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Abstract

Lewis Carroll proposed a voting system in which the winner is the candidate, who with the
fewest changes in voter’s preferences becomes a Condorcet winner — a candidate who beats all
other candidates in pairwise majority-rule elections. Recently, Hemaspaandra, Hemaspaandra
and Rothe showed that determining the winner in Carroll’s system is complete for parallel access
to NP. Bartholdi, Tovey and Trick showed that when the number of candidates is constant, there
is a polynomial time algorithm for computing the winner. Unfortunately, the degree of their
polynomial has an exponential dependence on the number of candidates. In this paper we show
that there is a linear time algorithm for a fixed number of candidates.

1 Introduction

2 A linear time Algorithm

In this section we outline the main result, which is a linear time algorithm for computing the
DodgsonScore of a candidate. Suppose we wish to compute the DodgsonScore of candidate 3.

Suppose that there are n voters and k candidates. Each voter provides a preference list (per-
mutation) giving a rank ordering of each candidate. Since there are at most &! distinct preference
lists, we assume that for each preference list of type j, we have a count of the number of voters n;
having that preference list.

For candidate 7, we compute z. which is the number of votes that candidate 7 still needs to
beat candidate ¢. (If 7 is ahead of ¢ in at least half the preference lists, then this is 0.) Notice that
to make ¢ a Condorcet winner, we need to have i beat each other candidate.

The key idea is to define an integer program that will compute the Dodgson score of candidate
i. The size of this integer program will depend only on k£ (number of candidates), and not on n
(number of voters). To solve this integer program, we need to use an algorithm due to Lenstra [3].

Let list j be denoted by L(j) = (0]1, .. .,U;C).

For each preference list of type j, we have n; voters with this preference list. For each such 7,
we create {; integer variables Yjp, 1 < p <{;, where there are {; candidates “ahead” of candidate ¢
in this preference list. The variable Y]-p will denote the number of voters in whose lists, we want to

“promote” candidate 7 by p steps.
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The total cost C'(j) for the list of type j will be denoted by 25;]:1 p- Yjp.

Clearly, we require 25;]:1 Yjp < nj.

We also require that for each candidate ¢, we “promote” candidate ¢ over candidate ¢ by at
least z. votes. Luckily, this is an easy constraint to encode as follows.

In list of type j, let candidate ¢ be ahead of candidate i. Let Y(j, ¢) be the number of positions
by which candidate ¢ is ahead of candidate 7 on list type j. (If ¢ is preferred to ¢ and there is no

other candidate in between the two, then Y (j,¢) = 1.) Let L(j,¢) = Y/ if candidate c is

J
p=Y(4,c)
ahead of candidate ¢ on list type j and () otherwise.

We require that 3=, L(j,¢) > z..

Our objective function is to minimize }; C(7).
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