
LP Rounding for k-Centers with Non-uniform Hard Capacities
(Extended Abstract)

Marek Cygan∗, MohammadTaghi Hajiaghayi†, Samir Khuller†
∗IDSIA, University of Lugano, Switzerland. Email: marek@idsia.ch

†Department of Computer Science, University of Maryland, College Park, USA. Email: {hajiagha,samir}@cs.umd.edu

Abstract—In this paper we consider a generalization of the
classical k-center problem with capacities. Our goal is to select
k centers in a graph, and assign each node to a nearby center,
so that we respect the capacity constraints on centers. The
objective is to minimize the maximum distance a node has to
travel to get to its assigned center. This problem is NP -hard,
even when centers have no capacity restrictions and optimal
factor 2 approximation algorithms are known. With capacities,
when all centers have identical capacities, a 6 approximation
is known with no better lower bounds than for the infinite
capacity version.

While many generalizations and variations of this problem
have been studied extensively, no progress was made on the
capacitated version for a general capacity function. We develop
the first constant factor approximation algorithm for this
problem. Our algorithm uses an LP rounding approach to
solve this problem, and works for the case of non-uniform hard
capacities, when multiple copies of a node may not be chosen
and can be extended to the case when there is a hard bound on
the number of copies of a node that may be selected. Finally,
for non-uniform soft capacities we present a much simpler 11-
approximation algorithm, which we find as one more evidence
that hard capacities are much harder to deal with.

Keywords-approximation algorithms; k-center; non-uniform
capacities; hard capacities; LP rounding;

I. INTRODUCTION

The k-center problem is a classical facility location prob-
lem and is defined as follows: given an edge-weighted
graph G = (V,E) find a subset S ⊆ V of size at most
k such that each vertex in V is “close” to some vertex
in S. More formally, once we choose S the objective
function is maxu∈V minv∈S d(u, v), where d is the distance
function (a metric). The problem is known to be NP-hard
[2]. Approximation algorithms for the k-center problem
have been well studied and are known to be optimal [3]–
[6]. In this paper we consider the k-center problem with
non-uniform capacities. We have a capacity function L
defined for each vertex, hence L(u) denotes the capacity

The full version of this work can be found at [1]. The first author
was partially supported by ERC grant NEWNET reference 279352, ERC
Starting Grant PAAl 259515, Foundation for Polish Science. The first and
second author were supported in part by NSF CAREER award 1053605,
ONR YIP award N000141110662, DARPA/AFRL award FA8650-11-1-
7162, and a University of Maryland Research and Scholarship Award
(RASA). Research of the third author was supported by NSF CCF-0728839,
NSF CCF-0937865 and a Google Research Award.

of vertex u. The goal is to identify a set S of at most k
centers, as well as an assignment of vertices to “nearby”
centers. No more than L(u) vertices may be assigned to
a chosen center at vertex u. Under these constraints we
wish to minimize the maximum distance between a vertex
v and its assigned center φ(v). Formally, the cost of a
solution S is minS⊆V,|S|=k maxv∈V d(v, φ(v)) such that
|{v | φ(v) = u}| ≤ L(u) ∀u ∈ S where φ : V → S.

For the special case when all the capacities are identical,
a 6 approximation was developed by Khuller and Sussmann
[7] improving the previous bound of 10 by Bar-Ilan, Kortsarz
and Peleg [8]. In the special case when multiple copies of
the same vertex may be chosen, the approximation factor
was improved to 5. No improvements have been obtained
on these results in the last 15 years. The assumption that the
capacities are identical is crucial for both these approaches
as it allows one to select centers and then “shift” to a
neighboring vertex. In addition, one can use arguments such
as dNL e is a lower bound on the optimal solution; with
non-uniform capacities we cannot use such a bound. This
problem has resisted any progress at all, and no constant
approximation algorithm was developed for the non-uniform
capacity version.

In this work we present the first constant factor approx-
imations for the k-center problem with arbitrary capacities.
Moreover, our algorithm satisfies hard capacity constraints
and only one copy of any vertex is chosen. When multiple
copies of a vertex can be chosen then a constant factor
approximation is implied by our result for the hard capacity
version. For convenience, we discuss the algorithm for the
case when at most one copy of a vertex may be chosen.
Our algorithms use a novel LP rounding method to obtain
the result. In fact this is the first time that LP techniques
have been applied for any variation of the k-center problem.

While our constants are large, we do show via integrality
gap examples that the problem with non-uniform capacities
is significantly harder than the basic k-center problem. In
addition we establish that if there is a (3−ε)-approximation
for the k-center problem with non-uniform capacity con-
straints then P = NP . Such a result is known for the cost k-
center problem [9] and from that one can infer the result for
the unit cost capacitated k-center problem with non-uniform
capacities, but our reduction is a direct reduction from Exact



Cover by 3-Sets and considerably simpler. We would like to
note that for the k-supplier problem, which is k-center with
disjoint sets of clients and potential centers, a simple proof
of (3 − ε) approximation hardness under P 6= NP was
obtained by Karloff and can be found in [5].

In all cases of studying covering problems, the hard
capacity restriction makes the problems very challenging.
For example, for the simple capacitated vertex cover problem
with soft capacities, a 2 approximation can be obtained
by a variety of methods [10], [11] – however imposing a
hard capacity restriction makes the problem as hard as set
cover [12]. In the special case of unweighted graphs it was
shown that a 3 approximation is possible [12], which was
subsequently improved to 2 [13].

A. Related Facility Location Work

The facility location problem is a central problem in
operations research and computer science and has been a
testbed for many new algorithmic ideas resulting a number
of different approximation algorithms. In this problem, given
a metric (via a weighted graph G), a set of nodes called
clients, and opening costs on some nodes called facilities,
the goal is to open a subset of facilities such that the sum
of their opening costs and connection costs of clients to
their nearest open facilities is minimized. When the facilities
have capacities, the problem is called the capacitated facility
location problem. The first constant-factor approximation
algorithm for the (uncapacitated) version of this problem
was given by Shmoys, Tardos, and Aardal [14] and was
based on LP rounding and a filtering technique due to Lin
and Vitter [15]. A long series of improvements culminated
in a 1.5 approximation due to Byrka [16]. Up to now, the
best known approximation ratio is 1.488, due to Li [17]
who uses a randomized selection in Byrka’s algorithm [16].
Guha and Khuller [18] showed that this problem is hard
to approximate within a factor better than 1.463, assuming
NP 6⊆ DTIME[nO(log logn)].

