Approximation Algorithms for Graph Augmentation

Samir Khuller * Ramakrishna Thurimella t

Abstract

We study the problem of increasing the connectivity! of a graph at an optimal cost.
Since the general problem is N P-hard, we focus on efficient approximation schemes that
come within a constant factor from the optimal. Previous algorithms either do not take edge
costs into consideration, or run slower than our algorithm. Our algorithm takes as input an
undirected graph Gg = (V, Eg) on n vertices, that is not necessarily connected, and a set
Feasible of m weighted edges on V', and outputs a subset Aug of edges which when added to
G make it 2-connected. The weight of Aug, when Gy is initially connected, is no more than
twice the weight of the least weight subset of edges of Feasible that increases the connectivity
to 2. The running time of our algorithm is O(m + nlogn). We also study the problem of
increasing the edge connectivity of any graph G, to k, within a factor of 2 (for any k& > 0).
The running time of this algorithm is O(nklogn(m + nlogn)). We observe that when k
is odd we can use different techniques to obtain an approximation factor of 2 for increasing
edge connectivity from k to (k + 1) in O(kn?) time.

1 Introduction

Augmenting the connectivity of communication networks is increasingly becoming important to
provide reliable means of communication. Informally, the problem is the following: we have a
“current” network, and we wish to increase the connectivity of the network by adding edges.
Each feasible edge has an associated weight, and we want to achieve the desired connectivity by
adding the least total weight of edges.

The Weighted Augmentation Problem: Consider a graph G = (V,) with a weight w; > 0
on edge e;, where F is the set of feasible edges. We are also given a “current” network, the
graph Go(V, Ep) that is a subgraph of G. The goal is to add a minimum weight set of edges
Aug, to Gg, such that the resulting graph is k-connected for a given k. The edges that we are
permitted to add, are required to be edges from the graph G (the feasibility graph). If £y = &
and k£ = 1 then the problem is that of finding a minimum weight spanning tree on V. It is well
known that this problem can be solved very efficiently. For & > 1, the problem turns out to be
N P-hard. We will study approximation algorithms for the general problem.

Our Results: Let m and n denote the number of edges and the number of vertices, respectively,
of the input graph. In this paper we provide a simple algorithm (for £ = 2) that produces an
approximation within a factor of 2 in O(m + nlogn) time. Note that for sparse networks the
algorithm is faster by a factor of n?/m. (The previous algorithm for the problem is due to

*Institute for Advanced Computer Studies (UMIACS), The University of Maryland at College Park, College
Park, MD 20742. This work is partially supported by NSF grants CCR-8906949, CCR-9103135 and CCR-9111348.

'Department of Mathematics and Computer Science, University of Denver, Denver, CO 80208. Part of this
work was done while this author was with UMIACS.

!Connectivity refers to both edge and vertex conmectivity throughout the paper unless stated explicitly
otherwise.

[FJ81] and takes O(n?) time.) We design algorithms for both edge and vertex connectivity. The
speedup is obtained not only by using a better subroutine for branchings in directed graphs, but
by also doing away with the dynamic programming subroutine (computation of function DIST)
used by [FJ81]. Since the subroutine DIST used by [FJ81] computes @(n?) values there is no
way to make their algorithm more efficient. It should be noted however that our strategy is
similar to that of [I'J81].

We also show that an approximation factor of 2 can be obtained to augment the edge
connectivity of any graph to being k-edge connected. The running time of this algorithm is
O(nklogn(m+ nlogn)). This improves the approximation factor of 3 that was given by [FJ81]
to increase the edge connectivity of an unconnected graph to 2, albeit the running time of our
scheme is significantly higher. When k is odd we show how to obtain the same approximation
factor for increasing edge connectivity from k to (k + 1) in O(kn?) time.

Significance of the Results: The subtlety of the construction, and the manner in which it is
combined with the branching gives the scheme its simplicity and elegance.

