
Select and Permute: An Improved Online
Framework for Scheduling to Minimize Weighted

Completion Time ?

Samir Khuller1, Jingling Li1, Pascal Sturmfels2, Kevin Sun3, and Prayaag
Venkat1

1 University of Maryland, College Park, MD 20742
samir@cs.umd.edu, jinglingli1024@gmail.com, pkvasv@gmail.com

2 University of Michigan, Ann Arbor, MI 48109
psturm@umich.edu

3 Duke University, Durham, NC 27708
ksun@cs.duke.edu

Abstract. In this paper, we introduce a new online scheduling frame-
work for minimizing total weighted completion time in a general setting.
The framework is inspired by the work of Hall et al. [10] and Garg et
al. [8], who show how to convert an offline approximation to an online
scheme. Our framework uses two offline approximation algorithms—one
for the simpler problem of scheduling without release times, and another
for the minimum unscheduled weight problem—to create an online algo-
rithm with provably good competitive ratios.

We illustrate multiple applications of this method that yield improved
competitive ratios. Our framework gives algorithms with the best or
only-known competitive ratios for the concurrent open shop, coflow, and
concurrent cluster models. We also introduce a randomized variant of
our framework based on the ideas of Chakrabarti et al. [3] and use it to
achieve improved competitive ratios for these same problems.

Keywords: coflow scheduling, concurrent clusters, concurrent open shop, online
algorithms.

1 Introduction

Modern computing frameworks such as MapReduce, Spark, and Dataflow have
emerged as essential tools for big data processing and cloud computing. In order
to exploit large-scale parallelism, these frameworks act in several computation
stages, which are interspersed with intermediate data transfer stages. During

? All authors performed this work at the University of Maryland, College Park, under
the support of NSF REU Grant CNS 156019. We would also like to thank An Zhu
and Google for their support, and the LILAC program at Bryn Mawr College.



data transfer, results from computations must be efficiently scheduled for transfer
across clusters so that the next computation stage can begin.

The coflow model [5, 6] and the concurrent cluster model [11, 19] were intro-
duced to capture the distributed processing requirements of jobs across many
machines. In these models, the objective of primary theoretical and practical
interest is to minimize average job completion time [1, 5, 6, 14, 19, 20]. The con-
current open shop problem, a special case of the above models, has emerged as
a key subroutine for designing better approximation algorithms [1, 14, 19].

There has been a lot of work studying offline algorithms for these problems
(see [1, 14, 20] for the coflow model, [19] for the concurrent cluster model, and [4,
8, 18, 23] for the concurrent open shop model), but in real-world applications,
jobs often arrive in an online fashion, so studying online algorithms is critical
for accurate modeling of data centers.

Hall et al. [10] proposed a general framework which converts offline schedul-
ing algorithms to online ones. Inspired by this result, we introduce a new online
framework that improves upon the online algorithms of Garg et al. [8] for con-
current open shop and also gives the first algorithms with constant competitive
ratios for other multiple-machine scheduling settings.

1.1 Formal Problem Statement

In the concurrent open shop setting, the problem is to schedule a set of jobs
with machine-dependent components on a set of machines. Let J = {1, . . . , n}
denote the set of jobs and M = {1, . . . ,m} denote the set of machines. Each
job j has one component for each of the m machines. For each job j, we denote
the processing time of the component on machine i as pij , its release time as
rj , and its weight as wj . The different components of each job can be processed
concurrently and in any order, as long as no component of job j is processed
before rj . Job j is complete when all of its components have been processed; we
denote its completion time by Cj . Our goal is to specify a schedule of the jobs
on the machines that minimizes

∑
j∈J wjCj ; see Fig. 1 for an example.

Job 1 Job 2 Job 3

2

3

1

2

5

4

w1 = 3 w3 = 5w2 = 2

Machine 1

Machine 2

(a) An instance of concurrent open shop.

2

3

1

2

5

4

C2 = 2 C3 = 6 C1 = 9

Machine 1

Machine 2

(b) The optimal schedule

Fig. 1: All jobs are released at the same time, and the processing require-
ment for each job-machine combination is specified inside the blocks.

