man [14] to speed up the computation of derivatives, allow weights on the
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observations, and compute the covariance matrix. Bolstad’s 1977 varpro.f
has been very widely used, but, inevitably, it is showing its age. In particular,
the thousand-line program relies on 1970s technology for overcoming the lim-
itations of static storage allocation, and it uses an outdated implementation
of a minimization algorithm.

A beautiful implementation of the variable projection algorithm was writ-
ten for the Port Library in 1977 (revised in 1980, 1981, 1983, 1984) by Linda
Kaufman and David Gay, built on Gay’s high-quality nonlinear least squares
solver. The code NSGB is well designed and runs efficiently by sacrificing easily
readability. The algorithm, which allows bounds on the variables but does not
allow for weighting, is spread over more than 50 files. The documentation is
quite complete, but it is necessary to read many documents. As in our imple-
mentation, the underlying nonlinear least squares solver is modular and could
be easily replaced if a better version became available. As in varpro.f, all
integer auxiliary storage is packed into a single one-dimensional array, and
similarly for floating point values. This was a necessary design decision for
early versions of Fortran but makes it difficult to extract information about
the solution. In contrast, our implementation sacrifices efficiency by using an
interpreted language, but its brevity (about 160 executable lines) makes it an
easily understood model for translation to other languages, and it provides
statistical diagnostics (e.g., the covariance matrix) that are unavailable in the
Netlib version of NSGB.

The history and wide range of applications of variable projection are sum-
marized in [13] and more recently in [20]. The beauty of variable projection is
that it reduces the number of parameters in the minimization problem, thus
improving efficiency and possibly reducing the number of local minimizers.
Convergence to the globally optimal solution is therefore more likely. Imple-
mentation of the idea is rather complicated, though, since the Jacobian matrix
for (3) must be derived from that for (2). Because of this, many recent ap-
plications of the variable projection idea rely on numerical computation of
derivatives [9, Chap. 3], [18]. This can cause inefficiency and unreliability.

There are two implementations of variable projection in the statistical com-
puting language R: one by the developers of the language as part of their
nls.R code [21], and one by Mullen and van Stokkum in their TIMP package
[17] to allow more efficient computations with multiple data sets. Both imple-
mentations rely on finite difference approximations for the Jacobian matrix.
Recently, Borges [8] developed and experimented with a full-Newton variant
of variable projection, constructing the complete Hessian matrix rather than
just using the Jacobian of the residual vector, but his implementation has not
been published. The purpose of our work is to provide a 21st century sample
implementation of the variable projection method (in Matlab) that allows
bounds on the parameters, provides statistical diagnostics, more clearly identi-
fies key ingredients so that improvements can be made, computes the Jacobian
matrix accurately in code that is easy to understand, and makes future imple-
mentations in other languages easy. Our Matlab implementation varpro.m
contains over 400 lines of comments for fewer than 160 lines of code.
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2 The Structure of the Algorithm

Suppose we have measured data y(t) at t = t1, . . . , tm, and we want to deter-
mine a model so that the predicted values closely match the measured values.

A general nonlinear model can be written as

η(α, c, t) =
n∑

j=1

cjΦj(α, t), (4)

where the functions Φj are the basis functions for the model. In the special
case considered in (1),

Φ1(α, t) = eα1t, Φ2(α, t) = eα2t.

It is sometimes desirable to have one additional term in (4), Φn+1(α, t), with-
out a corresponding c parameter. Our algorithm allows for this, but for sim-
plicity in discussion we will ignore this term.

For physical reasons, we might have constraints on various parameters
in the model; for example, we might require some of the coefficients to be
nonnegative. We therefore require that

α = [α1, . . . , αq]T ∈ Sα ⊆ Rq

c = [c1, . . . , cn]T ∈ Sc ⊆ Rn,

where Sα and Sc are given domains.
Our full problem is then

min
α∈Sα,c∈Sc

‖W(y− η(α, c))‖22, (5)

where, for i = 1, . . . ,m, the ith component of the vector y is the observed value
y(ti), and the ith component of the vector η is the model prediction at ti. The
diagonal matrix W contains weights, chosen to make the standard deviation
of the errors in the weighted observations wjy(tj) approximately equal.1

Since linear least squares problems are rather easy to solve, it is possible,
for any choice of parameters α, to determine the corresponding optimal pa-
rameters c(α). We observe that the solution to (5) is the same as the solution
to

min
α∈Sα

‖W(y− η(α, c(α)))‖22, (6)

where, given a fixed value of α, the variables c(α) solve the (constrained)
linear least squares problem

min
c∈Sc

‖W(y− η(α, c))‖22.

1 More general matrices W can be used to simplify the correlation structure in the errors,
but in our work we assume that the matrix is diagonal.
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This linear problem takes the form

min
c∈Sc

‖W(y−Φc))‖22, (7)

where the (i, k) element of the m× n matrix Φ is Φk(α, ti). This is the basic
idea of Golub and Pereyra: solve (5) by solving the problem (6) obtained by
variable projection.

Our general approach is this:

Step 1: Use a high-quality (constrained) nonlinear least-squares algorithm to
solve (6).

1a: Whenever a function evaluation (and possibly a Jacobian matrix)
is required for (6), solve (7), using a high-quality linear least-squares algo-
rithm.

1b: Since the most reliable nonlinear least-squares algorithms require
the Jacobian matrix of partial derivatives with respect to the α variables,
derive these from the Jacobian matrix for the nonlinear parameters in the
full problem (5), if the user can supply this information.

1c: If Jacobian information is supplied, require only the non-zero partial
derivatives from the Jacobian for the full problem.

Step 2: Compute statistical diagnostics from the solution in order to help the
user validate the computed parameters.

We discuss each of these ingredients in turn.

2.1 Solving Constrained Nonlinear Least-Squares Problems

Inside the original varpro.f program there was an implementation of both
a Gauss-Newton algorithm and a Levenberg-Marquardt algorithm for solving
(6). Neither algorithm included a line search or constraints on the range of
values of α, and this contributed to stalling on difficult problems.

We advocate using the best available solver. Therefore, we believe that
the solver should be external to the variable projection program so that new
software can easily be swapped in. In our Matlab implementation, we chose
to use Mathworks’ lsqnonlin.m, which uses either a trust-region-reflective
or a Levenberg-Marquardt algorithm. Our program functions as a wrapper to
lsqnonlin.m, so user-specified options to this routine are passed through, and
upper and lower bounds on α can be specified.

If Matlab’s Optimization Toolbox is not available, then another solver
could be used in place of lsqnonlin.m; for example, LMFnlsq.m [2] or LMFsolve.m
[3].