The application of algorithms for finding k-edge disjoint branchings (for directed graphs) to

incrementing edge connectivity in undirected graphs appears to have gone unnoticed until now.
This gives the first polynomial time algorithm for obtaining the approximation factor of 2 for
incrementing the edge connectivity of any graph to any k (when the edges have weights). The
k-edge disjoint branching problem is solved by formulating it as a weighted matroid intersection
problem [Ed79, G91a]. It remains of interest to see how the solutions to various problems in the
area of Matroids will give rise to approximation schemes for N P-hard problems.
Previous Work: The problem of increasing the connectivity to 2 was first considered by [ET76],
who showed that it was N P-hard. In subsequent work, Frederickson and JaJa [FJ81] showed
that the problem remained N P-hard even if G is connected. They also provided approximation
algorithms to solve the problem with a running time of O(n?) and produced an approximation
within a factor of 2 of the optimal solution [FJ81] when Gy is initially connected. For the special
case of the edge weights satisfying the triangle inequality they designed algorithms that produce
an approximation within a factor of % of the optimal solution [FJ82].

The more general problem of increasing the edge connectivity for any k& has not been studied

in the weighted case to our knowledge. We also observe that the N P-hardness proof of [IFJ81]
extends to work for any k£ > 0.
Related Work: When the feasible set of edges is the complete graph, and all the edges have
unit weight, the augmentation can be done optimally to obtain any desired edge connectivity
in polynomial time. In this setting, there have been a number of papers that have studied
graph augmentation problems, starting from the seminal paper by Eswaran and Tarjan who
first introduced the problem of making a connected graph biconnected by adding the smallest
set of edges [ET76]. A linear time implementation was provided by Rosenthal and Goldner
[RG77] (see also [HRI1b]). This has recently been extended to triconnecting a graph optimally
by Hsu and Ramachandran [HR91a]. Subsequent work has led to the generalization of the
problem in many ways, and also led to faster algorithms. This was first shown by Watanabe
and Nakamura [WN87, Wa88]. Recently much faster algorithms have been obtained by Naor,
Gusfield and Martel [NGM90] and by Gabow [G91b]. A generalization of the problem was
considered by Frank [Fr90] who has shown a more general problem to be solvable in polynomial
time, but the algorithm is not very efficient. In the context of planar graphs, [KB91] have given
approximation algorithms for the case when edges have to be added, maintaining planarity.

For weighted directed graphs the following problem is solvable in polynomial time [Ed79,
FT89, G91a]. In a digraph find a minimum weighted set of edges so as to have k-edge disjoint
paths from a source to every vertex. Gabow provides the fastest implementation of Edmond’s

algorithm [G91a]. We use this algorithm to obtain an approximation factor of 2 for the edge
connectivity augmentation problem in undirected graphs.

2 Preliminaries

A graph is said to be k-vertex (k-edge) connected if it has at least (k + 1) vertices (edges),
and the deletion of any (k — 1) vertices (edges) leaves the graph connected. A branching of a
directed graph G rooted at a vertex r is a spanning tree of G such that each vertex except r
has indegree exactly 1 and r has indegree zero. The weight of a branching is the sum of the
weights of the edges of the branching. A minimum weight branching is a branching with the
least weight. For the definitions of bridges, 2-edge (2-vertex) connected components the reader is
referred to [Ev79]. The 2-vertex connected components of a graph are also referred to as blocks.
For a vertex v in a rooted tree I', let the components formed by the deletion of v be called
C1(v),C2(v), ..., Cyy)(v), where d(v) is the degree of v in I'. If v is not the root, we will assume
that C1(v) is the component that contains the root, and the other components correspond to
subtrees rooted at the children of vertex v. In a rooted tree, for a vertex u we denote its parent
by p(u).

As a matter of notation, we refer to an undirected edge between two vertices z and y as
(z,y). On the other hand, a directed edge from z to y is denoted by z — y.

We can assume that Gg is a connected graph. If the graph is not initially connected, find a
minimum spanning tree and add the edges of the tree to Go. This would yield an approximation
within a factor of 3 to the problem of finding a least-weight 2-connected spanning subgraph of
a 2-connected weighted graph. We can also assume that GG is 2-connected.

3 Increasing Edge Connectivity from 1 to 2

Notice that we only need to show how to increase the edge connectivity of a tree due to the
following observation. If we are given G with nontrivial 2-edge connected components, then
we can shrink the vertex sets of these components into single vertices, resulting in a tree whose
edges are the bridges of Gy. The edges to be retained from Feasible are the minimum weight
edges that connect vertices of different 2-edge connected components of Gg. (Observe that the
edges of Feasible that connect vertices of the same 2-edge connected component are of no use in
augmenting G. Similarly, among the edges that connect different 2-edge connected components
only the minimum weight edge is of interest.)