Capacitated facility location has also received a great
deal of attention in recent years. Two main variants of
the problem are soft-capacitated facility location and hard-
capacitated facility location: in the latter problem, each
facility is either opened at some location or not, whereas in
the former, one may specify any integer number of facilities
to be opened at that location. Soft capacities make the
problem easier and by modifying approximation algorithms
for the uncapacitated problems, we can also handle this
case [14], [19]. Korupolu, Plaxton, and Rajaraman [20]
gave the first constant-factor approximation algorithm that
handles hard capacities, based on a local search procedure,
but their approach works only if all capacities are equal.
Chudak and Williamson [21] improved this performance
guarantee to 5.83 for the same uniform capacity case. Pál,
Tardos, and Wexler [22] gave the first constant performance
guarantee for the case of non-uniform hard capacities. This

was recently improved by Mahdian and Pál [23] and Zhang,
Chen, and Ye [24] to yield a 5.83-approximation algorithm.
All these approaches are based on local search. The only
LP-relaxation based approach for this problem is due to
Levi, Shmoys and Swamy [25] who gave a 5-approximation
algorithm for the special case in which all facility opening
costs are equal (otherwise the LP does not have a constant in-
tegrality gap). The above approximation algorithms for hard
capacities are focused on the uniform demand case or the
splittable case in which each unit of demand can be served
by a different facility. Recently, Bateni and Hajiaghayi [26]
considered the unsplittable hard-capacitated facility location
problem when we allow violating facility capacities by a 1+ε
factor (otherwise, it is NP-hard to obtain any approximation
factor) and obtain an O(log n) approximation algorithm for
this problem.

A problem very close to both facility location and k-
center is the k-median problem in which we want to open
at most k facilities (like in the k-center problem) and the
goal is to minimize the sum of connection costs of clients
to their nearest open facilities (like facility location). If
facilities have capacities the problem is called capacitated
k-median. The approaches for uncapacitated facility location
often work for k-median. In particular, Charikar, Guha,
Tardos, and Shmoys [27] gave the first constant factor
approximation for k-median based on LP rounding. The
best approximation factor for k-median is 3 + ε, for an
arbitrary positive constant ε, via the local search algorithm
of Arya et al. [28]. Unfortunately obtaining a constant
factor approximation algorithm for capacitated k-median
still remains open despite consistent effort. The methods
used to solve uncapacitated k-median or even the local
search technique for capacitated facility location all seem to
suffer from serious drawbacks when trying to apply them for
capacitated k-median. For example standard LP relaxation is
known to have an unbounded integrality gap [27]. The only
previous attempts with constant approximation factors for
this problem violate the capacities within a constant factor
for the uniform capacity case [27] and the non-uniform
capacity case [29] or exceed the number k of facilities by a
constant factor [30].

CAPACITATED k-CENTER PROBLEM
Input: An undirected graph G = (V,E), a capacity
function L : V → N and an integer k.
Output: A set S ⊆ V of size k, and a function φ : V →
S, such that for each u ∈ S, |φ−1(u)| ≤ L(u).
Goal: Minimize maxv∈V distG(v, φ(v)).

Removing the metric: We employ the standard “thresh-
olding” method used for bottleneck optimization problems.
We can assume that we guess the optimal solution, since
there are polynomially many distinct distances between pairs
of nodes. Once we guess the distance correctly, we create
an unweighted graph consisting of those edges uv such



that d(u, v) ≤ OPT . We henceforth assume that we are
considering the problem for an undirected graph G.

By a c-approximation algorithm we denote a polynomial
time algorithm, that for an instance for which there exists
a solution with objective function equal to 1, returns a
solution using distances at most c. Note that the distance
function dist(u, v), measures the distance in the unweighted
undirected graph.

In the soft-capacitated version S can be a multiset, that
is one can open more than one center at a vertex. To avoid
confusion we call the standard version of the problem hard-
capacitated.

B. Our results
While LP based algorithms have been widely used for

uncapacitated facility location problems as well as capaci-
tated versions of facility location with soft capacities, these
methods are not of much use for problems in dealing with
hard capacities due to the fact that they usually have an
unbounded integrality gap [22], [27].

For general undirected graphs this is also the case for the
capacitated k-center problem. Consider the LP relaxation for
the natural IP, which we denote as LP1. We use yu as an
indicator variable for open centers.∑

u∈V yu = k; (1)
xu,v ≤ yu ∀u, v ∈ V (2)∑
v∈V xu,v ≤ L(u)yu ∀u ∈ V (3)∑
u∈V xu,v = 1 ∀v ∈ V (4)

0 ≤ yu ≤ 1 ∀u ∈ V (5)
xu,v = 0 ∀u, v ∈ V distG(u, v) > 1 (6)
xu,v ≥ 0 ∀u, v ∈ V (7)

For the sake of presentation we have introduced variables
xu,v for all u, v, even if the distance between u and v
in G is greater than one. We will use those variables in
our rounding algorithm. Furthermore in constraints (1) and
(4) we used equality instead of inequality to make our
rounding algorithm and lemma formulations simpler. In the
soft-capacitated version the yu ≤ 1 part of constraint (5)
should be removed. Note that we are only interested in
feasilibity of LP1, and there is no objective function.

For an undirected graph G = (V,E) and a positive integer
δ, by Gδ we denote the graph (V,E′), where uv ∈ E′ iff
distG(u, v) ≤ δ. By an integrality gap of LP1 we mean
the minimum positive integer δ such that if LP1 has a
feasible solution, then the graph Gδ admits a capacitated
k-center solution. As this is usually the case for capacitated
problems, by a simple example we prove LP1 has unbounded
integrality gap for general graphs. Due to space limitations,
proofs of theorems marked with a spade symbol (♠) are
postponed to the full version of this paper.

Theorem I.1 (♠). LP1 has unbounded integrality gap, even
for uniform capacities.

However, interestingly, if we assume that the given graph
is connected, the situation changes dramatically. Our main
result is, that both for hard and soft capacitated version of the
k-center problem, even for non-uniform capacities, LP1 has
constant integrality gap for connected graphs. Moreover by
using novel techniques we show a corresponding polynomial
time rounding algorithm, which consists of several steps,
described at high level in the following subsection. The
actual algorithm is somewhat complex, although it can be
implemented quite efficiently.

Theorem I.2. There is a polynomial time algorithm, which
given an instance of the hard-capacitated k-center problem
for a connected graph, and a fractional feasible solution for
LP1, can round it to an integral solution that uses non-zero
xu,v variables for pairs of nodes with distance at most c.

Corollary I.3. The integrality gap of LP1 for connected
graphs is bounded by a constant, and there is a constant
factor approximation algorithm for connected graphs.

To simplify the presentation we do not calculate the exact
constant proved in the above corollary, but it is in the order
of hundreds. As a counterposition, for soft capacities in the
full version we present a much simpler 11-approximation
algorithm, which we find as one more evidence that hard
capacities are much harder to deal with.

Theorem I.4 (♠). For connected graphs there is a polyno-
mial time rounding algorithm, upper bounding the integrality
gap of LP1 by 11 for soft-capacities.

By using standard techniques one can restrict the capaci-
tated k-center problem to connected graphs.

Theorem I.5 (♠). If there exists a polynomial time c-
approximation algorithm for the capacitated k-center prob-
lem in connected graphs, then there exists a polynomial time
c-approximation algorithm for general graphs.

Therefore we prove there is a constant factor approxima-
tion algorithm for the hard-capacitated k-center problem1.
Our results easily extend to the case when there is an
upper bound U(u) of the number of times vertex u may
be chosen as a center. Constraint 5 should be modified to
be 0 ≤ yu ≤ U(u) to yield a relaxation LP2. We can
employ the same rounding procedure as discussed for the
hard capacity case with U(u) = 1.