We follow the 3-field α |β| γ notation (see [9]) for scheduling problems, where
α denotes the scheduling environment, β denotes the job characteristics, and

2



γ denotes the objective function. As stated above, we focus on the case where
γ =

∑
j wjCj . In accordance with the notation of [10, 18, 19], we let α = PD

denote the concurrent open shop setting and α = CC denote the concurrent
cluster setting, see below for definitions.

1.2 Related Work

The concurrent open shop model is a relaxation of the well-known open shop
model that allows components of the same job to be processed in parallel on
different machines. Roemer [21] showed that PD ||

∑
j wjCj is NP-hard and after

several successive approximation hardness results [2, 18], Sachdeva and Saket [22]
showed that it is not approximable within a factor less than 2 unless P = NP, even
when job release times are identical. For this model, Wang and Cheng [23] gave
a 16

3 -approximation algorithm. This was later improved to a 2-approximation for
identical job release times [4, 8, 15, 18], matching the above lower bound, and a 3-
approximation for arbitrary job release times [1, 8, 15]. In the preemptive setting,
Im and Purohit [12] gave a (2+ ε)-approximation for arbitrary job release times.

In the online setting, Hall et al. [10] introduced a general framework that im-
proved the best-known approximation guarantees for several well-studied schedul-
ing environments. They showed that the existence of an offline dual ρ-approximation
yields an online 4ρ-approximation, where a dual ρ-approximation is an algorithm
that packs as much weight of jobs into a time interval of length ρD as the opti-
mal algorithm does into an interval of length D. Furthermore, they showed that
when m = 1, a local greedy ordering of jobs yields further improvements.

While the framework of Hall et al. [10] is entirely deterministic, Chakrabarti
et al. [3] gave a randomized variant with an improved competitive ratio guaran-
tee. Specifically, they showed a dual-ρ approximation algorithm can be converted
to an expected 2.89ρ-competitive online scheduling algorithm in the same set-
ting, improving upon the 4ρ competitive ratio of Hall et al. [10].

The online version of PD ||
∑
j wjCj was first studied by Garg et al. [8].

They noted that applying the framework of [10] was not straightforward, so they
focused on minimizing the weight of unscheduled jobs rather than maximizing
the weight of scheduled jobs. Using a similar approach to that of Hall et al. [10],
they gave an exponential-time 4-competitive algorithm and a polynomial-time
16-competitive algorithm for the online version of PD ||

∑
j wjCj .

The coflow scheduling model was first introduced as a networking abstraction
to model communications in datacenters [5, 6]. In the coflow scheduling problem,
the goal is to schedule a set of coflows on a non-blocking switch with m input
ports and m output ports, where any unused input-output ports can be con-
nected via a path through unused nodes regardless of other existing paths. Each
coflow is a collection of parallel flow demands that specify the amount of data
that needs to be transferred from an input port to an output port.

For Coflow |rj = 0|
∑
j wjCj , Qiu et al. [20] gave deterministic 64

3 and

randomized (8 + 16
√
2

3 ) approximation algorithms. For arbitrary release times,

they gave deterministic 67
3 and randomized 9 + 16

√
2

3 approximation algorithms.

3



Khuller and Purohit [14] later improved these deterministic approximations to 8
and 12 for identical and arbitrary release times respectively, and also gave a ran-
domized (3 + 2

√
2)-approximation algorithm for identical release times. Ahmadi

et al. [1] gave a deterministic 4-approximation and 5-approximation for identical
and arbitrary release times, respectively. Recently, Im and Purohit [12] achieved
a tight approximation ratio of 2+ε for arbitrary release times. To the best of our
knowledge, there are no known constant-factor competitive algorithms for online
coflow scheduling, although Li et al. [16] give a O(m lnn)-competitive algorithm
when all coflow weights are equal to 1, where m is the number of coflows and n
is the number of nodes in the network.

Finally, we mention the concurrent cluster model recently introduced by Mur-
ray et al. [19]. The concurrent cluster model generalizes the concurrent open shop
model by replacing each machine by a cluster of machines, where different ma-
chines in the same cluster may have different processing speeds. Each job still has
m processing requirements, but this requirement can be fulfilled by any machine
in the corresponding cluster. Murray et al. [19] give the first constant-factor ap-
proximations for minimizing total weighted completion time via a reduction to
concurrent open shop and a list-scheduling subroutine.