2.2 Solving Constrained Linear Least-Squares Problems

The formulation of (5) is well-defined even if there are constraints on the linear
parameters c, and this fact was exploited by Sima and Van Huffel [24]. For
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least-squares problems with linear constraints or upper and lower bounds, a va-
riety of algorithms are currently available [5, Sec. 1.5, 2.2, 2.3, 4.4, etc.], most
commonly feasible-direction/active-set methods and interior-point methods;
see, for example, Matlab’s lsqlin. However, having an active constraint on
one of the linear parameters in (7) at the optimal solution introduces compli-
cations into the Jacobian matrix for the nonlinear parameters in (6). To avoid
such complications, our sample implementation does not allow constraints in
the linear problem. Any variables that require constraints should be included
in α, not in c, so that the linear least-squares problem (7) is unconstrained
(i.e., Sc = Rn)

For unconstrained linear least-squares problems, it is well established that
there are two good algorithmic options for dense problems: the QR factoriza-
tion is fast and reliable for well-conditioned problems, while the SVD (singular
value decomposition) is advised for ill-conditioned problems.2 Intermediate in
work between these algorithms is the pivoted-QR factorization, which allows
a modest degree of ill-conditioning. See [6, Chap. 2] for a discussion of these
options. For large, sparse problems, a Krylov-subspace method such as lsqr
[19] is appropriate.

In our Matlab implementation, we used a truncated SVD algorithm,
which, for ill-conditioned problems, computes a minimum-norm solution to
the linear least-squares problem, after setting to zero the singular values less
than m εmach times the largest singular value.3 In theory, this is never neces-
sary for a “good” model, since the basis functions should be sufficiently linearly
independent that the model matrix Φ is not this ill-conditioned, ensuring that
the linear parameters are well determined. In practice, some models do have
basis functions that are nearly colinear (i.e., almost redundant), which means
that the linear parameters are not well determined even though the model
predictions might be. Sums of exponentials are particularly prone to this dif-
ficulty.

2.3 Computing the Jacobian Matrix

When the nonlinear least-squares solver requires an evaluation of the function
‖y−η(α, c(α))‖22 in (6), we solve the linear least-squares problem. At the same
time, the nonlinear solver might require some derivative information, obtained
through evaluation of the Jacobian matrix J for the function η(α, c(α)). This
matrix has entries

Jik =
∂η(α, c(α), ti)

∂αk
, i = 1, . . . ,m, k = 1, . . . , q.

Assuming that the user provides a way to evaluate the derivatives of Φ with
respect to the nonlinear parameters, we can compute this Jacobian J as de-
scribed in [12] using matrices and tensors. Golub and Pereyra [13, p. R5] break

2 Use of the normal equations gives a less reliable solution, and we do not consider it.
3 εmach is the gap between 1 and the next larger floating-point number.
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these formulas down by columns, and this specifies how they are implemented.
To compute J, we need several matrices.

First, we need user-supplied derivative information. Since, in most cases,
each basis function Φk depends on a small subset4 of the parameters α, it is
customary to require the user to supply only the non-zero partial derivatives
of each of the Φj . For simplicity in this discussion, though, we will let Dk

(k = 1, . . . , q) denote W times the m × n matrix of partial derivatives of
Φ = [Φ1(t), . . . ,Φn(t)] with respect to the single parameter αk. This means
that the (i, j) element of Dk is wi ∂Φj/∂αk, evaluated at ti. We postpone
discussion of efficient representation of Dk to the next section.

Second, we need the matrix from the current linear least-squares problem:

Φw = WΦ.

From solving the linear least-squares problem we have a decomposition of Φw

as

Φw = UΣV T ,

where the columns of the (m × rank(Φw)) matrix U are orthonormal, as are
those of the (rank(Φw)× rank(Φw)) matrix V, and Σ is diagonal.5 All of the
quantities relevant to the solution can be expressed in terms of this factoriza-
tion:

– The pseudo-inverse of Φw is Φ†
w = VΣ−1UT .

– The solution to the linear least-squares problem6 is c = Φ†
wWy.

– The projection onto the orthogonal complement of the range of Φw is P =
I−UU T , with P T = P.

– The weighted residual rw = W(y−Φc) = Py is the orthogonal projection
of y onto the orthogonal complement of the range of Φw.

Given these matrices, we compute the Jacobian in two pieces, as described
in [13, p. R5], derived using the product rule for differentiation:

J = −(A + B). (8)

The kth column of A is

ak = PDkΦ†
wy

= PDkc

= Dkc−U(U T (Dkc)), k = 1, . . . , q.

4 For example, in (4), Φ1(t) = eα1t depends only on α1, and Φ2(t) = eα2t depends only
on α2.

5 The decomposition diagnoses any redundancy in the basis functions, so the user need
not be concerned about it.

6 This solution is unique if rank(Φw) = n; otherwise we specify the minimum-norm solu-
tion. Again, for a “good” model, Φw should have rank n, but we allow for rank deficiencies.
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The kth column of B is

bk = (PDkΦ†
w)Ty,

= (Φ†
w)TDT

k P Ty

= (Φ†
w)TDT

k rw

= U(Σ−1(V T (DT
k rw))), k = 1, . . . , q.

Note that we have grouped the operations so that a column can be computed
using only matrix-vector products, not matrix-matrix products, and the only
inverse involves a diagonal matrix. In order to speed the computation of B,
it might be advantageous to compute DT

k rw for several values of k and then
apply the pseudo-inverse to the entire batch at once. Similar savings can be
made in the computation of A.

Linda Kaufman [14] observed that the matrix B is negligible whenever
the residual rw is small, and we certainly expect this to be true for a good
model. Therefore, because B is somewhat more expensive to compute than
A, Bolstad’s Fortran implementation [7] omits this term from the Jacobian
computation, and good computational experience with this algorithm variant
has been reported (e.g., [18]). This omission, however, is relatively more seri-
ous when we are far from the optimal value of the parameters, and this can
sometimes cause the nonlinear least squares algorithm to stall unnecessarily.
Because of this, we advise including B in all computations of the Jacobian.

2.4 Representation of the Jacobian Information for the Full Problem

As mentioned in the previous section, we need q matrices Dk containing the
partial derivative information.

To reduce this burden on the user, and to make computation more efficient,
it is better to ask for only the nonzero columns. For example, if there are p
nonzero columns, we might use an m× p array dPhi to store them and a 2× p
array Ind to index them, using the convention that column ` of dPhi contains
the partial derivative of Φj with respect to αi, evaluated at the current value
of α, where j = Ind(1,`) and i = Ind(2,`). For example, if Φ1 is a function
of α2 and α3, and Φ2 is a function of α1 and α2, then Ind could be defined as[

1 1 2 2
2 3 1 2

]
.

In this case, the p = 4 columns of dPhi contain, in order, ∂ Φ1/∂ α2, ∂ Φ1/∂ α3,
∂ Φ2/∂ α1, and ∂ Φ2/∂ α2.

2.5 Statistical Diagnostics

Bolstad’s Fortran implementation of the variable projection algorithm com-
putes a covariance matrix for the parameters and an estimate of the variance
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of the observations. The wrapper program invar.f of Rall and Funderlic [22]
and the variant invar2.f by Wolfe, Rust, Dunn, and Brown [25] compute ad-
ditional statistical information, and we advocate providing this more complete
set of options, derived from their programs:

– The weighted residual mean square, often called the sigma of the regression
or the regression standard error, is the weighted residual norm (the square
root of the weighted sum squared residual (SSR), which measures variance
about the model fit) divided by the square root of the number of degrees
of freedom:

σ =
‖rw‖√

m− n− q
.