The proof of the following theorem is omitted.

Theorem I.6 (♠). There is a polynomial time algorithm,
which given an instance of the hard-capacitated k-center
problem for a connected graph, and a fractional feasible
solution for LP2, can round it to an integral solution that

1With some care, perhaps some of the constants can be improved,
however our focus was to show that a constant approximation is obtainable
using LP rounding.



uses non-zero xu,v variables for pairs of nodes with distance
at most c.

While our constants are large, we do show via integrality
gap examples that the problem with non-uniform capacities
is significantly harder than the basic k-center problem.

Theorem I.7 (♠). For connected graphs the integrality gap
of LP1 is at least 5 for uniform-hard-capacities and at least
4 for uniform-soft-capacities.

Moreover in the non-uniform hard-capacitated case, the
integrality gap of LP1 for connected graphs is at least 7,
even if all the non-zero capacities are equal.

Despite the fact, that the algorithm of [7] for uniform
capacities was obtained more than a decade ago, no lower
bound for the capacity version (neither soft nor hard), better
than the trivial 2−ε, derived from the uncapacitated version,
is known. We believe that the integrality gap examples,
presented in this paper, are of independent interest since
they may help in proving a stronger lower bound for the
capacitated k-center problem with uniform capacities.

To make a step in this direction we investigate lower
bounds for the non-uniform case. By a reduction from the
cost k-center problem [9] one can show that there is no
(3− ε)-approximation for the capacitated k-center problem
with non-uniform capacities. By a simple reduction from
Exact Cover by 3-Sets, in the full version, we prove the
same result under the assumption P 6= NP .

Finally we give evidence that our LP approach might be
the proper tool for solving the capacitated k-center problem.
The proof of the following theorem shows that when the
Khuller-Sussmann algorithm fails to find a solution then
in fact there is no feasible LP solution for that guess of
distance. The smallest radius guess for which the algorithm
succeeds, proves an integrality gap on the LP. Considering
the result of Theorem I.7, it follows that for uniform
capacities the gap in the analysis is small, since our bounds
are tight up to an additive +1 error.

Theorem I.8 (♠). For connected graphs the integrality gap
of LP1 is at most 6 for uniform-hard-capacities and at most
5 for uniform-soft-capacities.

C. Our techniques

We assume that G is connected and that LP1 has a feasible
solution for the graph G. We call two functions x : V ×
V→R+ ∪ {0} and y : V→R+ ∪ {0} an assignment even
if (x, y) is potentially infeasible for LP1. In other words
initially we have a feasible fractional solution, in the end
we will obtain a feasible integral solution, although during
the execution of our rounding algorithm an assignment (x, y)
is not required to be feasible. Furthermore without loss of
generality we assume that for a vertex v with L(v) = 0 we
have yv = 0.

We need to show that there exists a constant δ such that
if for a connected component LP1 has a feasible solution,
then one can (in polynomial time) find an integral feasible
solution for Gδ .

Definition I.9 (δ-feasible solution). An assignment is called
δ-feasible if it is feasible for the graph Gδ .

Note that the only difference between LP1’s for the graphs
G and Gδ is constraint (6).

Definition I.10 (radius(x,y)). For a δ-feasible solution (x, y)
to LP1 we define a function radius(x,y) : V→{0, . . . , δ}
which for a vertex u assigns the greatest integer i such that
there exists a vertex v with distG(v, u) = i and xu,v > 0
(if no such i exists then radius(x,y)(u) = 0).

We give a brief overview of the following sections.
Initially we start with a 1-feasible (fractional) solution (x, y)
to LP1 and our goal is to make it integral. We perform
several steps where in each step we get more structure on
the δ-feasible solution but at the same time the value of δ
will increase.

In Sections II-A-II-D in four non-trivial steps we round
the y-values of a feasible solution. First, in Section II-A
we define a caterpillar structure which is a key structure
in the rounding process. In Section II-B we define the y-
flow and chain shifting operations which allow for trans-
ferring y-values between distant vertices using intermediate
vertices on the caterpillar structure. Unfortunately, because
the capacities are non-uniform and hard, to find a rounding
flow for a caterpillar structure we need more assumptions.
To overcome this difficulty in the most challenging part
of the rounding process, that is in Section II-C, we define
a safe caterpillar structure and show how to split a given
caterpillar structure into a set of safe caterpillar structures
(at the cost of increasing radius of the δ-feasible solution).
In Section II-D we design a rounding procedure for a safe
caterpillar structure, obtaining a c-feasible solution with
integral y-values, for some constant c. We would like to note,
that for uniform capacities every caterpillar structure is safe,
therefore for non-uniform capacities we have to design much
more involved tools comparing to the previously known
uniform capacities case.

Finally in Section II-E we show, that using standard
techniques, when we have integral y-values then rounding x-
values is simple, obtaining a constant factor approximation
algorithm.

II. LP ROUNDING FOR HARD-CAPACITIES

A. Group shifting and caterpillar structure

In the first phase of our procedure we obtain a path-
like structure containing all vertices with non-integral y-
values. We first define the notion of shifting values between
variables of LP1 relaxation.



Definition II.1 (shifting). For an assignment (x, y) for the
LP , two distinct vertices a, b ∈ V and a positive real α ≤
min(ya, 1 − yb) such that L(a) ≤ L(b) by shifting α from
a to b we consider the following operation:

1) Let ε = α
ya

; for each v ∈ V let ∆v = εxa,v , decrease
xa,v by ∆v and increase xb,v by ∆v .

2) Increase yb by α, and decrease ya by α.

Lemma II.2 (♠). Let (x, y) be a δ-feasible solution to LP .
Let (x′, y′) be a result of shifting α from a to b, for some
α, a, b such that L(a) ≤ L(b), 0 < α ≤ min(ya, 1 − yb).
Then (x′, y′) is a (δ+ distG(a, b))-feasible solution and for
each vertex v 6= b we have radius(x′,y′)(v) ≤ radius(x,y)(v)
whereas radius(x′,y′)(b) ≤ max(radius(x,y)(a) +
distG(a, b), radius(x,y)(b)).

Definition II.3 (group shifting). For a δ-feasible solution
(x, y) and a set V0 ⊆ V by a group shifting we denote
the following operation. Assume V0 = {v1, . . . , v`}, where
L(vi) ≤ L(vi+1) for 1 ≤ i < `. As long as there are at
least two vertices in V0 with fractional y-values, let a be the
smallest, and b the greatest integer such that va, vb ∈ V0 are
vertices with fractional y-values. Shift min(ya, 1−yb) from
a to b.

Lemma II.4. Let (x, y) be a δ-feasible solution, V0 be
a subset of V and d = maxa,b∈V0

distG(a, b). After
group shifting on V0 we obtain a (δ + d)-feasible solution
(x′, y′), where there is at most one vertex in V0 with
fractional y-value and moreover for v ∈ V \ V0 we have
radius(x′,y′)(v) ≤ radius(x,y)(v).

To make a graph Hamiltonian we use the following lemma
known from 1960 [31], [32].

Lemma II.5. For any undirected connected graph G there
always exists a Hamiltonian path in G3 and one can find it
in polynomial time.