1.3 Paper Outline and Results

In Sect. 2, we introduce a general framework for designing online scheduling al-
gorithms for minimizing total weighted completion time. The framework divides
time into intervals of geometrically-increasing size, and greedily “packs” jobs
into each interval, and then imposes a locally-determined ordering of the jobs
within each interval. It is inspired by the framework of Hall et al. [10] and an
adaptation by Garg et al. [8].

In Sect. 3, we apply our framework to PD ||
∑
j wjCj . We show that an

offline exponential-time algorithm that optimally solves PD |rj = 0|
∑
j wjCj

yields an exponential-time 3-competitive algorithm for PD ||
∑
j wjCj . We also

combine the algorithms given by Garg et al. [8] and Mastrolilli et al. [18] to create
a polynomial-time 10-competitive algorithm for PD ||

∑
j wjCj . We conclude

Sect. 3 by giving a polynomial-time (3 + ε)-competitive algorithm when the
number of machines m is fixed. Details on the subroutines used in this section
are provided in the full version of this paper [13].

In Sect. 4, extending the ideas of Sect. 3, we apply our framework to online
coflow scheduling to design an exponential-time (4 + ε)-competitive algorithm,
and a polynomial-time (10 + ε)-competitive algorithm.

Section 5 describes an extension of the techniques of Chakrabarti et al. [3]
that produces a randomized variant of our framework that yields better com-
petitive ratio guarantees than the deterministic version. The full version of this
paper [13] describes the concurrent cluster model of Murray et al. [19]; we show
that extending subroutines used for the concurrent open shop setting yields an
online 19-competitive algorithm via our framework.

4



Table 1: A summary of online approximation guarantees and the best-known
previous results, where m denotes the number of machines, ε is arbitrarily
small, and “-” indicates the absence of a relevant result. The two numbers in
each entry of the “Our ratios” column denote the competitive and expected
ratio of our deterministic and randomized algorithms, respectively.

Problem Running time Our ratios Previous ratio
PD ||

∑
j wjCj polynomial 10, 7.78 16 [8]

PD ||
∑
j wjCj exponential 3, 2.45 4 [8]

PD ||
∑
j wjCj polynomial, fixed m 3 + ε, 2.45 + ε -

Coflow ||
∑
j wjCj polynomial 10 + ε, 7.78 + ε -

Coflow ||
∑
j wjCj exponential 4 + ε, 3.45 + ε -

CC ||
∑
j wjCj polynomial 19, 14.55 -

2 A Minimization Framework for Online Scheduling

In this section, we introduce our framework for online scheduling problems. To
motivate the key ideas of this section, we begin by briefly reviewing the work of
Hall et al. [10] and Garg et al. [8].

2.1 The maximization framework of Hall et al. [10]

The framework of Hall et al. [10] divides the online problem into a sequence of
offline maximum scheduled weight problems, each of which is solved using an
offline dual approximation algorithm.

Definition 1 (Maximum scheduled weight problem (MSWP) [10]). Given
a set of jobs, a non-negative weight for each job, and a deadline D, construct a
schedule that maximizes the total weight of jobs completed by time D.

Definition 2 (Dual ρ-approximation algorithm [10]). An algorithm for the
MSWP is a dual ρ-approximation algorithm if it constructs a schedule of length
at most ρD and has total weight at least that of the schedule which maximizes
the weight of jobs completed by D.

Fix a scheduling environment and suppose we have a dual ρ-approximation
for the MSWP. We divide time into intervals of geometrically-increasing size
by letting t0 = 0 and tk = 2k−1 for k = 1, . . . , L where L is large enough to
cover the entire time horizon. At each time tk, let R(tk) denote the set of jobs
that have arrived by tk but have not yet been scheduled. We run the dual ρ-
approximation algorithm on R(tk) with deadline D = tk+1 − tk = tk. In the
output schedule, we take only jobs which complete by ρD and schedule them
in the interval starting at time ρtk. Hall et al. [10] show that this framework
produces an online 4ρ-competitive algorithm.