From Gy, we will construct a directed graph G, and find a minimum weight branching from
a vertex r. In case there is no branching that spans all the vertices, we can show that there is
no way to increase the connectivity of the network. Using a minimum weight branching of G,
we can find a set of edges of G — Gy whose addition will increase the connectivity of Gy. We
can also show that the total weight of the edges added by this technique is bounded by twice
the weight of an optimal augmentation.
Algorithm Find Fdge Aug
Input: Graph G and a spanning tree Gg.
Output: A set of edges Aug C F — Fj.

(1) (Construct GP = (V, Ep))
(a) Pick an arbitrary leaf r and root the tree Gy at r by directing all the edges towards
the root. Denote the resulting tree by I'.

(b) Add to Ep the directed tree edges of I' and set their weight to zero.

(c) Consider the edges that belong to G = (V, E) but do not belong to Gy (edges in
FE — Fy). For each such edge (u,v), if (u,v) is a back edge (i.e., it connects a vertex to one
of its ancestors), we add one directed edge to EP (shown below); otherwise, we add two
directed edges to EP. (We will refer to these directed edges as images of (u,v), and we
say these directed edges are generated by (u,v).)

Suppose that the edge e with weight w, joins vertices u and v belonging to the tree I'.
There are two cases depending on the relative locations of u and v in the tree I'. (See
Figure 1.)

(i) If u is an ancestor of v (the converse is symmetric): then add an edge u — v in G
with weight w.

(ii) If neither w nor v is an ancestor of the other: let ¢t = l.c.a(u, v) (least common ancestor
in the rooted tree I'). Add edges ¢ — u and t — v in G, each with weight w.

Figure 1: Construction of GP.

(2) Find a minimum weight branching in G rooted at r. For each directed edge e that is
picked as part of the branching, and that does not belong to the directed tree I', add the
corresponding edge in F/ — Fg that generated e. The set of edges added is Aug.

Observe that all edges of GP — T are such that they connect a vertex to one of its descendants
(in T'). We now show the following.

Lemma 3.1 If G is 2-edge connected, then the directed graph G is strongly connected.

Proof: Clearly, all the vertices of G” can reach the root 7 using edges from the tree I'. Further,
let us assume that G is not strongly connected. Of all the vertices that cannot be reached from
the root, let u be the vertex that is closest to the root in I'. Clearly, the entire subtree rooted at
u must consist of unreachable vertices. Since the image of the edge (u,p(u)) in G is not a bridge
in G, there must be another edge (v, s) in G going from a vertex v that is in the subtree rooted

at u, to vertex s that is not in this subtree. Such an edge would have generated a directed edge
from a vertex w to v in GP where w is an ancestor of v (specifically the least-common-ancestor
of v and s). Since w is a proper ancestor of u, it is reachable from r in GP. Therefore v is
reachable from 7, and hence u as well. Thus we obtain a contradiction. a

Lemma 3.2 If G is 2-edge connected, then the edge connectivity of the graph Gq together with
the edges in Aug is at least 2.

Proof: Assume G is 2-edge connected. Then, by the previous lemma, we can find a minimum
weight branching in G”. Next, assume that despite the addition of the edges in Aug to Gg, the
resulting graph has bridges. All such bridges are the tree edges in I'. Let (u,p(u)) be one such
edge of I' that is closest to the root (it does not have to be unique). Since vertices in the subtree
rooted at u, are reached from r in the branching it must be the case that there is a directed
edge w — v, from a vertex w (ancestor of u) to v in the minimum weight branching. Such an
edge would have been generated by an edge connecting v to a vertex not in the subtree rooted
at u. This edge would belong to Aug and hence the edge (u,p(u)) is not a bridge. O

Lemma 3.3 The weight of Aug is less than twice the optimal augmentation. (Weight(Aug) <
2C™* where C* is the optimal augmentation weight.)