We define a caterpillar structure which is one of the key
ingredients of our rounding process. Intuitively we want to
define an auxiliary path-like tree, where adjacent vertices
are close in the original graph G, vertices with fractional y-
values are leaves of the tree, and all non-leaf vertices have
y-values equal to 1.

Definition II.6 (caterpillar structure). By a δ-caterpillar
structure for an assignment (x, y) we denote a sequence of
distinct vertices P = (v1, . . . , vp) together with a sequence
P ′ = (v′0, . . . , v

′
p+1) where:

1) for each i = 1, . . . , p we have yvi = 1,
2) for each i = 1, . . . , p−1 we have distG(vi, vi+1) ≤ δ,
3) for each i = 0, . . . , p + 1 either v′i = nil or v′i ∈

V \ {vj : j = 1, . . . , p},
4) for each i = 1, . . . , p if v′i 6= nil then L(vi) ≥ L(v′i),

0 < yv′i < 1, distG(vi, v
′
i) ≤ δ,

5) if v′0 6= nil then distG(v′0, v1) ≤ δ, 0 < yv′0 < 1,

6) if v′p+1 6= nil then distG(v′p+1, vp) ≤ δ, 0 < yv′p+1
<

1,
7) for each 0 ≤ i < j ≤ p + 1 if v′i 6= nil and v′j 6= nil

then v′i 6= v′j ,
8)

∑
v∈V (P ′) yv is integral.

We sometimes omit δ and simply write “caterpillar struc-
ture” when the value of δ is irrelevant.

yv1 = 1
L(v1) = 5

yv2 = 1
L(v2) = 1

yv3 = 1
L(v3) = 10

yv4 = 1
L(v4) = 2

yv′
1
= 0.4

L(v′1) = 5
yv′

3
= 0.9

L(v′3) = 1
yv′

4
= 0.5

L(v′4) = 1

yv′
0
= 0.2

L(v′0) = 15

Figure 1. Example of a δ-caterpillar structure
((v1, v2, v3, v4), (v′0, v

′
1, nil, v′3, v

′
4, nil)). Vertices connected by

edges are within distance δ in the graph G. Note that the sum of y-values
over all vertices is integral.

Lemma II.7. For a given feasible LP solution (x, y) we
can find a 5-feasible solution (x′, y′) together with a 21-
caterpillar structure (P, P ′) such that each vertex v ∈ V \
(V (P )∪V (P ′)) has an integral y-value in (x′, y′), and the
first and last element of the sequence P ′ equals nil.

Proof: Consider the following algorithm for construct-
ing sets S, S′ and a function Φ : V→S′. The set S will be an
inclusionwise maximal independent set in G2 and moreover
we ensure that L(Φ(v)) ≥ L(v), for any v ∈ V .

1) Set V0 := V and S := S′ := ∅.
2) As long as V0 6= ∅ let v be a highest capacity vertex

in V0.
• Let f(v) be a highest capacity vertex in NG[v]

(potentially f(v) 6∈ V0).
• Add f(v) to S′ and for each u ∈ NG[NG[v]]∩V0

set Φ(u) = f(v).
• Add v to S and set V0 := V0 \NG[NG[v]].

Observe that each time we remove from the set V0 all
vertices that are within distance two from v, hence the set
S is an inclusion maximal independent set in G2. For this
reason vertices in the set S have disjoint neighborhoods and
moreover by constraints (4) and (2) of the LP1 we infer that
for each v ∈ V we have:∑

u∈N [v]

yu ≥
∑

u∈N [v]

xu,v = 1 (8)

We perform shifting operations to make sure all vertices in
the set S′ have y-value equal to one. Consider a vertex v ∈ S
and the corresponding vertex f(v) chosen by the algorithm.
As long as yf(v) < 1 take any u ∈ N [v], u 6= f(v) such
that yu > 0 and shift min(yu, 1 − yf(v)) from u to f(v).
Note that L(u) ≤ L(f(v)) by the definition of f(v) and for
this reason shifting is possible. By Lemma II.2 after all the



shifting operations we have a 3-feasible solution (x, y), since
before a shift from u to f(v) we have radius(x,y)(u) ≤ 1,
radius(x,y)(f(v)) ≤ 3 and distG(u, f(v)) ≤ 2. Moreover by
Inequality (8) we infer, that all the vertices in the set S′ have
y-value equal to one, since otherwise a shifting operation
from some u ∈ N [v] to f(v) would be possible.

Observe that by the maximality of the independent set S
in G2 the graph G5[S] is connected, otherwise we could
add a vertex to S still obtaining an independent set in
G2. Moreover for any two adjacent vertices u, v ∈ S in
G5[S], the vertices f(u), f(v) are adjacent in G7[S′]. By the
connectivity of G5[S], the graph G7[S′] is also connected.
By Lemma II.5 we can in polynomial time order the vertices
of S′ to obtain a Hamiltonian path P in G21[S′].

Currently for each vertex v from the set V \ S′ we have
radius(x,y)(v) ≤ 1. For each v ∈ S we use group shifting
on the set Φ−1(f(v)) \ S′. Since

max
a,b∈Φ−1(f(v))\S′

distG(a, b) ≤

max
a,b∈Φ−1(f(v))\S′

distG(a, v) + distG(v, b) ≤ 4 ,

by Lemma II.4 we obtain a 5-feasible solution (x, y) such
that all vertices in the set S′ have y-value equal to one
and moreover for each f(v) ∈ S′ the set Φ−1(f(v)) \ S′
contains at most one vertex with fractional y-value. Let
us assume that the already constructed path P is of the
form P = (v1, . . . , vp). We construct a sequence P ′ =
(nil, v′1, . . . , v

′
p,nil) where as v′i we take the only vertex

from Φ−1(vi) \ S′ that has fractional y-value, or we set
v′i := nil if Φ−1(vi) \ S′ has no vertices with fractional
y-value. Note that since the way we select vertices to the
sets S, S′ is capacity driven (recall as v we select the
highest capacity vertex in V0 and as f(v) we select a highest
capacity vertex in N [v]), for each vertex u ∈ Φ−1(vi) we
have L(u) ≤ L(vi). In this way we have constructed a 5-
feasible solution (x, y) together with a desired 21-caterpillar
structure (P, P ′).

As the reader might notice in the above proof we always
construct a caterpillar structure with v′0 = v′p+1 = nil. The
reason why the definition of a caterpillar structure allows
for v′0 and v′p+1 have non-nil values is that in Section II-C
we will split a caterpillar structure into two smaller pieces
and in order to have those pieces satisfy Definition II.6 we
need v′0 and v′p+1.

B. y-flow and chain shifting
In the previous section we defined a group shifting oper-

ation. Unfortunately we can only perform such an operation
if vertices are close. In this section we define notions of
y-flow and chain shifting which allow us to transfer y-
value between distant vertices. We will use those tools in
Sections II-C and II-D.