– The estimate of the standard deviation σ is the square-root of the weighted
residual mean square.

– The (n+q)×(n+q) matrix Cv is the estimated variance/covariance matrix
for the parameters. The linear parameters c are ordered first, followed by
the nonlinear parameters α, and the formula is

Cv = σ2(H TH)−1,

where H contains the weighted partial derivatives with respect to the linear
and nonlinear parameters:

H = W
[
Φ, J

]
.

We use the R factor from a pivoted QR factorization of H to compute Cv

efficiently and accurately.
– The estimated correlation matrix for the parameters is formed by dividing

each element cij in the variance/covariance matrix by √ciicjj .
– The estimate of the standard deviation for parameter i is

√
cii.

– The t-ratio for each parameter is equal to the parameter estimate divided
by its estimated standard deviation.

– The coefficient of determination for the fit, also called the square of the
multiple correlation coefficient or simply R2, is computed using the SSR
and the CTSS:

R2 = 1− SSR

CTSS
= 1− ‖rw‖2

‖W(y− ȳ)‖2
.

The corrected total sum of squares CTSS measures variance about the
average value for the measurements, which is

ȳ =
eTWy

eTWe
e ,

where e is the vector of all ones. A value of 0.95 for R2, for example,
indicates that 95% of the CTTS is accounted for by the fit.
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– The kth component of the standardized weighted residual is the kth com-
ponent of the weighted residual divided by the estimate of its standard de-
viation [4, pp. 19–20].7 The standard deviation is estimated by σ

√
1− hk,

where hk is the kth main diagonal element of the covariance matrix for
the weighted residual. This is the same as the corresponding element in
H(H TH)−1H T . If Q is a pivoted QR factor of H, then this is easily com-
puted as the kth main diagonal element of QQ T

3 Experiments

We validated the code varpro.m on many testproblems, comparing with results
obtained from the Fortran version. For example, on the solar cell power
output analysis problem presented by Krogh [15], our results were similar
to his; using his first starting point, varpro.m converged within 4 function
evaluations to the correct weighted residual norm, while lsqnonlin.m failed
to converge in 100 function evaluations.8

Next we report on the effects of the Jacobian approximation and on the
reliability of varpro.m.

3.1 Effects of Approximating the Jacobian by A

We tested the effects of neglecting B in (8), the equation for the Jacobian
matrix, on the simple problem

η(t) = c1 cos(−α1t) + c2 cos(−α2t) + c3 cos(−α3t) + c4 cos(−α4t),

with true parameters c = [1, 2, 3, 4]T and α = [3,−4, 6, 1]T . We supplied data
at t = 0.00, 0.05, · · · , 1.00. The results are shown in Table 1. In the table, “fe-
val” denotes the cumulative number of function evaluations, with f(x) denot-
ing the value of the weighted residual norm-squared from (3). The optimality
measure, labeled “opt”, is the infinity norm of the gradient of the minimization
function. We see that although ‖B‖2/‖J‖2 is never bigger than 2%, neglecting
B increases the number of iterations from 3 to 7 and the number of function
evaluations from 8 to 12. Note that varpro.m stalls three times when B is
neglected and only once when it is included9 but ultimately converges in both
cases. Therefore, neglecting the B term in the Jacobian for this problem causes
additional expense in the solution process. Gay and Kaufman [10] found sim-
ilar evidence in 1991 but reached a different conclusion; they reasoned that
the additional expense of computing B overwhelmed the cost of the additional
iterations. We believe that, since then, two factors have tipped the balance

7 This definition differs from that used in [25].
8 We believe that the true values of the linear parameters should be [7.4334e-08, 2.0094e-

11, 8.0493e-07] rather than the [2.0094e-11, 7.4334e-08, 3.1559e-05] reported by Krogh.
9 We show 2 digits in the table, but the output indicates that to 6-digits, no progress is

made during the stalls.
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Table 1 Results of neglecting B in the Jacobian matrix when fitting a sum of cosine
functions

Neglecting B Including B

Iter feval f(x) opt ‖B‖/‖J‖ f(x) opt ‖B‖/‖J‖

0 5 5.0e-5 4.2e-4 1.8e-2 5.0e-5 4.2e-4 1.4e-3
1 6 5.0e-5 4.2e-4 3.8e-3 1.0e-6 6.6e-5 1.3e-2
2 7 1.1e-5 2.8e-4 8.7e-4 1.0e-6 6.6e-5 5.9e-5
3 8 2.1e-7 1.5e-5 4.2e-2 6.9e-8 8.2e-7 5.9e-5
4 9 2.1e-7 1.5e-5 6.5e-4
5 10 8.6e-8 5.1e-6 2.2e-3
6 11 8.6e-8 5.1e-6 1.6e-4
7 12 4.1e-8 1.1e-6 1.6e-4

in the other direction. First, the efficiency of matrix operations on modern
computer architectures often greatly exceeds that of function evaluations, and
second, evaluating functions of practical interest often requires a simulation
whose cost far outweighs the cost of forming B regardless of architecture; see,
for example, our next example.

3.2 Fitting a Supernova Light Curve

Rust, O’Leary, and Mullen [23] used the Fortran version varpro.f to fit the
parameters in a differential equation to light curve data measured after the
explosions of several supernovae. In this example, we use just the blue passband
data for one supernova, SN1991T. In our model, the light is produced from
radioactive decay of nickel (with relative abundance N1(t)) to cobalt (N2(t))
to iron (N3(t)). We model the explosion by a Weibull pulse

W (t;α1, α2, α3) =
α2

α3

(
t− α1

α3

)(α2−1)

exp
[
−

(
t− α1

α3

)α2
]

,

where α1 is the time of the explosion, α2 is a shape parameter, and α3 is a
scale parameter. The decay reactions are

dN1
dt = W (t;α1, α2, α3)− 1

8.764 α4
N1 , N1(α1) = 0 ,

dN2
dt = 1

8.764 α4
N1 − 1

111.42 α4
N2 , N2(α1) = 0 ,

dN3
dt = 1

111.42 α4
N2 , N3(α1) = 0 .

The observed light is modeled as

η(α, c, t) = c1Φ1(t;α) + c2Φ2(t;α) .