Proof: We prove the lemma by exhibiting a branching whose weight is at most twice the weight
of the optimal augmentation. Consider the minimum weight set of edges Aug* that would
increase the connectivity from 1 to 2. Consider all the directed edges that are “generated” by
edges that belong to Aug*. These directed edges together with the tree edges yield a strongly
connected graph with total weight on the edges at most 2C™ (each edge of weight w generated at
most two directed edges, each of weight w). Hence the branching that we find has total weight
at most 2C™*. O

Theorem 3.4 There is an approximation algorithm to find an augmentation to increase the
edge connectivity of a connected graph to 2 with weight less than twice the optimal augmentation
that runs in O(m + nlogn) time.

Proof: The correctness of the algorithm follows from Lemma 2 and Lemma 3. Since the bridge-
connected components can be found in O(m + n) time [AHU] and a minimum weight branching
can be found in O(m + nlogn) time [GGST86]. Since the least common ancestors for the m
pairs can be found in O(m + n) time by using the algorithm of Harel and Tarjan [HT84], the
theorem follows. O

The approximation factor of 2 for the algorithm is tight. In [FJ81] an example is given to
show that their algorithm can actually result in an approximation that is twice the optimal
solution. The same example works for our algorithm as well.

4 Increasing Vertex Connectivity from 1 to 2

We can assume w.l.o.g. that G is a connected graph just as in the case of edge connectivity.
Our overall strategy is similar to the one used in the previous section. That is, we first obtain
a tree structure I' of the blocks of Gyg, construct a weighted, directed graph G'” using I' and
G. Then find a minimum weight branching in G” which will indicate the edges of E — Eq that
are to be added to increase the connectivity of Gy. We remark that I', in the case of vertex
connectivity, is quite different from that of the previous section.

Algorithm Construct Block Cut Tree
Input: Connected graph Gp.
Output: Block cut tree I' of Gg.

(1) Let ay,aq,... and By, Bg, ... be the articulation points and blocks of Gy = (V, Ey), respec-
tively. The vertex set V(I') is a union of V, and V}, where V, = {a1, aq, ...} and V3, = {b; | B;
is a block of Gg}. Associated with each vertex in V(I'), is a set. For a; € V,, X; = {a;}.
For b; € V3, Y; = {v; | v; € V and v; is not a cut vertex in Go}.

2) The edge set F(I') consists of edges a;, b;) where a; is an articulation pOth that belongs
g g J g
to block B]

O {1,2}

o {3}

o0y) b
0

bs {8} ba {7}

{4}

O — block vertex
5 {5,6}
o)

— cut vertex b3

(a) (b)

Figure 2: Construction of block cut vertex tree I'.
Figure 2 illustrates the above construction via an example.

Observation 4.1 In the block cut tree I, each edge is between a vertex in V, and a vertex in
V.

Observation 4.2 Consider the sets associated with the vertices of I'. Fach vertex of G belongs
to exactly one such set.

In the rest of the section, for a vertex u of V, the vertex of I' that corresponds to u is u
if w is an articulation point, and b; otherwise where B; is the unique block containing u. In
the following, by superimposing an edge (z,y) € G on I', we mean adding an edge between
a,b € V(I') where the associated sets X and Y contain z and y respectively.

Algorithm Find Vertex Aug
Input: Graph G, a connected subgraph Gg, and a block cut tree I' of G.
Output: A set of edges Aug C F — Fj.

(1) Superimpose all the edges of £ — Fg on I'. Discard all the self-loops. Among the multiple
edges retain the cheapest edge, discarding the rest.

(2) (Construct GP = (V, Ep))
(a) Pick an arbitrary leaf of I' to be the root r, and direct all the edges of I' towards r.
Continue to denote the resulting tree by I'.

(b) Add to Ep the directed tree edges of I' and set their weight to zero.

(c) Consider the superimposed edges of £ — Fg on I'. Let (u,v) be one such superimposed
edge. If (u,v) is a back edge (i.e. it connects a vertex to one of its ancestors), we add one
directed edge to EP (shown below); otherwise, we add four directed edges to EP. (We
will refer to these directed edges as images of (u,v), and we say these directed edges are
generated by (u,v).)

Suppose that the edge e with weight w, joins vertices v and v belonging to the tree I'.
There are two cases depending on the relative locations of u and v in the tree I'. (See
Figure 3.)

(i) If u is an ancestor of v (the other case is symmetric): then add an edge u — v in G
with weight w.

(ii) If neither u nor v is an ancestor of the other: let ¢t = l.c.a(u, v) (least common ancestor
in the rooted tree I'). Add edges t — u and t — v in GP, each with weight w. Also
add edges u — v and v — u, each with weight w.