5



2.2 The minimum unscheduled weight problem of Garg et al. [8]

Garg et al. [8] sought to apply the framework of Hall et al. [10] to the concurrent
open shop setting. They noted that devising a dual-ρ approximation algorithm
for concurrent open shop was difficult, so they instead proposed a variant of
the MSWP. The definitions below generalize those used by Garg et al. [8] to
arbitrary scheduling problems.

Definition 3 (Minimum unscheduled weight problem (MUWP)). Given
a set of jobs, a non-negative weight for each job, and a deadline D, find a subset
of jobs S which can be completed by time D and minimizes the total weight of
jobs not in S. We call this quantity the unscheduled weight.

Definition 4 ((α, β)-approximation algorithm). An algorithm for the MUWP
is an (α, β)-approximation if it finds a subset of jobs which can be completed by
αD and has unscheduled weight at most β times that of the subset of jobs with
minimum unscheduled weight that completes by D.

Note that a dual ρ-approximation for the MSWP is a (ρ, 1)-approximation
for the MUWP. With these definitions, Garg et al. [8] established constant-factor
approximations for PD ||

∑
j wjCj .

2.3 A minimization framework

We now describe a new framework inspired by the ideas of Hall et al. [10] and
Garg et al. [8]. For the settings we consider, previous online algorithms do not
impose any particular ordering of jobs within each interval, which can lead to
schedules with poor local performance. In our framework, we make use of a γ-
approximation to the offline version of the scheduling problem with identical
release times to address this issue.

As in the works of Hall et al. [10] and Garg et al. [8], we assume that all
processing times are at least 1. This is to avoid the extreme scenario that a
single job of size ε� 1 arrives just after time 0, and our framework waits until
time 1 to schedule, thus leading to arbitrarily large competitive ratio.

Let W denote the total weight of all the jobs in J , and let WAτ (WOPTτ )
denote the total weight of jobs that complete after time τ by our algorithm A
(by the optimal algorithm OPT ). Note that WAτ ,W

OPT
τ include the weight of

jobs not yet released at time τ . Let τ0 = 0, and for k ≥ 1, let τk = 2k−1, Ik
denote the kth interval [τk, τk+1), αIk denote [ατk, ατk+1), and R(τk) denote the
set of jobs released but not yet scheduled before τk by A.

Our online algorithmA works as follows. At each τk, run an (α, β)-approximation
algorithm on R(τk) with deadline D = τk+1−τk. Schedule the output set of jobs
in αIk using the offline γ-approximation algorithm.4

4 We make the critical assumption that the offline γ-approximation algorithm does not
increase the makespan of the given subset of jobs, so as to ensure that the schedule
fits inside of αIk. For the scheduling models studied in this paper, this assumption

6



Theorem 1. Algorithm A is (2αβ+γ)-competitive, with an additive αW term.

To prove Theorem 1, we first show that at each time step, A remains com-
petitive with the optimal schedule by incurring a time delay.

Lemma 1. For any k ≥ 0, we have WA
ατk+1

≤ βWOPTτk
.

Proof. Every job completed by OPT by τk must have been released before τk.
For each such job j, either our algorithm completed it before time τk or j ∈ R(τk).
The set of jobs completed by OPT by time τk gives a feasible solution to the
MUWP with deadline D = τk+1 − τk = τk and its total unscheduled weight is
WOPTτk

. Therefore, the optimal total unscheduled weight value for the MUWP
when considering all j ∈ R(τk) with deadline D is at most WOPTτk

. By the
definition of (α, β)-approximation, the claim follows. ut

The next lemma states that ordering jobs within each interval further ap-
proximates the optimal schedule closely. For a fixed subset S of jobs, let OPT (S)

denote the optimal schedule for S and C
OPT (S)
j denote the completion time of

job j in OPT (S). Also, let OPT 0(S) denote an optimal schedule that starts at

time 0 and ignores all job release times, and let C
OPT 0(S)
j denote the completion

time of job j in OPT 0(S).

Lemma 2. The weighted completion time for schedule OPT 0(S) is at most that
of schedule OPT (S); i.e.,∑

j∈S
wjC

OPT 0(S)
j ≤

∑
j∈S

wjC
OPT (S)
j .