In this model, c1 and c2 are parameters and

Φ1(t;α) =
1

8.764 α4
N1(t) , Φ2(t;α) =

1
111.42 α4

N2(t) , (9)
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Fig. 1 The data fit for the supernova light curve problem. The time axis is measured in
Julian days, shifted by 2,440,000, and the vertical axis is the magnitude of the light emission.

where Φ1 and Φ2 are the relative contributions to the total luminosity by the
decays of nickel and cobalt, respectively. We determine the four (nonlinear) α
parameters and the two linear parameters c1 and c2 to fit the measured data.
The first data observation is at time 16.99 days, and the optimal solution is
(to 1 decimal digit) α = [5.3, 2.4, 19.5, 0.7], c = [16.8, 5.6]. The weights in W
were set to the inverses of the observed values.10

The system of three differential equations above is augmented by eight
more equations, tracking over time the partial derivatives of Nj with respect
to αk, for j = 1, 2 and k = 1, 2, 3, 4. This gives us the information necessary to
compute the Jacobian matrix. Integration is done using Matlab’s ode23s.m.
We used default tolerances11 for lsqnonlin.m, varpro.m, and ode23s.m, and
a maximum of 100 Newton iterations. When convergent, this produced 4 digits
of accuracy in α and c. The resulting fit to the data is shown in Figure 1, and
statistical diagnostics for the residual are shown in Figure 2.

First we used 1000 different starting points, choosing α1 by uniform sam-
pling from the interval [−2.9, 7.1] (which is ±5 around the point where the

10 This weighting is widely used (but seldom justified) when the data arises from counts.
It seems appropriate when the dominant source of error is conversion of observations to
numbers with a fixed number of significant digits, since the standard deviation of the error
is then proportional to the observation. Other applications of this weighting are given in [1].
11 varpro.m and lsqnonlin.m stop if the change in the parameters is less than 10−6 or if

the change in the weighted sum of squared residuals is less than 10−6 times (1 plus the old
value).
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Fig. 2 Statistical diagnostics for the supernova light curve problem. The plots on the left
show the standardized residuals, with the vertical scale corresponding to standard deviations
from the mean. The plots on the right validate the use of least squares as a minimization
function for this problem. The upper right plot shows the difference between the distribution
of residuals and a normal distribution, and the deviation of the bottom plot from a straight
line through 0 with slope 1 measures the deviation of the residuals from normality.

Table 2 Results of lsqnonlin.m and varpro.m on the supernova problem, difficult starting
points.

lsqnonlin.m varpro.m

Convergent trials:
# of convergent trials 263 345
Average runtime (seconds) 20.8 3.1
Median runtime (seconds) 1.9 0.9
Average # of fevals 45.8 13.1
Median # of fevals 22.0 12.0

Failed trials:
# nonconvergent trials 632 211
# trials reporting no soln. 105 444

curve extrapolates to zero) and choosing the starting values for the other pa-
rameters uniformly in the interval [0, 100]. These starting points can be very far
from the solution, and both solvers, varpro.m and lsqnonlin.m, have trouble
with them. The results are summarized in Table 2, indicating how often they
achieved a weighted sum of squared residuals less than 0.0729.

For these difficult starting points, the success rate for varpro.m in converg-
ing to the globally optimal solution was 34.5%, vs. 26.3% for lsqnonlin.m.
The median and average run times on successful trials for varpro.m were much
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Table 3 Results of lsqnonlin.m and varpro.m on the supernova problem, easy starting
points.

lsqnonlin.m varpro.m

Convergent trials:
# of convergent trials 1000 1000
Average runtime (seconds) 0.6 0.8
Median runtime (seconds) 0.5 0.6
Average # of fevals 10.6 10.5
Median # of fevals 9.0 9.0

less than for lsqnonlin.m, and it used many fewer function evaluations. In
addition varpro.m was much less likely to stop with a solution other than the
global minimizer (nonconvergent trials); instead, it was more likely to report
failure to converge, which might signal a user to try again with a different
starting point.

We then generated an easier set of starting points by uniform random
sampling in the intervals

α1 ∈ [−2.9, 7.1], α2 ∈ [1.64, 3.68], α3 ∈ [13.3, 30.7], α4 ∈ [0.5, 1.0],

c1 ∈ [10, 20], c2 ∈ [3, 7].

These were chosen as guesses an expert might use after fitting a previous set
of supernova data. Both algorithms were successful on all trials, averaging
about 10.5 function evaluations per trial, with varpro.m having somewhat
more overhead time in its formation of the Jacobian matrix.

4 Conclusions

We have presented a model implementation of the variable projection method
for solving nonlinear least squares problems in which some parameters appear
linearly. Our use of the SVD makes this implementation appropriate for small-
and medium-scale problems; an iterative linear least squares solver could be
used to extend the algorithm to large-scale problems. We have demonstrated
that including the full Jacobian matrix reduces the number of iterations. We
have compared the algorithm to a standard nonlinear least squares package,
demonstrating better reliability on the rather difficult supernova problem. We
demonstrated that the algorithm has many advantages over a full nonlinear
least squares approach for scientific datafitting problems.
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6. Björck, Å.: Numerical Methods for Least Squares Problems. Society for Industrial
Mathematics, Philadelphia, PA (1996)

7. Bolstad, J.: VARPRO computer program (January 1977). Computer Science Depart-
ment, Serra House, Stanford University

8. Borges, C.F.: A full-Newton approach to separable nonlinear least squares problems and
its application to discrete least squares rational approximation. Electronic Trans. on
Numerical Analysis 35, 57–68 (2009)

9. Chung, J.: Numerical approaches for large-scale ill-posed inverse problems. Ph.D. thesis,
Mathematics and Computer Science Department, Emory University, Atlanta, Georgia
(2009)

10. Gay, D.M., Kaufman, L.: Tradeoffs in algorithms for separable nonlinear least squares.
In: Proceedings of the 13th World Congress on Computational and Applied Mathemat-
ics. Criterion Press, Dublin (1991)

11. Golub, G.H., Pereyra, V.: The differentiation of pseudoinverses and nonlinear least
squares problems whose variables separate. Tech. Rep. STAN-CS-72-261, Computer
Science Department, Stanford University, Stanford, CA (1972)

12. Golub, G.H., Pereyra, V.: The differentiation of pseudoinverses and nonlinear least
squares problems whose variables separate. SIAM Journal on Numerical Analysis 10,
413–432 (1973)

13. Golub, G.H., Pereyra, V.: Separable nonlinear least squares: The variable projection
method and its applications. Inverse Problems 19(2), R1–R26 (2003)

14. Kaufman, L.: A variable projection method for solving separable nonlinear least squares
problems. BIT Numerical Mathematics 15(1), 49–57 (1975)

15. Krogh, F.T.: Efficient implementation of a variable projection algorithm for nonlinear
least squares problems. Communications of the ACM 17(3), 167–169 (March 1974)

16. Lawton, W.H., Sylvestre, E.A.: Estimation of linear parameters in nonlinear regression.
Technometrics 13(3), 461–467 (1971)

17. Mullen, K.M., van Stokkum, I.H.M.: TIMP: An R package for modeling multi-way
spectroscopic measurements. Journal of Statistical Software 18(3), 1–46 (2007)

18. Mullen, K.M., Vengris, M., van Stokkum, I.H.M.: Algorithms for separable nonlinear
least squares with application to modelling time-resolved spectra. J. Global Optim-
imization 38, 201–213 (2007). DOI 10.1007/s10898-006-9071-7

19. Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and
sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982). DOI
http://doi.acm.org/10.1145/355984.355989

20. Pereyra, V., Scherer, G. (eds.): Exponential Data Fitting and Its Applications. Bentham
Science Publishers Ltd. (2010)

21. R Development Core Team: R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria (2010). URL http://www.R-
project.org. ISBN 3-900051-07-0

22. Rall, J.E., Funderlic, R.E.: Interactive VARPRO (INVAR), a nonlinear least squares
program. Tech. rep., Oak Ridge National Lab., TN, Report ORNL/CSD-55 (1980)

23. Rust, B.W., O’Leary, D.P., Mullen, K.M.: Modelling type 1a supernova light curves.
In: V. Pereyra, G. Scherer (eds.) Exponential Data Fitting and Its Applications, pp.
169–186. Bentham Science Publishers Ltd. (2010)



16 Dianne P. O’Leary, Bert W. Rust

24. Sima, D.M., Huffel, S.V.: Separable nonlinear least squares fitting with linear bound
constraints and its application in magnetic resonance spectroscopy data quantification.
J. of Computational and Applied Mathematics 203(1), 264–278 (2007)

25. Wolfe, C.M., Rust, B.W., Dunn, J.H., Brown, I.E.: An interactive nonlinear least squares
program. Tech. rep., National Bureau of Standards (now NIST), Gaithersburg, MD,
NBS Technical Note 1238 (1987)

function [alpha, c, wresid, wresid_norm, y_est, Regression] = ...
varpro(y, w, alpha, n, ada, lb, ub, options)