(d) Modify Ep as follows. For every u € V,, if there is an outgoing edge from u to a
descendant v, then replace that edge with u, — v where where u, is the child of u on the
tree path from u to v.

(3) Find a minimum weight branching in G” rooted at r. For each directed edge e that
is picked as part of the branching, and does not belong to the directed tree I', add the
corresponding edge in F — Fg that generated e. The set of edges added is Aug.

Observation 4.3 In the directed graph GP there are no outgoing edges from a cut vertex to
any of its descendants in I'.

Observation 4.4 Consider the components formed on the deletion of a vertex u € V, from 1.
The edges of G when superimposed on I' — u connect all these components.

Lemma 4.5 If G is 2-vertex connected, then the directed graph GP is strongly connected.

Proof: Clearly all the vertices of G can reach the root r using edges of the tree I'. Let us
assume that G’ is not strongly connected. Of all the vertices that cannot be reached from the
root, let u be a vertex that is closest to the root in I'. Clearly, the entire subtree rooted at u
must consist of unreachable vertices and every proper ancestor of u is reachable from r. The
proof is a little involved and we break it into cases.

Case 1: u € V,.
Since u is not a cut vertex in (G, there must be at least one edge connecting a vertex in
C1(u) to some vertex in C;(u) by Observation 4.4. Let this edge be (v, s) where s € Cy(u)
and v € Cj(u). Now there are two subcases to consider:

(a) sis an ancestor of v.

(a) Rooted tree I' and (b) GP after step 2(c) (c) GP after step 2(d)
edges of F — Fy

Figure 3: Construction of G in the case of vertex connectivity.

(i) s € V,.
Corresponding to edge (s,v) we added an edge in GP, from the child s, of s
(on the path from s to v) to . Since s, is a block vertex, it is distinct from w.
Clearly s, is an ancestor of u, and hence reachable from r. Thus v is reachable
from r and so is u, yielding a contradiction.

(ii) s € V.
We add an edge in G” from s to v. Since s is reachable from r (because it is an
ancestor of u), so is v and hence u, yielding a contradiction.

(b) sis not an ancestor of v. Let t = [.c.a(s,v).

(i) t e V,.
Corresponding to edge (s,v) we added an edge in G, from the child ¢, of ¢ (on
the path from ¢ to v) to v. Since ¢, € V}, it is distinct from u. It is reachable
from r and hence v is reachable from r, and so is u, yielding a contradiction.

(ii) t € V3.
Clearly ¢ is an ancestor of u, hence reachable from r. We added an edge in GP
from ¢ to v, hence v is reachable and u as well, yielding a contradiction.

Case 2: u € V.
Consider the cut vertex p(u). Notice that p(u) # r since r € V;. Let the roots of the
subtrees C1(p(u)), Cao(p(u)), . ..Cr(p(u)) be r1(=r),72,...7, where k is the degree of p(u).
Assume that Cy(p(u)) refers to the component containing u (hence ry = u). Partition the
components into two groups as follows. The first group contains all the components whose
roots are reachable from r, and the second group contains the rest. (Notice that both the
groups are non-empty.) Since G is biconnected there must exist an edge (s,v) where s
belongs to a vertex in C;(p(u)) and v belongs to a vertex in C;(p(u)), such that Ci(p(u))

and C;(p(u)) belong to the first and second groups respectively.

(a) s is an ancestor of v.

(i) s € V,.
We added an edge from the child s, of s to v in GP. Since s, is a block vertex,
it is distinct from p(u) and reachable from r. Hence v is reachable from r, and
so is r; giving a contradiction.

(ii) s € V.
We added an edge in GP from s to v. Since s is an ancestor of p(u) it is reachable
from 7. Hence v is reachable from r, and so is r;, giving a contradiction.

(b) sis not an ancestor of v. Let t = [.c.a(s,v).

(i) ¢ £ plu)
There is an edge in GP from either t or t,, to v. Since both t and ¢, are reachable
from 7, so is v and hence r;, giving a contradiction.