Definition II.8 (y-flow). For a given assignment (x, y) let
S ⊆ V and T ⊆ V be two disjoint sets and let F be a set

containing sequences of the form (α, v1, . . . , vt) represent-
ing paths, where α is a positive real, each vi ∈ V is a vertex
(for i = 1, . . . , t), v1 ∈ S, vt ∈ T , L(v1) ≤ L(vt) and for
i = 2, . . . , t−1 we have vi 6∈ S∪T, yvi = 1, L(vi) ≥ L(v1).
We call (α, v1, . . . , vt) a path transferring α from v1 to vt
through v2, . . . , vt−1. We denote v2, . . . , vt−1 as internal
vertices of the path (α, v1, . . . , vt).

The set F is a y-flow from S to T iff:
• for each v ∈ S the sum of values transferred from v in
F is at most yv ,

• for each v ∈ T the sum of values transferred to v in F
is at most 1− yv ,

• for each v ∈ V \ (S ∪T ) the sum of values transferred
through v in F is at most 1.

For a given y-flow F from S to T we define GF = (V,A)
as an auxiliary directed graph with the same vertex set as
G, where an arc (u, v) belongs to A iff there is a path in
F containing u and v as consecutive vertices in exactly
this order. We call the y-flow F acyclic iff the directed
flow graph GF is acyclic. Furthermore we define a function
fF : A→(0, 1], which for an arc (u, v) assigns the sum
of α values in all the paths in F that contain u and v
as consecutive vertices. Moreover by flF : A→R+ we
denote a function, which for an arc (u, v) assigns the sum
of terms L(s)α over all paths from F that start with α and
s ∈ S and contain u, v as consecutive elements. Intuitively
by fF ((u, v)) we denote the fractional number of centers
that are transferred from u to v, whereas by flF ((u, v)) we
denote the fractional number of vertices (clients) that were
previously covered by u and will be covered by v after the
shifting operation (see Fig. 2).

L(s1) = 5

L(s2) = 2

L(a) = 12 L(b) = 6

L(t3) = 5

L(t1) = 4

L(t2) = 20

fF ((s2, a)) = 0.8
flF ((s2, a)) = 1.6

fF ((s1, a)) = 0.2
flF ((s1, a)) = 1

fF ((a, b)) = 1
flF ((a, b)) = 2.6

fF ((b, t2)) = 0.2
flF ((b, t2)) = 0.4

fF ((b, t1)) = 0.6
flF ((b, t1)) = 1.2

fF ((b, t3)) = 0.2
flF ((b, t3)) = 1

Figure 2. The graph GF for an acyclic y-flow
F = {(0.2, s1, a, b, t3), (0.6, s2, a, b, t1), (0.2, s2, a, b, t2)} from
S = {s1, s2} to T = {t1, t2, t3}, where ys1 = 0.4, ys2 = ya = yb = 1,
yt1 = 0, yt2 = 0.8, yt3 = 0.1. Note that even though each path in F
has starting point capacity not greater than its ending point capacity the
vertex t1 ∈ T is reachable from s1 ∈ S in GF despite the fact that
L(s1) > L(t1).

Now we show that if we are given an acyclic y-flow
F then we can transfer y-values using a chain shifting
method without increasing the radius of vertices by too
much. Formal definitions and lemmas follow.

Definition II.9 (chain shifting). Let F be an acyclic y-



flow from S to T and let (x, y) be a δ-feasible solution. Let
GF = (V,A) be the auxiliary acyclic flow graph.

By chain shifting we denote the following operation:
• For each u, v ∈ V , set ∆u,v = 0.
• For each arc (u, a) ∈ A in reverse topological ordering

of GF :
– For each v ∈ V , let ∆ = xu,vflF (u, a)/(L(u)yu),

set ∆a,v = ∆a,v + ∆ and ∆u,v = ∆u,v −∆.
• For each u, v ∈ V , set xu,v = xu,v + ∆u,v .
• For each s ∈ S decrease ys by

∑
(s,u)∈A fF ((s, u)).

• For each t ∈ T increase yt by
∑

(u,t)∈A fF ((u, t)).

For a directed graph G = (V,A), for a vertex v, we denote
N in(v) = {u : (u, v) ∈ A} and Nout(v) = {u : (v, u) ∈
A}.

Lemma II.10 (♠). Let (x′, y′) be the result of the chain
shifting operation on a δ-feasible solution (x, y) according
to an acyclic y-flow F from S to T . If d is the greatest
distance in G between two adjacent vertices in GF , then
(x′, y′) is a (δ + d)-feasible solution, and for each vertex
v of indegree zero in GF , we have radius(x′,y′)(v) ≤
radius(x,y)(v), whereas for other vertices v, we have

radius(x′,y′)(v) ≤ max(radius(x,y)(v),

maxa∈Nin
GF

(v)(radius(x,y)(a) + distG(a, v))) .

Furthermore for each v ∈ V \ (S ∪ T ) its y-value is the
same in (x, y) and (x′, y′).

C. Separable caterpillar structure

If we knew that in the caterpillar structure (P, P ′) pro-
duced by Lemma II.7 the capacity of each vertex in P is
not smaller than the capacity of each vertex in P ′ then we
could skip this section. Unfortunately some vertices of V (P )
may have smaller capacity than some vertices of V (P ′) and
for this reason we define the notion of dangerous, safe and
separable caterpillar structures.

Definition II.11 (safe, dangerous). For a caterpillar struc-
ture P = (P = (v1, . . . , vp), (v

′
0, . . . , v

′
p+1)), by Γ(P) ⊆

V (P ) we denote the set containing all vertices vi, such that
there exist 0 ≤ i0 < i < i1 ≤ p + 1, such that v′i0 6= nil,
L(v′i0) > L(vi) and v′i1 6= nil, L(v′i1) > L(vi).

A caterpillar structure P is safe if Γ(P) = ∅ and
dangerous otherwise.

Definition II.12 (separable). Let (x, y) be a δ-
feasible solution and let P = (P = (v1, . . . , vp),
P ′ = (v′0, . . . , v

′
p+1)) be a dangerous caterpillar structure.

We call P separable iff there exists 1 ≤ i ≤ p such that
vi ∈ Γ(P), L(vi) = minv∈Γ(P) L(v) and either:
• S1 ≥ dS2e − S2, where S2 =

∑
j=i+1,...,p+1

v′
j
6=nil

yv′j and

S1 is the sum of values (1 − yv) where v ∈ V, v =
v′j , L(v) > L(vi) for some i < j ≤ p+ 1, or,

L(v1) = 5 L(v2) = 3 L(v3) = 8 L(v4) = 9 L(v5) = 3 L(v6) = 5 L(v7) = 2

yv′
1
= 0.1

L(v′1) = 1

yv′
3
= 0.8

L(v′3) = 2

yv′
4
= 0.9

L(v′4) = 8

yv′
6
= 0.7

L(v′6) = 5

yv′
7
= 0.3

L(v′7) = 2

yv′
0
= 0.2

L(v′0) = 10
0.3 0.3 0.2 0.2

0.1 0.2

Figure 3. A separable caterpillar structure (P, P ′), where Γ((P, P ′)) =
{v1, v2, v5} (note that v7 6∈ Γ((P, P ′)), since v′8 = nil). By dashed edges
an acyclic flow F = {(0.1, v2, v3, v4, v′4), (0.2, v2, v3, v4, v5, v6, v′6)}
from {v2} to {v′4, v′6} is marked with values fF printed in the middle of
each arc.

