Minimizing Communication Cost in Distributed
Multi-query Processing

Jian Li, Amol Deshpande, Samir Khuller

Department of Computer Science, University of Maryland, College Park, MD 20742, USA
{lijian, amol, samir }@cs.umd.edu

Abstract—Increasing prevalence of large-scale distributed the goal is tominimize the total communication costile
monitoring and computing environments such as sensor net- executing a large number of queries simultaneously in a dis-
works, scientific federations, Grids etc., has led to a renewed g ta environment. We note however that the algorithms we
interest in the area of distributed query processing and opti- develop are centralized. Our main focus is to optimally share
mization. In this paper we address a general, distributed multi- : . .
query processing problem motivated by the need to minimize the movement of data across multiple queries. We assume
the communication cost in these environments. Specifically we that thequery plansare provided as part of the input, which
address the problem of optimally sharing data movement across specify the operations that need to be performed on the data
the communication edges in a dlstrlbl_Jted communication net- jiamd \We allow the query plans to consist of genenary
work given a set of overlapping queries and query plans for s
them (specifying the operations to be executed). Most of the operators and place no restrictions on the types of operators
problem variations of our general problem can be shown to that can be used; however we assume that any node in the
be NP-Hard by a reduction from the Steiner tree problem. communication network is capable of executing any operator.
However, we show that the problem can be solved optimally if the |n application domains such as sensor networks, distributed
communication network is a tree, and present a novel algorithm - gyreams and publish-subscribe domains, these operators will
for finding an optimal data movement plan. For general commu- . - .
nication networks, we present efficient approximation algorithms typlcally be gggregate operators, in Wh_'Ch_Ca,S(a we allow par-
for several variations of the pr0b|em. Fina”y’ we present an t|a| aggregat|0n Of the resultS; Whel’eas n dIStI‘Ibuted databaseS,
experimental study over synthetic datasets showing both the need the operators will typically be relational operators like joins.
for exploiting the sharing of data movement and the effectiveness \We note that in this paper we do not addrgsm order
of our algorithms at finding such plans. optimizationissues, instead adopting a two-phase approach
where the join order decisions are made independently of the
scheduling and operator placement decisions [9], [10], [11],

Recent years have seen a re-emergence of large-scale [di8}. We plan to extend our algorithms to handle join order
tributed query processing in a variety of applications. Thisptimization and load balancing issues in future work.
has in part been fueled by an increasing number of scientificPrior analytical results on this problem have been limited
federations such as SkyServer [1], [2], GridDB [3] etcio the single-query optimization case (in the distributed query
where users may issue queries involving a large number gjitimization literature [13]) or to specific types of queries
distributed data sources. Many of these datasets tend todp@l/or specific forms of communication networks [7], [8]. In
huge, and as the scale of these federations and the nuRis paper, we develop a framework to address optimization
ber of users issuing queries against them increase, netweflgeneral query plans under a flexible communication model.
bandwidth is expected to become the key bottleneck [4je develop a novel algorithm that finds the optimal solution
Similarly in publish-subscribe systems and other distributédl polynomial time if the communication network is a tree,
stream processing applications, a large number of queries mgigending previous results by Silberstein and Yang [8]. The
be executed in a distributed manner across the network [5], [6ptimization problem can be shown to be NP-Hard when the
To enable high throughput and low latencies in presence g@mmunication graph is not a tree by a simple reduction from
high-rate data streams, the query processing operators mugstSteiner tree problem. In that case, we present a polynomial
be placed judiciously across the network to minimize thgme algorithm for the problem with a®(logn) approxi-
data movement cost. The emergence of large-scale monitorifigtion guarantee (this is a worst case bound on the quality
infrastructures such as wireless sensor networks poses simiiithe solution, compared to an optimal solution). We also
distributed query processing challenges; the queries mustdeelop several constant-factor approximation algorithms for
processed inside the network in a distributed fashion so that &@cial cases of the problem. Finally we present a performance
lifetime of the typically resource-constrained sensing devicegaluation over synthetic datasets to illustrate the need for
is maximized [7], [8]. sharing data movement when a large number of queries need

Although these applications may appear very different from be executed simultaneously in a distributed environment.
each other, the query optimization challenges they pose are
quite similar to each other. In this paper, we formulate anlee use the termselation, data sourceand data iteminterchangeably in
address a general multi-query optimization problem whet@s paper.