%VARPRO Solve a separable nonlinear least squares problem.
% [alpha, c, wresid, wresid_norm, y_est, Regression] =
% VARPRO(y, w, alpha, n, ada, lb, ub, options)
%
% Given a set of m observations y(1),...,y(m)
% this program computes a weighted least squares fit using the model
%
% eta(alpha,c,t) =
% c_1 * phi_1 (alpha,t) + ... + c_n * phi_n (alpha,t)
% (possibly with an extra term + phi_{n+1} (alpha,t) ).
%
% This program determines optimal values of the q nonlinear parameters
% alpha and the n linear parameters c, given observations y at m
% different values of the "time" t and given evaluation of phi and
% (optionally) derivatives of phi.
%
% On Input:
%
% y m x 1 vector containing the m observations.
% w m x 1 vector of weights used in the least squares
% fit. We minimize the norm of the weighted residual
% vector r, where, for i=1:m,
%
% r(i) = w(i) * (y(i) - eta(alpha, c, t(i,:))).
%
% Therefore, w(i) should be set to 1 divided by
% the standard deviation in the measurement y(i).
% If this number is unknown, set w(i) = 1.
% alpha q x 1 initial estimates of the parameters alpha.
% If alpha = [], Varpro assumes that the problem
% is linear and returns estimates of the c parameters.
% n number of linear parameters c
% ada a function handle, described below.
% lb q x 1 lower bounds on the parameters alpha.
% (Optional) (Omit this argument or use [] if there are
% no lower bounds.)
% ub q x 1 upper bounds on the parameters alpha.
% (Optional) (Omit this argument or use [] if there are
% no upper bounds.)
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% options The Matlab optimization parameter structure,
% (Optional) set by "optimset", to control convergence
% tolerances, maximum number of function evaluations,
% information displayed in the command window, etc.
% To use default options, omit this parameter.
% To determine the default options, type
% options = optimset(’lsqnonlin’)
% After doing this, the defaults can be modified;
% to modify the display option, for example, type
% options = optimset(’lsqnonlin’);
% optimset(options,’Display’,’iter’);
%
% On Output:
%
% alpha q x 1 estimates of the nonlinear parameters.
% c n x 1 estimates of the linear parameters.
% wresid m x 1 weighted residual vector, with i-th component
% w(i) * (y(i) - eta(alpha, c, t(i,:))).
% wresid_norm norm of wresid.
% y_est m x 1 the model estimates = eta(alpha, c, t(i,:)))
% Regression a structure containing diagnostics about the model fit.
% **************************************************
% * C a u t i o n: *
% * The theory that makes statistical *
% * diagnostics useful is derived for *
% * linear regression, with no upper- or *
% * lower-bounds on variables. *
% * The relevance of these quantities to our *
% * nonlinear model is determined by how well *
% * the linearized model (Taylor series model) *
% * eta(alpha_true, c_true) *
% * + Phi * (c - c_true) *
% * + dPhi * (alpha - alpha_true) *
% * fits the data in the neighborhood of the *
% * true values for alpha and c, where Phi *
% * and dPhi contain the partial derivatives *
% * of the model with respect to the c and *
% * alpha parameters, respectively, and are *
% * defined in ada. *
% **************************************************
% Regression.report:
% This structure includes information on the solution
% process, including the number of iterations,
% termination criterion, and exitflag from lsqnonlin.
% (Type ’help lsqnonlin’ to see the exit conditions.)
% Regression.report.rank is the computed rank of the
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% matrix for the linear subproblem. If this equals
% n, then the linear coefficients are well-determined.
% If it is less than n, then although the model might
% fit the data well, other linear coefficients might
% give just as good a fit.
% Regression.sigma:
% The estimate of the standard deviation is the
% weighted residual norm divided by the square root
% of the number of degrees of freedom.
% This is also called the "regression standard error"
% or the square-root of the weighted SSR (sum squared
% residual) divided by the square root of the
% number of degrees of freedom.
% Regression.RMS:
% The "residual mean square" is equal to sigma^2:
% RMS = wresid_norm^2 / (m-n+q)
% Regression.coef_determ:
% The "coefficient of determination" for the fit,
% also called the square of the multiple correlation
% coefficient, is sometimes called R^2.
% It is computed as 1 - wresid_norm^2/CTSS,
% where the "corrected total sum of squares"
% CTSS is the norm-squared of W*(y-y_bar),
% and the entries of y_bar are all equal to
% (the sum of W_i^2 y_i) divided by (the sum of W_i^2).
% A value of .95, for example, indicates that 95 per
% cent of the CTTS is accounted for by the fit.
%
% Regression.CovMx: (n+q) x (n+q)
% This is the estimated variance/covariance matrix for
% the parameters. The linear parameters c are ordered
% first, followed by the nonlinear parameters alpha.
% This is empty if dPhi is not computed by ada.
% Regression.CorMx: (n+q) x (n+q)
% This is the estimated correlation matrix for the
% parameters. The linear parameters c are ordered
% first, followed by the nonlinear parameters alpha.
% This is empty if dPhi is not computed by ada.
% Regression.std_param: (n+q) x 1
% This vector contains the estimate of the standard
% deviation for each parameter.
% The k-th element is the square root of the k-th main
% diagonal element of Regression.CovMx
% This is empty if dPhi is not computed by ada.
% Regression.t_ratio: (n+q) x 1
% The t-ratio for each parameter is equal to the
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% parameter estimate divided by its standard deviation.
% (linear parameters c first, followed by alpha)
% This is empty if dPhi is not computed by ada.
% Regression.standardized_wresid:
% The k-th component of the "standardized weighted
% residual" is the k-th component of the weighted
% residual divided by its standard deviation.
% This is empty if dPhi is not computed by ada.
%
%---------------------------------------------------------------
% Specification of the function ada, which computes information
% related to Phi:
%
% function [Phi,dPhi,Ind] = ada(alpha)
%
% This function computes Phi and, if possible, dPhi.
%
% On Input:
%
% alpha q x 1 contains the current value of the alpha parameters.
%
% Note: If more input arguments are needed, use the standard
% Matlab syntax to accomplish this. For example, if
% the input arguments to ada are t, z, and alpha, then
% before calling varpro, initialize t and z, and in calling
% varpro, replace "@ada" by "@(alpha)ada(t,z,alpha)".
%
% On Output:
%
% Phi m x n1 where Phi(i,j) = phi_j(alpha,t_i).
% (n1 = n if there is no extra term;
% n1 = n+1 if an extra term is used)
% dPhi m x p where the columns contain partial derivative
% information for Phi and p is the number of
% columns in Ind
% (or dPhi = [] if derivatives are not available).
% Ind 2 x p Column k of dPhi contains the partial
% derivative of Phi_j with respect to alpha_i,
% evaluated at the current value of alpha,
% where j = Ind(1,k) and i = Ind(2,k).
% Columns of dPhi that are always zero, independent
% of alpha, need not be stored.
% Example: if phi_1 is a function of alpha_2 and alpha_3,
% and phi_2 is a function of alpha_1 and alpha_2, then
% we can set
% Ind = [ 1 1 2 2
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% 2 3 1 2 ]
% In this case, the p=4 columns of dPhi contain
% d phi_1 / d alpha_2,
% d phi_1 / d alpha_3,
% d phi_2 / d alpha_1,
% d phi_2 / d alpha_2,
% evaluated at each t_i.
% There are no restrictions on how the columns of
% dPhi are ordered, as long as Ind correctly specifies
% the ordering.
%
% If derivatives dPhi are not available, then set dPhi = Ind = [].
%
%---------------------------------------------------------------
%
% Varpro calls lsqnonlin, which solves a constrained least squares
% problem with upper and lower bounds on the constraints. What
% distinguishes varpro from lsqnonlin is that, for efficiency and
% reliability, varpro causes lsqnonlin to only iterate on the
% nonlinear parameters. Given the information in Phi and dPhi, this
% requires an intricate but inexpensive computation of partial
% derivatives, and this is handled by the varpro function formJacobian.
%
% lsqnonlin is in Matlab’s Optimization Toolbox. Another solver
% can be substituted if the toolbox is not available.
%
% Any parameters that require upper or lower bounds should be put in
% alpha, not c, even if they appear linearly in the model.
%
% The original Fortran implementation of the variable projection
% algorithm (ref. 2) was modified in 1977 by John Bolstad
% Computer Science Department, Serra House, Stanford University,
% using ideas of Linda Kaufman (ref. 5) to speed up the
% computation of derivatives. He also allowed weights on
% the observations, and computed the covariance matrix.
% Our Matlab version takes advantage of 30 years of improvements
% in programming languages and minimization algorithms.
% In this version, we also allow upper and lower bounds on the
% nonlinear parameters.
%
% It is hoped that this implementation will be of use to Matlab
% users, but also that its simplicity will make it easier for the
% algorithm to be implemented in other languages.
%
% This program is documented in
% Dianne P. O’Leary and Bert W. Rust,
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% Variable Projection for Nonlinear Least Squares Problems,
% US National Inst. of Standards and Technology, 2010.
%
% Main reference:
%
% 0. Gene H. Golub and V. Pereyra, ’Separable nonlinear least
% squares: the variable projection method and its applications,’
% Inverse Problems 19, R1-R26 (2003).
%
% See also these papers, cited in John Bolstad’s Fortran code:
%
% 1. Gene H. Golub and V. Pereyra, ’The differentiation of
% pseudo-inverses and nonlinear least squares problems whose
% variables separate,’ SIAM J. Numer. Anal. 10, 413-432
% (1973).
% 2. ------, same title, Stanford C.S. Report 72-261, Feb. 1972.
% 3. Michael R. Osborne, ’Some aspects of non-linear least
% squares calculations,’ in Lootsma, Ed., ’Numerical Methods
% for Non-Linear Optimization,’ Academic Press, London, 1972.
% 4. Fred Krogh, ’Efficient implementation of a variable projection
% algorithm for nonlinear least squares problems,’
% Comm. ACM 17:3, 167-169 (March, 1974).
% 5. Linda Kaufman, ’A variable projection method for solving
% separable nonlinear least squares problems’, B.I.T. 15,
% 49-57 (1975).
% 6. C. Lawson and R. Hanson, Solving Least Squares Problems,
% Prentice-Hall, Englewood Cliffs, N. J., 1974.
%
% These books discuss the statistical background:
%
% 7. David A. Belsley, Edwin Kuh, and Roy E. Welsch, Regression
% Diagnostics, John Wiley & Sons, New York, 1980, Chap. 2.
% 8. G.A.F. Seber and C.J. Wild, Nonlinear Regression,
% John Wiley & Sons, New York, 1989, Sec. 2.1, 5.1, and 5.2.
%
% Dianne P. O’Leary, NIST and University of Maryland, February 2011.
% Bert W. Rust, NIST February 2011.
% Comments updated 07-2011.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global mydebug myneglect % test neglect of extra term in Jacobian

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Initialization: Check input, set default parameters and options.
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%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[m,ell] = size(y); % m = number of observations
[m1,ell1] = size(w);

if (m1 ~= m) | (ell > 1) | (ell1 > 1)
error(’y and w must be column vectors of the same length’)

end

[q,ell] = size(alpha); % q = number of nonlinear parameters

if (ell > 1)
error(’alpha must be a column vector containing initial guesses for nonlinear parameters’)

end

if (nargin < 6)
lb = [];

else
[q1,ell] = size(lb);
if (q1 > 0) & (ell > 0)

if (q1 ~= q) | (ell > 1)
error(’lb must be empty or a column vector of the same length as alpha’)

end
end

end

if (nargin < 7)
ub = [];

else
[q1,ell] = size(ub);
if (q1 > 0) & (ell > 0)

if (q1 ~= q) | (ell > 1)
error(’ub must be empty or a column vector of the same length as alpha’)

end
end

end

if (nargin < 8)
options = optimset(’lsqnonlin’);

end

if (~strcmp(options.Display,’off’))
disp(sprintf(’\n-------------------’))
disp(sprintf(’VARPRO is beginning.’))

end
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W = spdiags(w,0,m,m); % Create an m x m diagonal matrix from the vector w

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Make the first call to ada and do some error checking.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[Phi, dPhi, Ind] = feval(ada, alpha);

[m1,n1] = size(Phi); % n1 = number of basis functions Phi.