• S1 ≥ dS2e−S2, where S2 =
∑

j=0,...,i−1

v′
j
6=nil

yv′j and S1 is

the sum of values (1−yv) where v ∈ V, v = v′j , L(v) >
L(vi) for some 0 ≤ j < i.

We call such i as above a witness of separability of P .
A caterpillar structure that is not separable is called non-
separable.

The intuition behind the sums S1, S2 is as follows. The
sum S2 contains all the y-values of vertices of P ′ to the
right (or left) of i. Since we want to round all the y-values
of vertices of P ′, if we want to split the caterpillar structure
(P, P ′) by removing the edge vivi+1 (or vi−1vi), we need
to send dS2e − S2 units of flow to the part that does not
contain vi, in order to make the sum of y-values over all
the leaves in both new caterpillar structures integral. That
is to satisfy (8) of Definition II.6. In S1 we sum over all
vertices, that can potentially receive flow if we start a path
at vi, and the value (1− yv) is the y-value a vertex v may
receive.

An example of a separable caterpillar structure is depicted
in Fig. 3. Observe that a non-separable path structure may
be dangerous as in Fig. 4.

Lemma II.13 (♠). Let P = ((v1, . . . , vp), (v
′
0, . . . , v

′
p+1))

be a dangerous caterpillar structure and let i be an index
such that vi ∈ Γ(P) and L(vi) = minv∈Γ(P) L(v). More-
over let j be an index such that v′j 6= nil, L(v′j) > L(vi).
Then for any a ∈ [min(i, j),max(i, j)] we have L(va) ≥
L(vi).

Lemma II.14. Let P = ((v1, . . . , vp), (v0, . . . , vp+1)) be a
dangerous non-separable caterpillar structure and let ` =
minv∈Γ(P) L(v). For I = {i : 0 ≤ i ≤ p + 1 ∧ v′i 6=
nil ∧ L(v′i) > `} we have

∑
i∈I(1− yv′i) < 2.

Proof: Consider any vi ∈ Γ(P) such that L(vi) = `.
Let I1 = I ∩ [0, i− 1] and I2 = I ∩ [i+ 1, p+ 1] (note that
I = I1∪I2). We know that vi is not a witness of separability
hence each of the two sums S1 in Definition II.12 is strictly
smaller than 1, since otherwise we would have S1 ≥ 1 ≥
dS2e−S2. Consequently

∑
i∈I1(1− yv′i) < 1 and similarly∑

i∈I2(1− yv′i) < 1.
In the following lemma we use a procedure which given

a δ-caterpillar structure (P, P ′) produces a set of non-
separable δ-caterpillar structures. At very high level it checks



L(v1) = 7 L(v2) = 8 L(v3) = 3 L(v4) = 9 L(v5) = 3 L(v6) = 9 L(v7) = 4

yv′
1
= 0.7

L(v′1) = 1
yv′

3
= 0.8

L(v′3) = 2
yv′

4
= 0.2

L(v′4) = 2
yv′

5
= 0.8

L(v′5) = 1
yv′

6
= 0.6

L(v′6) = 3
yv′

7
= 0.5

L(v′7) = 4

yv′
0
= 0.4

L(v′0) = 10

0.6 0.6 0.6 0.4 0.4 0.4 0.4

0.4

Figure 4. A dangerous caterpillar structure (P, P ′), where Γ((P, P ′)) =
{v3, v5}. The caterpillar structure is non-separable because both for
i = 3 and i = 5 in Definition II.12 the sum S1 is at most 0.6,
while dS2e − S2 is equal to 0.9. By dashed edges an acyclic flow
F = {(0.6, v3, v2, v1, v′0), (0.4, v3, v4, v5, v6, v7, v′7)} from {v3} to
{v′0, v′7} is marked with values fF printed in the middle of each arc.

whether (P, P ′) is separable, and if yes it sets as i a witness
from Definition II.12 with the smallest value of L(vi). Next
an acyclic flow from vi to leaves of (P, P ′) is constructed
(see Fig. 3), and afterwards the procedure is run on two
caterpillar structures induced by the parts to the left, and to
the right of vi.

Lemma II.15 (♠). For a given feasible LP solution (x, y)
we can find a 68-feasible solution (x′, y′) together with a
set of vertex disjoint non-separable 21-caterpillar structures
S such that each vertex v outside of the set has an in-
tegral y-value in (x′, y′). Furthermore for each vertex v
that belongs to some caterpillar structure from S we have
radius(x′,y′)(v) ≤ 47.

In the following lemma we transform non-separable cater-
pillar structures into safe caterpillar structures.

Lemma II.16. There exist constants c, δ such that for a
given feasible LP solution (x, y) we can find a c-feasible
solution (x′, y′) together with a set of vertex disjoint safe
δ-caterpillar structures S such that each vertex v outside of
the set has an integral y-value in (x′, y′).

Proof: We use Lemma II.15 to obtain a set S of vertex
disjoint non-separable 21-caterpillar structures. Our goal is
to transform each dangerous caterpillar structure in S into a
safe caterpillar structure.

Consider a dangerous non-separable δ0-caterpillar struc-
ture P = ((v1, . . . , vp), (v

′
0, . . . , v

′
p+1)) ∈ S and let va be a

minimum capacity vertex in Γ(P). Moreover let I = {i :
0 ≤ i ≤ p + 1 ∧ v′i 6= nil ∧ L(v′i) > L(va)}. Construct
any acyclic y-flow which sends min(1,

∑
i∈I(1−yv′i)) from

{va} to {v′i : i ∈ I} (see Fig. 4). Such flow always exists
due to Lemma II.13.

Let Y = {va, v′a, v′a−1} \ {nil} and perform
group shifting on Y (note that a ≥ 1, since
va ∈ Γ(P)). Replace P in S with the (2δ0)-
caterpillar structure ((v1, . . . , va−1, va+1, . . . , vp),
(v′0, . . . , v

′
a−2, u, v

′
a+1, . . . , v

′
p+1)), where as u we set

the only vertex from Y with fractional y-value after group
shifting or we set u = nil if all vertices in Y have integral
y-values. We need to argue, that when u 6= nil, we have
L(u) ≤ L(va−1), in order to satisfy (4) of Definition II.6.
Observe, that if v′a 6= nil, then L(v′a) ≤ L(va), and similarly

if v′a−1 6= nil, then L(v′a−1) ≤ L(va−1). Hence to show
L(u) ≤ L(va−1) it is enough to show L(va) ≤ L(va−1),
but this follows from Lemma II.13, since va ∈ Γ(P).

Note, that each caterpillar structure will be modified
according to the above procedure at most twice, since
after one iteration the sum

∑
i∈I(1 − yv′i) either equals

zero or decreases by one, and by Lemma II.14 we have∑
i∈I(1−yv′i) < 2. Consequently by Lemmas II.10, II.4 we

obtain the desired set of vertex disjoint δ-caterpillar structure
together with a c-feasible solution.