I. INTRODUCTION

A. Outline well. In contrast, we allow arbitrary-sized data items and put

We begin with a brief discussion of related work in SectioR© restrictions on the intermediate result sizes either.

Il. We formulate the multi-query optimization problem and !N content delivery networks and publish-subscribe systems,
summarize our main algorithmic results in Section 1ll. Wéhe goal is to transmit the information from a set of sources
then present a polynomial-time algorithm to find the optima® & set of sinks as efficiently as possible (see e.qg. [25], [26],
plan that minimizes the total communication cost when tHé7], [28]). Although some of this work has considered the

communication graph is restricted to be a tree (Section IV§sues in allowing users to subscribe to aggregate functions
We then consider arbitrary communication graphs, and pres€Mer the data sources, we are not aware of any work that
several approximation algorithms for the problem (Sectid?fis considered simultaneous optimization of multiple queries
V). We conclude with a preliminary performance study thdf such a framework. Our results can be directly applied to
illustrates the need to share data movement in distributénilar problems in the publish-subscribe domain.

multi-query processing (Section VI). The problems we study in this paper are closely rel_ated
to several problems that have been extensively studied in the
Il. RELATED WORK theory literature, in particular, the Steiner tree problem and its

There has been much work on distributed query processiggneralizations. Given an undirected gragh= (V, E) with
and optimization (see the survey by Kossmann [13]). As withon-negative edge weights and a set oterminals 7' C V,
our work, most of this work has focused on minimizing théhe Steiner tree problem asks for the minimum weight tree
total communication cost for executing a single query by judsubgraph ofG that connects all the terminals [30], [31]. This
ciously choosing the join order and possibly adding semi-joproblem is known to be NP-Hard and several approximation
operators to the query plan [14], [15], [16], [17], [18], [19]. Inalgorithms are known for it [30], [31].
contrast to this prior work, we considerulti-query optimiza- A generalization of the Steiner tree problem is thiagle
tion which is an inherently harder problem, with few resultSink Rent-or-Buy (SROB) Problems we show later, this
known even for the centralized case [20], [21]. On the otheroblem is a special case of our optimization problem. In this
hand, we don't consider join order optimization in this papeproblem, along with a grapty as defined above, we are given
and assume that a two-phase approach to query optimizatioiset D C V of demandsand a parametel/ > 1. Each
is being followed; the two-phase approach, proposed by Hodgmand; € D has a non-negative weighf. A solution to an
et al. [9] for parallel query optimization, separates join ordénstance of SROB consists of a set of facilitiEsc V' to be
optimization from scheduling issues, and is commonly usegened, a tre& of G spanningF, and an assignmenf,(), of
to mitigate the complexity of query optimization in distributedlemands to the open facilities. If this solution assigns demand
and parallel settings [10], [22], [11], [12]. j to the open facilityf(j) € F, the total cost of the solution
Hasan et al. [23] and Chekuri et al. [24] present algorithnis 3., d; - £(j,i(j)) + M >_ . c. Where the function
for minimizing communication cost in parallel query opti-denotes the shortest path distance using edge lengtiNote
mization, again assuming that the query plans are providedthat there is no cost for opening facilities but the open facilities
part of the input. Although these algorithms bear superficibhve to be connected together. This problem was also called
similarities to the algorithms we present, the underlying probhe Connected Facility Location Problem [32]. This problem
lem they address is fundamentally different from our problens N P-hard, and an approximation algorithm with a factor of
they assume a uniform communication cost model (the cost2B2 was presented recently [33].
communicating data between any pair of nodes is identical),
whereas in distributed systems the underlying communicatiord!!: PROBLEM OVERVIEW AND SUMMARY OF RESULTS
cost model is non-uniform; this is in fact the chief reason We begin with a formal definition of the problem, and
behind the complexity of the problem. Also, this prior worlpresent an illustrative example that we use as the running
only considered single-query optimization, whereas we focegsample in the paper. We use the terminology from multi-
on multi-query optimization. guery join processing to describe the problem and the al-
Trigoni et al. [7] study the problem of simultaneoushgorithms (in particular, we assume that the operations being
optimizing multiple aggregate queries in a sensor netwonerformed arejoins); however the results extend naturally
They use linear algebra techniques to share computationt@fthe case when other operations (such as aggregates) are
aggregates, but assume that the communication is along a feing performed instead. We then briefly summarize our main
determined tree. Silberstein et al. [8] study a similar probleeadgorithmic results.
under the same restriction (calledany-to-many aggregate o
queries problem), and propose a solution based on solvify Formal Problem Definition
a bipartite vertex cover problem for each edge. Similar to ourLet X = {S;|[i = 1,...,n} denote a set of relations
work, Silberstein et al. don’'t consider sharing computatiof@ata sources) stored in a distributed fashion. Without loss
between queries either (in other words, only the movemeutt generality, we assume that each relation is stored at a
of original data sources is shared between querigs).works different node (this assumption is easy to enforce by dupli-
by Trigoni et al., and Silberstein et al. assume identical-sizexting nodes and connecting them to the original node). We
data items and assume that the aggregate size is constanuas an edge-weighted gragit over the nodes to represent