[m2,n2] = size(dPhi);
[ell,n3] = size(Ind);

if (m1 ~= m2) & (m2 > 0)
error(’In user function ada: Phi and dPhi must have the same number of rows.’)

end

if (n1 < n) | (n1 > n+1)
error(’In user function ada: The number of columns in Phi must be n or n+1.’)

end

if (n2 > 0) & (ell ~= 2)
error(’In user function ada: Ind must have two rows.’)

end

if (n2 > 0) & (n2 ~= n3)
error(’In user function ada: dPhi and Ind must have the same number of columns.’)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Solve the least squares problem using lsqnonlin or, if there
% are no nonlinear parameters, using the SVD procedure in formJacobian.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (q > 0) % The problem is nonlinear.

if ~isempty(dPhi)
options = optimset(options,’Jacobian’,’on’);

end

[alpha, wresid_norm2, wresid, exitflag,output] = ...
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lsqnonlin(@f_lsq, alpha, lb, ub, options);
[r, Jacobian, Phi, dPhi, y_est, rank] = f_lsq(alpha);
wresid_norm = sqrt(wresid_norm2);
Regression.report = output;
Regression.report.rank = rank;
Regression.report.exitflag = exitflag;

else % The problem is linear.

if (~strcmp(options.Display,’off’))
disp(sprintf(’VARPRO problem is linear, since length(alpha)=0.’))

end

[Jacobian, c, wresid, y_est, Regression.report.rank] = ...
formJacobian(alpha, Phi, dPhi);

wresid_norm = norm(wresid);
wresid_norm2 = wresid_norm * wresid_norm;

end % if q > 0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Compute some statistical diagnostics for the solution.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate sample variance, the norm-squared of the residual
% divided by the number of degrees of freedom.

sigma2 = wresid_norm2 / (m-n-q);

% Compute Regression.sigma:
% square-root of weighted residual norm squared divided
% by number of degrees of freedom.

Regression.sigma = sqrt(sigma2);

% Compute Regression.coef_determ:
% The coeficient of determination for the fit,
% also called the square of the multiple correlation
% coefficient, or R^2.
% It is computed as 1 - wresid_norm^2/CTSS,
% where the "corrected total sum of squares"
% CTSS is the norm-squared of W*(y-y_bar),
% and the entries of y_bar are all equal to
% (the sum of W_i y_i) divided by (the sum of W_i).
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y_bar = sum(w.*y) / sum(w);
CTTS = norm(W * (y - y_bar)) ^2;
Regression.coef_determ = 1 - wresid_norm^2 / CTTS;

% Compute Regression.RMS = sigma^2:
% the weighted residual norm divided by the number of
% degrees of freedom.
% RMS = wresid_norm / sqrt(m-n+q)

Regression.RMS = sigma2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Compute some additional statistical diagnostics for the
% solution, if the user requested it.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (nargout==6)

if (isempty(dPhi))

Regression.CovMx = [];
Regression.CorMx = [];
Regression.std_param = [];
Regression.t_ratio = [];
Regression.standardized_wresid = [];

else

% Calculate the covariance matrix CovMx, which is sigma^2 times the
% inverse of H’*H, where
% H = W*[Phi,J]
% contains the partial derivatives of wresid with
% respect to the parameters in alpha and c.

[xx,pp] = size(dPhi);
J = zeros(m,q);
for kk = 1:pp,

j = Ind(1,kk);
i = Ind(2,kk);
if (j > n)

J(:,i) = J(:,i) + dPhi(:,kk);
else

J(:,i) = J(:,i) + c(j) * dPhi(:,kk);
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end
end
[Qj,Rj,Pj] = qr(W*[Phi(:,1:n),J], 0); % Uses compact pivoted QR.
T2 = Rj \ (eye(size(Rj,1)));
CovMx = sigma2 * T2 * T2’;
Regression.CovMx(Pj,Pj) = CovMx; % Undo the pivoting permutation.

% Compute Regression.CorMx:
% estimated correlation matrix (n+q) x (n+q) for the
% parameters. The linear parameters are ordered
% first, followed by the nonlinear parameters.

d = 1 ./ sqrt(diag(Regression.CovMx));
D = spdiags(d,0,n+q,n+q);
Regression.CorMx = D * Regression.CovMx * D;

% Compute Regression.std_param:
% The k-th element is the square root of the k-th main
% diagonal element of CovMx.

Regression.std_param = sqrt(diag(Regression.CovMx));

% Compute Regression.t_ratio:
% parameter estimates divided by their standard deviations.

alpha = reshape(alpha, q, 1);
Regression.t_ratio = [c; alpha] .* d;

% Compute Regression.standardized_wresid:
% The k-th component is the k-th component of the
% weighted residual, divided by its standard deviation.
% Let X = W*[Phi,J],
% h(k) = k-th main diagonal element of covariance
% matrix for wresid
% = k-th main diagonal element of X*inv(X’*X)*X’
% = k-th main diagonal element of Qj*Qj’.
% Then the standard deviation is estimated by
% sigma*sqrt(1-h(k)).

for k=1:m
temp(k,1) = Qj(k,:) * Qj(k,:)’;

end
Regression.standardized_wresid = wresid ./(Regression.sigma*sqrt(1-temp));

end
end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% End of statistical diagnostics computations.
% Print some final information if desired.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (~strcmp(options.Display,’off’))
disp(sprintf(’ ’))
disp(sprintf(’VARPRO Results:’))
disp(sprintf(’ Linear Parameters:’))
disp(sprintf(’ %15.7e ’,c))

disp(sprintf(’ Nonlinear Parameters:’))
disp(sprintf(’ %15.7e ’,alpha))
disp(sprintf(’ ’))

disp(sprintf(’ Norm-squared of weighted residual = %15.7e’,wresid_norm2))
disp(sprintf(’ Norm-squared of data vector = %15.7e’,norm(w.*y)^2))
disp(sprintf(’ Norm of weighted residual = %15.7e’,wresid_norm))
disp(sprintf(’ Norm of data vector = %15.7e’,norm(w.*y)))
disp(sprintf(’ Expected error of observations = %15.7e’,Regression.sigma))
disp(sprintf(’ Coefficient of determination = %15.7e’,Regression.coef_determ))
disp(sprintf(’VARPRO is finished.’))
disp(sprintf(’-------------------\n’))

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The computation is now completed.
%
% varpro uses the following two functions, f_lsq and formJacobian.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%--------------------------- Beginning of f_lsq --------------------------

function [wr_trial, Jacobian, Phi_trial, dPhi_trial, y_est,myrank] = ...
f_lsq(alpha_trial)

% function [wr_trial,Jacobian,Phi_trial,dPhi_trial,y_est,myrank] = ...
% f_lsq(alpha_trial)
%
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% This function is used by lsqnonlin to compute
% wr_trial the current weighted residual
% Jacobian the Jacobian matrix for the nonlinear parameters
% It also computes
% Phi_trial the current Phi matrix
% dPhi_trial the partial derivatives of Phi_trial (if available).
% y_est the model estimates of y
% myrank the rank of the matrix W*Phi in the linear problem.
%
% It uses the user-supplied function ada and the Varpro function formJacobian.