(i) ¢ = p(u).
Note that r; is reachable from r. Because of edge (s, v) we generate the following
edges in GP: r; — s,r; — v,8 — v,v — s. Hence v is reachable from r, and so
is r;, yielding a contradiction.

a

Lemma 4.6 If G is 2-vertex connected, then the vertex connectivity of the graph Gqo together
with the edges in Aug is at least 2.

Proof: Assume that despite the addition of the edges in Aug to Gy, the resulting graph has a
cut vertex u. We will now show that u is destroyed as a cut vertex in the tree I', and hence in GJ.
Consider the components Cy(u),...,Cye)(u) in I'. Partition the components into two groups
as follows. The first group contains all the components that get connected to Cy(u) (by an edge
or a path) when the edges of Aug are superimposed on I'. The second group contains the rest.
Notice that both the groups are non-empty. Since GP is strongly connected all the vertices are
reachable from the root in the minimum weight branching. Since there are no outgoing edges
from u to its descendants by Observation 4.3, these must be an edge s — » in the branching
that satisfies the following. This edge has the property that s € C;(u) and v € Cj(u), where
Ci(u) and C;(u) belong to the first and second groups respectively. The edge that generated
s — v in Aug would connect C;(u) to Cj(u) in Go + Aug, yielding a contradiction. o

Lemma 4.7 The weight of Aug is less than twice the optimal augmentation. (Weight(Aug) <
2C™ where C* is the optimal augmentation weight.)

Proof: We prove the lemma by exhibiting a branching whose weight is at most twice the weight
of the optimal augmentation. Consider the minimum weight set of edges Aug* that would
increase the connectivity from 1 to 2. Consider all the directed edges that are “generated” by
edges that belong to Aug*. These directed edges together with the tree edges yield a strongly
connected graph with total weight on the edges at most 4C* (each edge of weight w; generated
at most four directed edges, each of weight w;). Now pick a minimum weight branching in this
graph. Notice that for each cross edge (u,v) (when neither u nor » is an ancestor of the other)
even though we generate four directed edges in G, no minimum weight branching will use more
than two of these four edges. (Otherwise, it will not be a valid branching.) Hence the branching
that we find has total weight at most 2C™. O

Theorem 4.8 There is an approximation algorithm to find an augmentation to increase the
vertex connectivity of a connected graph to 2 with weight less than twice the optimal augmentation
that runs in O(m + nlogn) time.

Proof: The correctness of the algorithm follows from Lemma 5 and Lemma 6. Since the
biconnected components can be found in O(m+n) time [AHU] and a minimum weight branching
can be found in O(m + nlogn) time [GGST86]. Since the least common ancestors for the m
pairs can be found in O(m + n) time by using the algorithm of Harel and Tarjan [HT84], the
theorem follows. O

5 Increasing Edge Connectivity to £

In this section, we show that it is possible to obtain an approximation factor of 2 for increasing
the edge connectivity of a graph to any k. The algorithm takes as input an undirected graph
Go(V, Ey) on n vertices and a set Feasible of m weighted edges on V, and finds a subset Aug of
edges which when added to Gy make it k-edge connected. The weight of Aug, is no more than
twice the weight of the least weight subset of edges of Feasible that increases the connectivity.
We also observe that the problem is N P-hard (for any k) by extending the proof that was given
by [FJ81] for incrementing 1-connected graphs to 2-connected optimally.

Consider a directed graph G with weights on the edges, and a fixed root r. How does one find
the cheapest directed subgraph HP that has k-edge disjoint paths from a fixed root 7 to each
vertex v 7 Gabow [G91a] gives the fastest implementation of a weighted matroid intersection
algorithm to solve this problem in O(kn(m + nlogn)logn) time. (See also [Ed79, FT89].)

To solve our problem (approximation algorithm), in the undirected graph G replace each
undirected edge (u,v) by two directed edges v — v and v — u with each edge having weight 0.
For each edge in the set Feasible (u,v) we replace it by two directed edges v — v and v — u
with weight w(u,v) (the weight of the undirected edge). Call this graph G”. Now run Gabow’s
algorithm on the graph G, asking for k-edge disjoint paths from each vertex to the root. If the
directed edge u — v is picked in H” and w(u,v) > 0 (we can assume all edges of set Feasible
have weight > 0 else we can always include it in Aug) we add (u,v) to Feasible. (This is a
generalization of the scheme in [KV92], where it was shown only for the case when Ej is empty.)