Ship to C

t

Data’:AS1 (10) EDa’[a: S5 (8) (551 M 52) 54 Ship to D Ship to B
D> / (7) S1XS2 (5) 52X sesT (6)82 M 35T
a?/ (] D ﬁm (100) S4 (100)
B F (10) g4 S92 (10) (10) §2 S6 (100) (10) 82 S5(8)
Data: S2 (10) Data: S6 (100)
Example Data Setup Query 1 Query 2 Query 3

Fig. 1. Running example with 6 data sourc£s, ..., Se over a tree communication network, and three queries (along with the query plans and the result
destinations); for clarity, we assume unit-weight communication edgés)(= 1, Ve) and omit the weights from the figures. The italicized numbers in the
parentheses indicate the sizes of the data sources and the intermediate results.

the communication network; the weight of an edge indicatesSteiner tree on the terminals of cdstif and only if there

the communication cost incurred while sending a unit amouista solution to the problem with co#.

of data from one node to another. Whenever a data item of)

size |S| is shipped across an edgeof weight w(e), the B- An lllustrative Example

cost incurred is|S|w(e). In a wireless sensor network, this In Figure 1 we show our running example with six data

may be the energy expended during transmission of the dataurces over a tree network, with the data sizes shown in

whereas in a distributed setting this may capture the netwgrirentheses. We also illustrate a collection of three queries,

utilization [4]. along with their query plans and the destinations. The three
We are also given a set of querig3y, ..., Q,,, with the queries have one data source in comm®y,whereas the rest

query Q; requiring access to a subset of relations denoted bjthe data sources are different for each query. Hence the key

QF C {S),...,8,}. For each query, query planis provided, optimization challenge here is to share the movemen$.of

in the form of a rooted tree, which specifies the operatiomgross the network while executing the queries.

to be performed on the relations and the order in which to Figure 2 shows an optimal data movement plan computed

perform them. Finally for each query a destination (cadie®) by our algorithm to solve these queries.

is provided where the final result must be shipped. « (Query 1) The data movement plan for Query 1 (which
Given this input, our goal is to find a data movement plan s also optimal for it in isolation) involves (1) joining

that minimizes the total communication cost incurred while g and s, at C, (2) shippingS; x S, across the edge

executing the queries. (C, D), (3) joining it with S, at D, and (4) shipping the
We note that this metric does not capture the (CPU) cost esult back toC.

of operator execution at the nodes. In many cases (e.g., in (Query 2) S, is also shipped across edg€, D) all the

sensor networks or publish-subscribe domains), these opera- way to F, where a join is performed witl for Query

tions (typically aggregates) are not very expensive, whereas - at F', and this result is finally shipped back .

in other cases (in scientific federations or other distributed
databases) the operator execution cost can be very high. We
plan to address load balancing in future work, and we focus
on communication cost minimization in this paper.