Proof. The optimal schedule of S with release times defines a valid schedule for
S without release times, so the claim follows. ut

Recall that at each τk, A uses an (α, β)-approximation on the MUWP to
select a subset Sk of R(τk) to schedule within αIk using a γ-approximation that
ignores release times. Let CAj denote the completion time of job j in the schedule
produced by A, t(j) denote the largest index such that job j begins processing
after time τt(j), and δj = CAj − ατt(j) for each job j ∈ J (see Fig. 2). Let L be
the smallest time index such that the optimal schedule finishes by time τL, and
let Sk denote the set of jobs scheduled independently by A in the interval αIk.
Then Lemma 2 implies∑

j∈Sk

wjδj ≤ γ
∑
j∈Sk

wjC
OPT 0(Sk)
j ≤ γ

∑
j∈Sk

wjC
OPT (Sk)
j . (1)

will indeed hold. In fact, if it can be shown that the γ-approximation algorithm
also approximates the makespan criteria within some factor µ, then it is straight-
forward to incorporate this into the model, at the expense of an additional µ factor
in the approximation guarantee. For example, Chakrabarti et al. [3] provide bicrite-
ria approximation algorithms for the total weighted completion time and makespan
objective functions.

7



: : :

j

δj

τ0 τ1 τ2 τk−1 τk τk+1

CA
j = (τ1 − τ0) + : : :+ (τk − τk−1) + δj = τk + δj

Fig. 2: We let δj denote the distance between CAj and the begin-
ning of the interval in which job j completes.

Lemma 3. The weighted sum of the δj is at most γ times the optimal weighted
completion time; i.e., ∑

j∈J
wjδj ≤ γ

∑
j∈J

wjC
OPT
j .

Proof. Recall that S1, . . . , SL partition J , and notice that due to (1), we have

L∑
k=1

∑
j∈Sk

wjδj ≤ γ
L∑
k=1

∑
j∈Sk

wjC
OPT (Sk)
j ≤ γ

∑
j∈J

wjC
OPT
j , (2)

thus proving the lemma. ut

Proof (of Theorem 1). We rewrite the total weighted completion time of the
schedule produced by A to obtain the following.

∑
j∈J

wjC
A
j = α

L∑
k=1

(τk − τk−1)WAατk +
∑
j∈J

wjδj

= α

L∑
k=2

(τk − τk−1)WAατk + αWAατ1 +
∑
j∈J

wjδj

≤ 2α

L∑
k=1

(τk − τk−1)WAατk+1
+ αW +

∑
j∈J

wjδj

≤ 2αβ

L∑
k=1

(τk − τk−1)WOPTτk
+ αW +

∑
j∈J

wjδj

≤ (2αβ + γ)
∑
j∈J

wjC
OPT
j + αW ,

where the last two inequalities follow from Lemmas 1 and 3, respectively. ut

8



3 Applications to Concurrent Open Shop

Now we apply our minimization framework to PD ||
∑
j wjCj . In the full version

of this paper [13], we give an offline dynamic program that optimally solves
PD |rj = 0|

∑
j wjCj in exponential time, giving γ = 1 in our framework.

For the MUWP, in exponential time, we can iterate over every subset of jobs
to find a feasible schedule that minimizes the total weight of unscheduled jobs,
so this is a (1, 1)-approximation, giving α = β = 1. Thus, Theorem 1 yields the
following, which improves upon the competitive ratio of 4 from Garg et al. [8].

Corollary 1. There exists an exponential time 3-competitive algorithm for the
concurrent open shop setting.

In polynomial time, Garg et al. [8] provide a (2, 2)-approximation for the
MUWP, and Mastrolilli et al. [18] provide a 2-approximation for offline version
of PD |rj = 0|

∑
j wjCj . These results with Theorem 1 improve the ratio of 16

by Garg et al. [8]. We note that the additional additive term of αW in Theorem 1
is smaller than the additive 3W term in the guarantees of Garg et al. [8], for
both the exponential-time and polynomial-time cases.

Corollary 2. There exists a polynomial-time 10-competitive algorithm for the
concurrent open shop setting.

When the number of machines m is constant, there exists a polynomial-
time (1 + ε, 1)-approximation algorithm for the MUWP (see full version of this
paper [13]) by a reduction to the multidimesional knapsack problem. Further-
more, when m is fixed, Cheng et al. [7] gave a PTAS for the offline PD |rj =
0|

∑
j wjCj . Combining these results with Theorem 1 yields the following.