D. Rounding safe caterpillar structures

In this section we describe how to round the c-feasible
solution (x′, y′) using the set of vertex disjoint safe cater-
pillar structures S from Lemma II.16. In order to do that we
introduce a notion of rounding flow which is a special kind
of y-flow defined for a caterpillar structure.

Definition II.17 (rounding flow). For a caterpillar structure
(P, P ′) and an assignment (x, y) we call F a rounding flow
iff F is a y-flow from S to T where S ∪ T = V (P ′), for
each v′i ∈ S we have fF ((v′i, vi)) = yv′i and for each v′i ∈ T
we have fF ((vi, v

′
i)) = 1−yv′i . Furthermore each flow path

from F can not go through a vertex from V \ (V (P ) ∪
V (P ′)).

In order to obtain a rounding flow for each vertex of
V (P ′) (which by definition have fractional y-values), we
have to decide whether it will be a source (member of S)
or a sink (member of T ). After chain shifting according to
F all sources should have y-value equal to zero whereas
all sinks should have y-value equal to one and consequently
all vertices from the caterpillar structure will have integral
y-value. In the following lemma we show that for each non-
separable caterpillar structure we can always find a rounding
flow in polynomial time.

Lemma II.18. For any safe δ-caterpillar structure (P, P ′)
and an assignment (x, y) there exists a rounding flow F
such that for any two adjacent vertices in GF their distance
in G is at most δ. Furthermore we can find such a rounding
flow in polynomial time.

Proof: We present a recursive procedure which con-
structs a desired rounding flow. Note that some recursive
calls of the procedure might potentially involve infeasible
assignments (x′, y′), however we prove that if the initial
call gives the procedure a safe δ-caterpillar structure, then
as a result we obtain a valid rounding flow.

Let us describe a procedure which is given a caterpillar
structure (P, P ′) together with an assignment y (the proce-
dure does not need the x part of an assignment). Denote
P = (v1, . . . , vp) and P ′ = (v′0, . . . , v

′
p+1). If V (P ′) = ∅

then we simply return the empty rounding flow. Otherwise
let i be the smallest integer such that the sum of y-values
of X = {v′0, . . . , v′i} \ nil is at least one (such i always



exists since the sum of all y-values in V (P ′) is integral by
(8) of Def. II.6). Note that since all vertices in V (P ′) have
fractional y-values we have i > 0. Let 0 ≤ i0 ≤ i be an
index such that v′i0 6= nil and v′i0 has the biggest capacity
in X . Let α =

∑
v∈X yv . If α = 1 then we recursively

construct a rounding flow F from S to T for a smaller cater-
pillar structure ((vi+1, . . . , vp), (nil, v′i+1, . . . , v

′
p+1)) and (i)

add to S the set of vertices X \ {v′i0} (ii) add to T the
vertex v′i0 (iii) for each v′j ∈ X \ {v′i0} add to F a flow
path (yv′j , v

′
j , vj , . . . , vi0 , v

′
i0

). In this case we return F as a
desired rounding flow for (P, P ′). Hence from now on we
assume α > 1 and α− 1 < yv′i . Consider two cases: i0 < i
and i0 = i.

First let us assume that i0 < i. We store z := yv′i and
temporarily set yv′i = α − 1. Next recursively construct a
rounding flow F from S ⊆ V (P ′′) to T ⊆ V (P ′′) for a
smaller caterpillar structure ((vi, . . . , vp), P

′′), where P ′′ =
(nil, v′i, . . . , v

′
p+1) (note that the sum of y-values in P ′′ is

integral). Now consider two cases:

• if v′i ∈ S then: (i) add to S vertices from X \ {v′i, v′i0}
(ii) add to T the vertex v′i0 (iii) for each v′j ∈ X \
{v′i0 , v

′
i} add to F a flow path (yv′j , v

′
j , vj , . . . , vi0 , v

′
i0

)

(iv) add to F a flow path (z − yv′i , v
′
i, vi, . . . , vi0 , v

′
i0

)
(v) set yv′i := z (vi) return F .

• if v′i ∈ T then: (i) add to S vertices from X \ {v′i, v′i0}
(ii) add to T the vertex v′i0 (iii) out of the flow
paths in F that end in v′i leave only that many, that
send exactly 1 − z units of flow and reroute the rest
paths to v′i0 through vertices vi−1, vi−2, . . . , vi0 (iv)
for each v′j ∈ X \ {v′i0 , v

′
i} add to F a flow path

(yv′j , v
′
j , vj , . . . , vi0 , v

′
i0

) (v) return F .

Now assume that i0 = i. We create a
smaller caterpillar structure ((va, vi+1, vi+2, . . . , vp),
(nil, v′a, v

′
i+1, . . . , v

′
p+1)), where va, v

′
a are two

newly created vertices with yv′a := α − 1 and
L(v′a) := L(va) := L(v′i1), where v′i1 is the second
biggest capacity vertex in the set X . Next run recursively
our procedure on the newly created caterpillar structure to
obtain a rounding flow F from S to T . Again, consider
two cases:

• if v′a ∈ S then: (i) set S := (S \{v′a})∪ (X \{v′i}) (ii)
set T := T ∪ {v′i} (iii) change in F all the paths that
start in v′a to start in X \ {v′i} (iv) add to F paths that
start in X and transfer 1− yv′i units of flow from X to
v′i (v) return F .

• if v′a ∈ T then: (i) set S := S ∪ (X \ {v′i, v′i1}) (ii) set
T := (T \ {v′a}) ∪ {v′i, v′i1} (iii) reroute some of the
flow paths from F that end in v′a to that transfer exactly
1−yv′i units of flow to vi′ (that is remove v′a as the last
vertex on those paths and extend the paths by vi, v′i) (iv)
reroute all the remaining flow paths in F that end in
v′a to v′i1 (that is remove v′a and extend those paths by
vi, vi−1, . . . , vi1 , v

′
i1

) (v) for each v′j ∈ X\{v′i, v′i1} add

to F a flow path (yv′j , v
′
j , vj , . . . , vi1 , v

′
i1

) (v) return F .
Finally we prove that if the procedure receives a safe

caterpillar structure then it returns a desired rounding flow.
The only property of the rounding flow that needs detailed
analysis is the assumption that each internal vertex of a
flow path has capacity not smaller than its the capacity of
its starting point. Let us assume that there exists a path in
F that starts in v′a, goes though vb and ends in v′c, where
L(v′c) ≥ L(v′a) > L(vb). This contradicts the assumption
that P is safe because vb ∈ Γ(P).

The following theorem summarizes Sections II-A, II-B,
II-C, II-D.

Theorem II.19. For a connected graph G, if LP1 has a
feasible solution then we can find a c-feasible solution with
integral y-values.

Proof: Using a feasible solution to LP1, by
Lemma II.16, we obtain a c-feasible solution (x′, y′), to-
gether with a set of vertex disjoint safe δ-caterpillar struc-
tures S, such that vertices that do not belong to any caterpil-
lar structure in S have integral y-value in (x′, y′). Next by
Lemma II.18 for each δ-caterpillar structure (P, P ′) ∈ S we
find a rounding flow F(P,P ′). Finally for each δ-caterpillar
structure (P, P ′) we perform chain shifting with respect to
F(P,P ′), and by Lemma II.10 we obtain a c′-feasible solution
(x′′, y′′) to LP1.