[Phi_trial, dPhi_trial, Ind] = feval(ada, alpha_trial);

[Jacobian, c, wr_trial, y_est,myrank] = ...
formJacobian(alpha_trial, Phi_trial, dPhi_trial);

end %--------------------------- End of f_lsq ---------------------------

%----------------------- Beginning of formJacobian ----------------------

function [Jacobian, c, wresid, y_est,myrank] = formJacobian(alpha, Phi, dPhi)

% function [Jacobian, c, wresid, y_est,myrank] = formJacobian(alpha, Phi, dPhi)
%
% This function computes the Jacobian, the linear parameters c,
% and the residual for the model with nonlinear parameters alpha.
% It is used by the functions Varpro and f_lsq.
%
% Notation: there are m data observations
% n1 basis functions (columns of Phi)
% n linear parameters c
% (n = n1, or n = n1 - 1)
% q nonlinear parameters alpha
% p nonzero columns of partial derivatives of Phi
%
% Input:
%
% alpha q x 1 the nonlinear parameters,
% Phi m x n1 the basis functions Phi(alpha),
% dPhi m x p the partial derivatives of Phi
%
% The variables W, y, q, m, n1, and n are also used.
%
% Output:
%
% Jacobian m x p the Jacobian matrix, with J(i,k) = partial
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% derivative of W resid(i) with respect to alpha(k).
% c n x 1 the optimal linear parameters for this choice of alpha.
% wresid m x 1 the weighted residual = W(y - Phi * c)
% y_est m x 1 the model estimates = Phi * c)
% myrank 1 x 1 the rank of the matrix W*Phi.

% First we determine the optimal linear parameters c for
% the given values of alpha, and the resulting residual.
%
% We use the singular value decomposition to solve the linear least
% squares problem
%
% min_{c} || W resid ||.
% resid = y - Phi * c.
%
% If W*Phi has any singular value less than m * its largest singular value,
% these singular values are set to zero.

[U,S,V] = svd(W*Phi(:,1:n));

% Three cases: Usually n > 1, but n = 1 and n = 0 require
% special handling (one or no linear parameters).

if (n > 1)
s = diag(S);

elseif (n==1)
s = S;

else % n = 0
if isempty(Ind)

Jacobian = [];
else

Jacobian = zeros(length(y),length(alpha));
Jacobian(:,Ind(2,:)) = -W*dPhi;

end
c = [];
y_est = Phi;
wresid = W * (y - y_est);
myrank = 1;
return
end

tol = m * eps;
myrank = sum(s > tol*s(1) ); % number of singular values > tol*norm(W*Phi)
s = s(1:myrank);
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if (myrank < n) & (~strcmp(options.Display,’off’))
disp(sprintf(’Warning from VARPRO:’))
disp(sprintf(’ The linear parameters are currently not well-determined.’))
disp(sprintf(’ The rank of the matrix in the subproblem is %d’,myrank))
disp(sprintf(’ which is less than the n=%d linear parameters.’,n))

end

yuse = y;
if (n < n1)

yuse = y - Phi(:,n1); % extra function Phi(:,n+1)
end
temp = U(:,1:myrank)’ * (W*yuse);
c = V(:,1:myrank) * (temp./s);
y_est = Phi(:,1:n) * c;
wresid = W * (yuse - y_est);
if (n < n1)

y_est = y_est + Phi(:,n1);
end

if (q == 0) | (isempty(dPhi))
Jacobian = [];
return

end

% Second, we compute the Jacobian.
% There are two pieces, which we call Jac1 and Jac2,
% with Jacobian = - (Jac1 + Jac2).
%
% The formula for Jac1 is (P D(W*Phi) pinv(W*Phi) y,
% and Jac2 is ((W*Phi)^+})^T (P D(W*Phi))^T y.
% where P is the projection onto the orthogonal complement
% of the range of W*Phi,
% D(W*Phi) is the m x n x q tensor of derivatives of W*Phi,
% pinv(W*Phi) is the pseudo-inverse of W*Phi.
% (See Golub&Pereyra (1973) equation (5.4). We use their notational
% conventions for multiplications by tensors.)
%
% Golub&Pereyra (2003), p. R5 break these formulas down by columns:
% The j-th column of Jac1 is P D_j pinv(W*Phi) y
% = P D_j c
% and the j-th column of Jac2 is (P D_j pinv(W*Phi))^T y,
% = (pinv(W*Phi))^T D_j^T P^T y
% = (pinv(W*Phi))^T D_j^T wresid.
% where D_j is the m x n matrix of partial derivatives of W*Phi
% with respect to alpha(j).
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% We begin the computation by precomputing
% WdPhi, which contains the derivatives of W*Phi, and
% WdPhi_r, which contains WdPhi’ * wresid.

WdPhi = W * dPhi;
WdPhi_r = WdPhi’ * wresid;
T2 = zeros(n1, q);
ctemp = c;
if (n1 > n)

ctemp = [ctemp; 1];
end

% Now we work column-by-column, for j=1:q.
%
% We form Jac1 = D(W*Phi) ctemp.
% After the loop, this matrix is multiplied by
% P = U(:,myrank+1:m)*(U(:,myrank+1:m)’
% to complete the computation.
%
% We also form T2 = (D_j(W*Phi))^T wresid by unpacking
% the information in WdPhi_r, using Ind.
% After the loop, T2 is multiplied by the pseudoinverse
% (pinv(W*Phi))^T = U(:,1:myrank) * diag(1./s) * (V(:,1:myrank)’
% to complete the computation of Jac2.
% Note: if n1 > n, last row of T2 is not needed.

for j=1:q, % for each nonlinear parameter alpha(j)
range = find(Ind(2,:)==j); % columns of WdPhi relevant to alpha(j)
indrows = Ind(1,range); % relevant rows of ctemp
Jac1(:,j) = WdPhi(:,range) * ctemp(indrows);
T2(indrows,j) = WdPhi_r(range);

end

Jac1 = U(:,myrank+1:m) * (U(:,myrank+1:m)’ * Jac1);

T2 = diag(1 ./ s(1:myrank)) * (V(:,1:myrank)’ * T2(1:n,:));
Jac2 = U(:,1:myrank) * T2;

Jacobian = -(Jac1 + Jac2);

if (mydebug)
disp(sprintf(’VARPRO norm(neglected Jacobian)/norm(Jacobian) = %e’,...

norm(Jac2,’fro’)/norm(Jacobian,’fro’) ))
if (myneglect)

disp(’neglecting’)
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Jacobian = -Jac1;
end

end

end %-------------------------- End of formJacobian ----------------------

end %------------------------------ End of varpro ------------------------