Corollary 3. There exists a polynomial time, (3 + ε)-competitive algorithm for
PD ||

∑
wjCj when the number of machines is fixed.

4 Applications to Coflow Scheduling

We now apply our framework to coflow scheduling, introduced by Chowdhury
and Stoica [5]. We are given a non-blocking network with m input ports and m
output ports. A coflow is a collection of parallel flows processed by the network.
We represent a coflow j by an m×m matrix Dj = (djio)i,o∈[m], where djio denotes
the integer amount of data to be transferred from input port i to output port o
for coflow j. Each port can process at most one unit of data per time unit, and
we assume that the transfer of data within the network is instantaneous.

The problem is to schedule a set of n coflows, each with a non-negative weight
wj and release time rj , that minimizes the sum of weighted completion times,
where the completion time of a coflow is the earliest time at which all of its flows
have been processed. We denote this problem by Coflow ||

∑
j wjCj .

9



As in Sect. 3, in exponential time, we can iterate over all subsets of coflows
to optimally solve the MUWP, giving a (1, 1)-approximation. Moreover, Im and
Purohit [12] proposed a (2 + ε)-approximation for offline coflow scheduling5.

Corollary 4. There exists an exponential-time (4+ε)-competitive algorithm for
online coflow scheduling.

Furthermore, we can show that the polynomial-time (2, 2)-approximation
for the MUWP for PD ||

∑
j wjCj of Garg et al. [8] can be applied to coflow

scheduling with the same approximation guarantees. Combined with the 4-
approximation of Ahmadi et al. [1], our framework yields the following.

Corollary 5. There exists a polynomial-time (10 + ε)-competitive algorithm for
online coflow scheduling.

To show that the (2, 2)-approximation for the MUWP for PD ||
∑
j wjCj of

Garg et al. [8] can be applied to coflow scheduling with the same approximation
guarantees, we recall the reduction from Coflow ||

∑
j wjCj to PD ||

∑
j wjCj

given by Khuller and Purohit [14]. Given an instance of coflow scheduling I, let
Lji =

∑m
o=1 d

j
io denote the total amount of data that co-flow j needs to transmit

through input port i, and similarly, we let Ljo =
∑m
i=1 d

j
io or output port o. From

this, create a concurrent open shop instance I ′ with a set M of 2m machines
(one for each port) and a set J of n jobs (one for each coflow), with processing
times psj set equal to Ljs for job j on machine s.

Now, the MUWP on I ′ can be formulated by the following integer program
of Garg et al. [8].

minimize
∑
j∈J

wj(1− xj)

subject to
∑
j∈J

pijxj ≤ D ∀i ∈M

xj ∈ {0, 1} ∀j ∈ J .

Let W ′ denote the optimal unscheduled weight for the MUWP on I ′, and
define W similarly. The algorithm of Garg et al. [8] solves the linear relaxation
of this integer program to obtain an optimal fractional solution x̄, and outputs
the set of jobs S′ = {j ∈ J | x̄j ≥ 1

2}. Letting W ∗ denote the objective function
value of an optimal solution of the LP relaxation, it is straightforward to check
that the total processing time of S′ on any machine is at most 2D, the total
unscheduled weight is at most 2W ∗, and W ∗ ≤ W ′. Hence, the algorithm of
Garg et al. [8] is indeed a (2, 2)-approximation for the MUWP in the concurrent
open shop environment.

5 Since permutation schedules are not necessarily optimal for coflow scheduling [6],
even finding a factorial-time optimal algorithm is nontrivial. For simplicity, we have
chosen to use a polynomial-time algorithm to achieve Corollary 4.

10



Lemma 4. The optimal unscheduled weight for the MUWP on I ′ is at most
that for the MUWP on I; i.e., W ′ ≤W .

Proof. The proof is essentially identical to that of Lemma 1 in [14]. Let S be the
optimal solution to the MUWP for I. Then there exists a schedule of the coflows
in S such that every coflow completes by the deadline D. Now consider the set
S′ of corresponding jobs in I ′. Processing job j ∈ S′ on machine s whenever
data is being processed for coflow j ∈ S on port s in the schedule for S gives
a schedule for S′ in which every job also completes by deadline D. Thus S′ is
a feasible solution to the MUWP for I ′ with objective function value equal to
that of the optimal solution S to the MUWP for I, and the claim follows. ut

Let S be the set of coflows in I corresponding to the jobs S′ defined above.