By Lemma II.16, vertices outside of S have integral y-
value in (x′, y′). Moreover by Definition II.17, after chain
shifting all the vertices in each caterpillar structure of S have
integral y-values in (x′′, y′′).

E. Rounding x-values
In this section we show how to extend Theorem II.19 to

obtain not only integral y-values, but also integral x-values.
The following lemma is standard (using network flows).

Lemma II.20. Let (x, y) be a δ-feasible solution such
that all y-values are integral. There is a polynomial time
algorithm that creates a δ-feasible solution which has both
x- and y-values integral.

As a consequence of Theorem II.19 and the above lemma
the proof Theorem I.2 follows.

III. CONCLUSIONS AND OPEN PROBLEMS

We have obtained the first constant approximation ratio for
the k-center problem with non-uniform hard capacities. The
approximation ratio we obtain is in the order of hundreds
(however we do not calculate it explicitly), so the natural
open problem is to give an algorithm with a reasonable
approximation ratio. Moreover, we have shown that the
integrality gap of the standard LP formulation for connected
graphs in the uniform capacities case is either 5 or 6, which
we think might be an evidence, that it should be possible to
narrow the gap between the known lower bound of (2−eps)
and upper bound 6 in the uniform capacities case.



ACKNOWLEDGEMENTS

We are thankful to anonymous referees for their helpful
comments and remarks.

REFERENCES

[1] M. Cygan, M. Hajiaghayi, and S. Khuller, “LP rounding
for k-centers with non-uniform hard capacities,” CoRR, vol.
abs/1208.3054, 2012.

[2] M. R. Garey and D. S. Johnson, Computers and intractability.
Freeman, 1979.

[3] T. Gonzalez, “Clustering to minimize the maximum inter-
cluster distance,” Theoretical Computer Science, vol. 38, pp.
293–306, 1985.

[4] D. Hochbaum and D. Shmoys, “A best possible heuristic for
the k-center problem,” Mathematics of Operations Research,
vol. 10, pp. 180–184, 1985.

[5] ——, “A unified approach to approximation algorithms for
bottleneck problems,” Journal of the ACM, vol. 33, pp. 533–
550, 1986.

[6] W. Hsu and G. Nemhauser, “Easy and hard bottleneck lo-
cation problems,” Discrete Applied Mathematics, vol. 1, pp.
209–216, 1979.

[7] S. Khuller and Y. J. Sussmann, “The capacitated k-center
problem,” SIAM J. Discrete Math., vol. 13, no. 3, pp. 403–
418, 2000.

[8] J. Bar-Ilan, G. Kortsarz, and D. Peleg, “How to allocate
network centers,” Journal of Algorithms, vol. 15, pp. 385–
415, 1993.

[9] J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsarz,
R. Krauthgamer, and J. Naor, “Asymmetric -center is log*

-hard to approximate,” J. ACM, vol. 52, no. 4, pp. 538–551,
2005.

[10] S. Guha, R. Hassin, S. Khuller, and E. Or, “Capacitated vertex
covering with applications,” J. Algorithms, vol. 48, no. 1, pp.
257–270, 2003.

[11] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan,
“Dependent rounding and its applications to approximation
algorithms,” J. ACM, vol. 53, no. 3, pp. 324–360, 2006.

[12] J. Chuzhoy and J. Naor, “Covering problems with hard
capacities,” in Proc of. FOCS’02, 2002, pp. 481–489.

[13] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srini-
vasan, “An improved approximation algorithm for vertex
cover with hard capacities,” JCSS, vol. 72, no. 1, pp. 16–33,
2006.

[14] D. Shmoys, E. Tardos, and K. Aardal, “Approximation algo-
rithms for facility location problems,” in Proc. of STOC’97,
1997, pp. 265–274.

[15] J. Lin and J. Vitter, “ε-approximations with minimum packing
constraint violation,” in Proc. of STOC’92, 1992, pp. 771–
782.

[16] J. Byrka, “An optimal bifactor approximation algorithm for
the metric uncapacitated facility location problem,” in Proc.
of APPROX’07, 2007, pp. 29–43.

[17] S. Li, “A 1.488 approximation algorithm for the uncapacitated
facility location problem,” in Proc. of ICALP’11, 2011, pp.
77–88.

[18] S. Guha and S. Khuller, “Greedy strikes back: Improved
facility location algorithms,” Journal of Algorithms, vol. 31,
pp. 228–248, 1999.

[19] K. Jain and V. V. Vazirani, “Approximation algorithms for
metric facility location and k-median problems using the
primal-dual schema and Lagrangian relaxation,” Journal of
the ACM, vol. 48, no. 2, pp. 274–296, 2001.

[20] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Analysis
of a local search heuristic for facility location problems,”
Journal of Algorithms, vol. 37, no. 1, pp. 146–188, 2000.

[21] F. A. Chudak and D. P. Williamson, “Improved approximation
algorithms for capacitated facility location problems,” Math.
Program., vol. 102, no. 2, Ser. A, pp. 207–222, 2005.

[22] M. Pál, É. Tardos, and T. Wexler, “Facility location with
nonuniform hard capacities,” in Proc. of FOCS’01, 2001, pp.
329–338.

[23] M. Mahdian and M. Pál, “Universal facility location,” in Proc.
of ESA’03, 2003, pp. 409–421.

[24] J. Zhang, B. Chen, and Y. Ye, “A multi-exchange local search
algorithm for the capacitated facility location problem,” in
Proc. of IPCO’04, 2004, pp. 219–233.

[25] R. Levi, D. B. Shmoys, and C. Swamy, “LP-based approxi-
mation algorithms for capacitated facility location,” in Proc.
of IPCO’04, 2004, pp. 206–218.

[26] M. H. Bateni and M. T. Hajiaghayi, “Assignment problem
in content distribution networks: unsplittable hard-capacitated
facility location,” ACM Trans. Algorithms, to appear. A pre-
liminary version appeared in Proc. of SODA’09, 2009, pages
805–814.

[27] M. Charikar, S. Guha, É. Tardos, and D. Shmoys, “A constant-
factor approximation algorithm for the k-median problem,” in
Proc. of STOC’99, May 1999, pp. 1–10.

[28] V. Arya, N. Garg, R. Khandekar, K. Munagala, and V. Pandit,
“Local search heuristics for k-median and facility location
problems,” in Proc. of STOC’01, 2001, pp. 21–29.

[29] J. Chuzhoy and Y. Rabani, “Approximating k-median with
non-uniform capacities,” in Proc. of SODA’05, 2005, pp. 952–
958.

[30] Y. Bartal, M. Charikar, and D. Raz, “Approximating min-sum
k-clustering in metric spaces,” in Proc. of STOC’01. New
York, NY, USA: ACM, 2001, pp. 11–20.

[31] J. J. Karaganis, “On the cube of a graph,” Canad. Math. Bull.,
vol. 11, pp. 295–296, 1968.

[32] M. Sekanina, “On an ordering of the set of vertices of a
connected graph,” Technical Report Publ. Fac. Sci. Univ.
Brno, vol. 412, 1960.


