Architectural Support for Software Bug Detection

Yuanyuan (YY) Zhou and Josep Torrellas
University of Illinois at Urbana-Champaign
{yyzhou,torrellas}@cs.uiuc.edu
Why Architectural Support?

- **Motivation**
 - Ever so many transistors in a single chip
 - Performance is reasonably good for some applications
 - Software bugs accounts for 40% of system failures
 - Limitations with software-only approaches

- **New opportunity:** Using a few transistors for software bug detection
 - New trade-offs between performance, robustness, etc
 - New types of bugs detected
 - New possibility: detect bugs on production-runs
Existing Hardware Support

- **WatchPoint Registers**
 - Mainly used for interactive debugging
 - Only support several (4 in x86) watched locations
 - Raise expensive OS exceptions upon accesses to watched locations
Recent Solutions From Our Group (1)

- **ReEnact [ISCA’03]**
 - **Goal**: Detect and correct data races on the fly
 - **Idea**: Dynamically analyze memory accesses to shared data and capture violations to happen-before order
 - **Overhead**: 1%-13%

- **iWatcher [ISCA’04]**
 - **Goal**: Efficiently and accurately monitor memory accesses to detect bugs and attacks
 - **Idea**: Allow programmers or automated tools to associate monitoring functions with monitored locations
 - When a monitored location is accessed, the monitoring function is automatically executed on-the-fly without going through OS
 - **Overhead**: 4% - 80%
Recent Proposals From Our Group (2)

- **AccMon [Micro’04]**
 - **Goal:** Detect general memory bugs
 - **Idea:**
 - **PC-based invariants:** the small set of PCs that access a given memory location
 - Use hardware support for efficient invariant extraction and detection
 - **Overhead:** 24% - 288%

- **SafeMem [HPCA’05]**
 - **Goal:** Detect memory leaks and corruption on production runs
 - **Idea:** exploit ECC-memory to prune false positives in memory leak detection and detect memory corruptions
 - **Overhead:** 1-29%

- **Undo support** (presented this morning)
Proposals by Others

- Flight Data Recorder (Wisconsin-ISCA’03)
- Reduced Flight Data Recorder (UCSD-ISCA’05)
- Dynamic Instrumentation via DISE (UPenn-HPCA’05)
Advantages of Hardware Support

- **Efficiency**
 - Low overhead
 - Can potentially be used for production runs

- **Accuracy**
 - Accurate execution information (e.g. all true memory accesses)
 - Accurate thread inter-leaving information

- **Portability**
 - Language independent
 - Cross-library, cross-modules and cross-programmers
 - Applicable to low-level code (e.g. OS)
Main Disadvantages

- Require hardware extension
- One more barrier for deployment
- Mostly limited to dynamic analysis
- Cannot work alone--- require software cooperation
Deployment in Future Processors

- **Challenge:** need to convince hardware vendors

- **Solution:**
 - Architecture and debugging communities collaborate to
 - Identify the perfect match between debugging needs and architectural support
 - Software company pushes processor companies with incentives
 - Testing machines with higher prices
 - Lowering license fees for customers that purchase testing machines
 - More research exploration on this topic

- **What architectural supports will likely succeed?**
 - Simple, general, reconfigurable, leverage existing hardware
Conclusions

- **Message 1:**
 - Architectural support opens up a new possibility in software bug detection

- **Message 2:**
 - The two communities should work together to make deploy such support in future processors