Lemma 5. In polynomial time, we can find a schedule for S that completes by
time 2D, and whose total unscheduled weight is at most 2W .

Proof. We know that for any machine s in I ′,
∑
j∈S′ psj =

∑
j∈S L

j
s ≤ 2D.

Thus, if we take any schedule for the coflows S without idle time, every port s
finishes processing data by time

∑
j∈S L

j
s ≤ 2D. Since all coflows complete at

the same time when all ports have finished processing the data, we get a schedule
in which all coflows in S will complete without idle time by time 2D.

The total unscheduled weight in I is the same as the total unscheduled weight
in I ′. By Lemma 4, the total unscheduled weight in I is at most 2W ′ ≤ 2W . ut

Hence, the (2, 2)-approximation for the MUWP for PD ||
∑
j wjCj of Garg

et al. [8] can be applied to Coflow ||
∑
j wjCj with the same guarantees.

5 A Randomized Online Scheduling Framework

In this section, we show how our ideas can be combined with the randomized
framework of Chakrabarti et al. [3] to develop an analogue of the deterministic
framework of Sect. 2.

The framework of Chakrabarti et al. [3] modify that of Hall et al. [10] (see
Sect. 2.1) by setting τk = η2k, where η ∈ [ 12 , 1) is a randomly chosen parameter.
After making this choice, the online algorithm proceeds exactly as before, by
applying the dual ρ-approximation to the MSWP at each interval.

Let COPTj denote the completion time of job j in an optimal schedule,
and let Bj denote the start of the interval (τk−1, τk] in which job j completes.
Chakrabarti et al. [3] show that if one takes η = 2−X , where X is chosen uni-
formly at random from (0, 1], then the following holds.

Lemma 6 ([3]). E[Bj ] = 1
2 ln 2C

OPT
j .

Hall et al. [10] showed how to produce a schedule of total weighted com-
pletion time at most 4ρ

∑
j wjBj . By linearity of expectation, one can apply

Lemma 6, so that the schedule produced has total weighted completion at most

11



2
ln 2ρ

∑
j wjC

OPT
j , resulting in a randomized 2

ln 2ρ ≤ 2.89ρ-competitive algo-
rithm.

We can directly adapt this idea of randomly choosing the interval end points
in our minimization framework to develop a randomized version of Theorem 1.
Specifically, we take τk = η2k, using the same η above, and run the framework
described in Sect. 2.3 using this new choice of interval end points. Note that
Lemma 1, Lemma 2, and Lemma 3 still hold with our new choice of τk.

Let A′ denote this randomized algorithm and using the same notation as in
Sect. 2.3, we can achieve the following result.

Theorem 2. Algorithm A′ is ( 1
ln 2αβ + γ)-competitive in expectation, with an

additive αW term.

Proof. The same steps as in the proof of Theorem 1 yield

∑
j∈J

wjC
A′

j ≤ 2αβ

L∑
k=1

(τk − τk−1)WOPTτk
+ αW +

∑
j∈J

wjδj .

By definition of Bj , we notice that

L∑
k=1

(τk − τk−1)WOPTτk
=

∑
j∈J

wjBj .

By linearity of expectation and Lemma 6, we conclude that

E[
∑
j∈J

wjC
A′

j ] ≤ (
1

ln 2
αβ + γ)

∑
j∈J

wjC
OPT
j + αW .

ut

Using the guarantee of Theorem 2, we can instantiate this framework in var-
ious scheduling settings and find values for α, β, γ to achieve improved competi-
tive ratios over our deterministic framework. The results obtained when applying
the same subroutines as we did for the framework of Sect. 2.3 are in Table 1.

Acknowledgements. We would like to thank Sungjin Im and Clifford Stein
for directing us to [3, 17], and William Gasarch for organizing the REU program.