The above framework is fairly general. In particular we
allow the query tree to contain-ary operators and make no
assumptions about the operators themselves (except that we
know the result sizes). Note however that thany-to-many
aggregate querieproblem [8], where we are asked to compute

a set of aggregates (e.g. SUM), each over a subset of the data

items, with partial aggregation of the results allowed, cannot be
directly mapped onto this framework. However, that problem
can still be reduced to our problem. We discuss this further in
Section IV-D.

It is easy to see that the problem A&P-hard for arbitrary

{vg,...,vx}. Define a set ofT'| — 1 queries:Q; = {vo,v;}

(Sp)A

(Query 3) Finally note that the optimal plan for Query
3 in isolation (without the other queries) would have
shipped S5 all the way to B where we would have
performed a join withS;. However, sinceS; is shipped
from B to F' (via D), we can perform a join of5 with

Sy at D itself, and then ship the result 8.

E (S5

N -
S5\ (@2
AN

F (Sg)

%2 5255
R

communication networks by a reduction from the Steiner (5B g

Tree problem in graphs. Lefc = G, and suppose’ =

Fig. 2. An optimal Data Movement plan for the above example setup. The

forall: =1...k. The data items are all assumed to have urfigure also indicates where the query operations took place, e.g., the first join

size and the result sizes are zero. It is easy to see that ther@'i

g1 (denotedQ1:1) was done atC' and the second join was done /at

C. Summary of Results (c)

We briefly summarize our main algorithmic results, which X3 X0
we elaborate upon in the next two sections. S X2 X4 — X7 T
1) One of our main results is that the optimization problem /
can be solved optimally in polynomial time when the X5 X8
underlying communication network is a tree. The algo- (i)

rithm involves |G¢| hypergraph cut computations on a
graph constructed by “merging” the query trees (Section
V).
2) When the underlying communication network is an
arbitrary graph, we can get an(logn) approximation
by reducing this problem to an instance of a tree metrig—= x2
by considering a probabilistic embedding of the metric
into a distribution over tree metrics (Section V-A).
3) For arbitrary communication networks, we develop con-
stant factor approximation algorithms for several inter- -
esting special cases where we restrict the structure of (ii)
the query-overlap graph (Section V-C). Fig. 3. (i) An example of an edge-weighted hypergraph with one 4-node
4) We show how to reduce the many-to-many aggreggﬂﬂ)eredgE{XQ,X&Xél, X5), of weightc, and several two-node hyperedges

: : ; (drawn as normal edges, e.¢S, X2), weights not shown); (ii) Reduction of
queries problem to a simpler problem called {hers the s-t cut problem on the hypergraph to an edge capacitated flow problem

problem, where each query only contains two sourc@suires adding two new nodes per hyperedge (two-node hyperedges remain
and all result sizes are 0. This reduction holds foinchanged in this construction); solving the max-flow problem on the new

arbitrary communication networks, aIIowing us to applgraph gives us the mie-t hypergraph cut on the original hypergraph.

our algorithms to solve this problem. For the casgyperedges containing two nodes do not need to be changed
when Gc is a tree, we use this reduction to derive & the process. Solving thet max-flow problem on this new
considerably simpler proof for the algorithm given byyraph (which contains no hyperedges) gives us a swircut
Si|bel‘stein et al. [8] (SeCtion |V'D) on the hypergraph_

IV. CASE WHENGc IS A TREE We define and utilize a variant of the above problem called

. . N . hehypergraph partitiorproblem, where inst f ial
In this section we present a polynomial-time algorithm fotr ehypergraph partitiorproblem, where instead of two specia

inimizing the dat i t when th icati verticess and ¢, we are given two sets of verticet, C V
minimizing . € dala movemen .COS w en the co-mmumca.| dL; cV, L,NnL; = B, and we are asked to find a partition
network G is a tree. Our algorithm involves solving a seneB