Lemma 5.1 The graph Eg+ Aug is a k-edge connected graph.

Proof: Suppose there is a cutset C of (k—1) edges in G}, = Go+ Aug. Assume that it separates
GG, into components C7 and C5. Let r be in (1. Consider a vertex v in Cy. It cannot be that
there were k-edge disjoint paths from r to v in GP (because of the cutset C). O

Theorem 5.2 The total weight of Aug is at most twice the weight of the optimal augmentation.

Proof: Consider the optimal augmentation Aug*. Consider the following subgraph: add the
anti-parallel edges corresponding to edges in Fig and Aug*. In this graph clearly there are k-edge
disjoint (directed) paths from r to each vertex v (by directing the undirected paths from r to v
appropriately). Thus the optimal solution to the problem (Aug) must have total cost less than
2 Aug™. |

6 Increasing Edge Connectivity from £ to & + 1 (for odd k)

The method described in Section 3 can be applied in a more general setting: to find an approx-
imation to the problem of increasing the edge connectivity of a k-edge connected graph (say
Gy = (V,Ey)) to k+ 1 when k is odd. The key idea is to use the representation of cuts that is
due to Karzanov and Timofeev [KT86]. We note that this structure was used by Naor, Gusfield
and Martel [NGM90] to solve the augmentation problem exactly for the unweighted case when
Aug allows an edge to be added between any pair. The structure itself can be constructed in
O(kn?) time. We briefly describe this structure in the following. In this structure each vertex
of G maps to exactly one vertex in the representation, i.e., each vertex of the representation
corresponds to a subset (possibly empty) of vertices of G. Moreover, the cuts of a graph can
be represented by a tree when the connectivity of G is odd; otherwise, the structure is a “tree-
like” structure. Denote this structure by 7. The cut information about G, is encoded as follows.
When £ is odd, the number of cuts in a k-edge connected graph is O(n) [DKL76]. Assume that
removing a cut (i.e., a set of k edges whose removal disconnects the graph) from G} results in
two components Hy and Hy where V(Gy) = V(H1) UV (H;). In 7 there exists an edge whose
removal results in two subtrees with the following property: the union of the subsets of the
vertices represented by the vertices of one of the subtrees is V/(H;) and of the other is V/(H3).

To increase the connectivity of G, construct 7 and a set of edges F on the vertices of 7 that
correspond to the set of edges Feasible. That is, for every (u,v) € Feasible, include an edge in I
between the unique pair of vertices of 7 that corresponds to u,». Now, run the algorithm Find
Fdge Aug with 7+ F for G and 7 for Gg. At the end of the algorithm, pick the subset of the
edges (denote it as Aug’) of Feasible that correspond to the edges of the output Aug. It follows
from Theorem 3.4 and the fact the 7 can be build in O(kn?) time that the time complexity of
the entire process is O(kn?). We establish the correctness of our method.

Lemma 6.1 The graph Er + Aug' is a (k+ 1)-edge connected graph.

Proof: Assume that there is a cutset C' of k edges in Ey + Aug’. Notice that all the edges of
C must come from F} as we assumed that G is k-edge connected. Assume that (' separates
the augmented graph into components Hy and Hs. The cut tree representation guarantees that
there is a tree edge in 7 that corresponds to C'. Denote the two subtrees resulting from removing
this tree edge by 7 and 75. Since this tree edge is not a bridge in 7 + Aug, by Lemma 3.2 there
is an edge of Aug that connects a vertex of 71 to a vertex of 7. There is an edge in Aug’ that
corresponds to this edge of Aug. But this edge must connect a vertex of Hy to a vertex of Hy
contradicting the assumption that H, is separated from Hy when C' is deleted from Gy + Aug'.
O

The next theorem follows from Lemma 3.3 and the observation that when the edges corre-
sponding the subset of edges from the optimal augmentation are added to 7, the resulting graph
is 2-edge connected.

Theorem 6.2 The total weight of Aug is at most twice the weight of the optimal augmentation.

Acknowledgments: We thank Professors Joseph JaJa and Uzi Vishkin for encouragement and
useful discussions. We would also like to thank the referees for useful comments on an earlier

draft.

References

[AHU] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer algorithms, Addison-
Wesley, 1974.