References

1. Ahmadi, S., Khuller, S., Purohit, M., Yang, S.: On scheduling co-flows. To appear in
the proceedings of the 19th Conference on Integer Programming and Combinatorial
Optimization (2017)

2. Bansal, N., Khot, S.: Inapproximability of hypergraph vertex cover and applica-
tions to scheduling problems. In: ICALP. pp. 250–261. Springer (2010)

3. Chakrabarti, S., Phillips, C.A., Schulz, A.S., Shmoys, D.B., Stein, C., Wein, J.: Im-
proved scheduling algorithms for minsum criteria. In: ICALP. pp. 646–657. Springer
(1996)

12



4. Chen, Z.L., Hall, N.G.: Supply chain scheduling: Assembly systems. Tech. rep.,
University of Pennsylvania (2000)

5. Chowdhury, M., Stoica, I.: Coflow: A networking abstraction for cluster applica-
tions. In: HotNets. pp. 31–36 (2012)

6. Chowdhury, M., Zhong, Y., Stoica, I.: Efficient coflow scheduling with Varys. In:
ACM SIGCOMM CCR. vol. 44, pp. 443–454. ACM (2014)

7. Edwin Cheng, T., Nong, Q., Ng, C.T.: Polynomial-time approximation scheme for
concurrent open shop scheduling with a fixed number of machines to minimize the
total weighted completion time. Naval Research Logistics 58(8), 763–770 (2011)

8. Garg, N., Kumar, A., Pandit, V.: Order scheduling models: hardness and algo-
rithms. In: FSTTCS. pp. 96–107. Springer (2007)

9. Graham, R., Lawler, E., Lenstra, J., Kan, A.R.: Optimization and approximation
in deterministic sequencing and scheduling : a survey. Ann. Discrete Math. 5, 287–
326 (1979)

10. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms. Math. Oper. Res.
22(3), 513–544 (1997)

11. Hung, C.C., Golubchik, L., Yu, M.: Scheduling jobs across geo-distributed data-
centers. In: SoCC. pp. 111–124. ACM (2015)

12. Im, S., Purohit, M.: A tight approximation for co-flow scheduling for minimizing
total weighted completion time. arXiv preprint arXiv:1707.04331 (2017)

13. Khuller, S., Li, J., Sturmfels, P., Sun, K., Venkat, P.: Select and permute: An
improved online framework for scheduling to minimize weighted completion time.
arXiv preprint arXiv:1704.06677 (2017)

14. Khuller, S., Purohit, M.: Brief announcement: Improved approximation algorithms
for scheduling co-flows. In: SPAA. pp. 239–240. ACM (2016)

15. Leung, J.Y.T., Li, H., Pinedo, M.: Scheduling orders for multiple product types to
minimize total weighted completion time. Discrete Appl. Math. 155(8), 945–970
(2007)

16. Li, Y., Jiang, S.H.C., Tan, H., Zhang, C., Chen, G., Zhou, J., Lau, F.: Efficient
online coflow routing and scheduling. In: Proceedings of the 17th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing. pp. 161–170.
ACM (2016)

17. Lübbecke, E., Maurer, O., Megow, N., Wiese, A.: A new approach to online schedul-
ing: Approximating the optimal competitive ratio. ACM Transactions on Algo-
rithms (TALG) 13(1), 15 (2016)

18. Mastrolilli, M., Queyranne, M., Schulz, A.S., Svensson, O., Uhan, N.A.: Minimizing
the sum of weighted completion times in a concurrent open shop. Oper. Res. Lett.
38(5), 390–395 (2010)

19. Murray, R., Chao, M., Khuller, S.: Scheduling distributed clusters of parallel ma-
chines: Primal-dual and LP-based approximation algorithms. In: ESA (2016)

20. Qiu, Z., Stein, C., Zhong, Y.: Minimizing the total weighted completion time of
coflows in datacenter networks. In: SPAA. pp. 294–303. ACM (2015)

21. Roemer, T.A.: A note on the complexity of the concurrent open shop problem. J.
Sched. 9(4), 389–396 (2006)

22. Sachdeva, S., Saket, R.: Optimal inapproximability for scheduling problems via
structural hardness for hypergraph vertex cover. In: CCC. pp. 219–229. IEEE
(2013)

23. Wang, G., Cheng, T.E.: Customer order scheduling to minimize total weighted
completion time. Omega 35(5), 623–626 (2007)

13