[DKL76] E.A. Dinits, A.V. Karzanov and M.L. Lomosonov, “On the structure of a family of minimal weighted
cuts in a graph,” Studies in Discrete Optimization [In Russian], A.A. Fridman (ear decomposition), Nauka,
Moscow, pp. 290-306, 1976.

[Ed79] J. Edmonds, “Matroid intersection,” Annals of Discrete Mathematics, No. 4, pp. 185-204, (1979).
[Ev79] S. Even, Graph Algorithms, Computer Science Press, Potomac, Md., 1979.

[ET76] K. P. Eswaran and R. E. Tarjan, “Augmentation problems,” SIAM Journal on Computing, Vol. 5, No. 4,
pp. 653-665, (1976).

[Fr90] A. Frank, “Augmenting graphs to meet edge-connectivity requirements,” 31st Annual Symposium on Foun-
dations of Computer Science, pp. 708-718, (1990).

[FI81] G. N. Frederickson and J. J4J4, “Approximation algorithms for several graph augmentation problems,”
SIAM Journal on Computing, Vol. 10, No. 2, pp. 270-283, (1981).

[FI82] G. N. Frederickson and J. J4J4, On the relationship between the biconnectivity augmentation and traveling
salesman problems,” Theoretical Computer Science, Vol. 19, No. 2, pp. 189-201, (1982).

[FT89] A. Frank and E. Tardos, “An application of submodular flows,” Linear Algebra and its Applications,
114/115, pp. 320-348, (1989).

[G91a] H. N. Gabow, “A matroid approach to finding edge connectivity and packing arborescences,” 23rd Annual
Symposium on Theory of Computing, pp. 112-122, (1991).

[G91b] H. N. Gabow, “Applications of a poset representation to edge connectivity and graph rigidity,” 32nd
Annual Symposium on Foundations of Computer Science, pp. 812-822, (1991).

. N. Gabow, Z. Galil, T. Spencer and R. E. Tarjan, cient algorithms for finding minimum
GGST86] H. N. Gab Z. Galil, T. S d R. E. Tarj “Effici lgorith for finding mini
spanning trees in undirected and directed graphs,” Combinatorica, 6 (2), pp. 109-122, (1986).

[HR91a] T. S. Hsu and V. Ramachandran, “A linear time algorithm for triconnectivity augmentation,” 32nd
Annual Symposium on Foundations of Computer Science, pp. 548-559, (1991).

[HR91b] T. S. Hsu and V. Ramachandran, “On finding a smallest augmentation to biconnect a graph,” 2"¢

Annual International Symposium on Algorithms, Springer Verlag LNCS 557, pp. 326-335, (1991).

[HT84] D. Harel and R. E. Tarjan, “Fast algorithms for finding nearest common ancestors,” STAM Journal on
Computing, Vol 13, No. 2, pp. 338-355, (1984).

[KB91] G. Kant and H. Bodlaender, “Planar Graph Augmentation Problems,” 1991 Workshop on Algorithms
and Data Structures, pp. 286-298, (1991).

[KT86] A.V.Karzanov and E.A. Timofeev, “Efficient algorithm for finding all minimal edge cuts of a nonoriented
graph,” Cybernetics, pp. 156-162, Translated from Kibernetika, No. 2, pp. 8-12, (1986).

[KV92] S. Khuller and U. Vishkin, “Biconnectivity approximations and graph carvings,” Technical Report
UMIACS-TR-92-5, CS-TR-2825, Univ. of Maryland, January (1992), Also to appear in 24th Annual Sym-
posium on Theory of Computing, (1992).

[NGM90] D. Naor, D. Gusfield and C. Martel, “A fast algorithm for optimally increasing the edge-connectivity,”
31st Annual Symposium on Foundations of Computer Science, pp. 698—707, (1990).

[RG77] A. Rosenthal and A. Goldner, “Smallest augmentations to biconnect a graph,” SIAM Journal on Com-
puting, Vol. 6, No. 1, pp. 55-66, (1977).

[Wa88] T. Watanabe, “An efficient augmentation to k-edge connect a graph,” Tech. Report C-23, Department of
Applied Math., Hiroshima University, April 1988.

[WN87] T. Watanabe and A. Nakamura, “Edge-connectivity augmentation problems,” Journal of Comp. and
Sys. Sciences, 35 (1), pp. 96-144, (1987).