: : f V into (S,T) that separates the vertices I, from the
of min-cut problems on appropriately constructed hypergrap Srtices inL, such thatl,, C S, andL, C T. We denote such

(one for each edge igc). We begin with some backgroundan instance byH, L, L;). It is easy to see that this problem
on min-cuts for hypergraphs, and then present our al_gonthégn be reduced to thet min-cut problem by: (1) adding two
and the correctness proof. We then present a reduction frg cial nodes andt, and (2) by connecting (similarly £) to

many-to-many aggregate queries to our problem (the reducti Mthe nodes inf, (similarly L) by infinite-weight edges.
does not require thaf- be a tree). s

A. Background: Hypergraph Min-Cut and Partition Problem®: Algorithm

A hypergraph is specified by a vertex saf and a set .The high IeveI_ approach behind our algorithm is quite
of hyperedges, where each hyperedge i is a subset of SIMPIe. The algo_nthm follows three main steps: .
V (see Figure 3(i)). We are also given two special vertices 1) Build a weighted hypergraptti{p, by combining the

andt. The goal is to partitiord into S and 7', with s € S query trees for all the queries. This hypergraph explicitly
andt € T while minimizing the weight of the hyperedges that ~ captures all the opportunities for sharing the movement
include vertices in botls and T (that arecut). of data sources among the queries.

This problem generalizes the standaré min-cut problem 2) For each edge = (z,y) in Gc, decide which data
which is usually solved by a max-flow algorithm. In fact, the ~ sources and intermediate results move across that edge
hypergraph min cut problem can also be solved by a max- by solving an instance of the weighted hypergraph
flow computation on a derived graph [34]. For completeness Partition problem.
we briefly describe the procedure here. In essence, every) Combine the local solutions for all the edges into a
hyperedge in the original graph is replaced by a subgraph, single global data movement plan.
containing directed edges, as shown in Figure 3(ii). For evefpis approach is quite similar to the approach taken in [8]
hyperedge, we add two new nodes and a directed edge betwieersolving many-to-many aggregate queries, even though the
them of capacity equal to the weight of the hyperedge. Sevepabblem we address is much more general. We discuss this
high-capacity edges are also added as shown in the figurennection in more detail in Section IV-D.

destination c C C C

(%)
S1 X S2 XS4

5

D
’
(7),' (100)
(o}
S4
(10) 10) D

S1 S2
C B (9 B (9 () C C
(i) Hp for a single query Qi (ii) Finding labeling for edge (B, C) (iii) Finding labeling for edge (C, D)

Fig. 4. (i) For a single query (Query 1), the hypergraph construction simply involves adding a new node corresponding to the designation; (ii, iii) Example
labelings for two of the edges in the communication network for Query 1. The “?”s indicate the decisions that need to be made, and the dashed edges indicate
that the edges that were cut (indicating data movement across the corresponding edge).

Steps 1 and 2 for a Single Query the edge(B, C) of the communication network. In this case,
We begin by describing Steps 1 and 2 for a single quefpdesS: has labelB and all the other leaf nodes have label
(Figure 4). We additionally assume that each leaf in tHe (including the node corresponding to the new root, i.e., the
query tree is a distinct data source (see the general algoritHg$tination lies in the connected component corresponding to
for when this assumption does not hold). The hypergragh)- By giving both internal nodes of the tree lalg¢] we can
construction is quite easy in this case. [®tbe the rooted See that there is only one edge (shown as a dashed edge) with
query tree for the query. We construl, by adding a new €nds having different labels (of cost 10). This corresponds
root vertex to7" and attaching the original root df to the to shipping S, across the edg¢B,C), and evaluating all
new root — the new root denotes the node where the res@ggerators at the nodes in the connected compogigntThis
have to be shipped. The weight of an edge:) € Hp is set is precisely the cost of shipping data ite¥hs across the edge

to be the size ob, whereb is the child ofa. Figure 4(i) shows (B, C).

an example of this construction f@uery 1 of our running Example 2:Now consider the example shown in Fig-

example. No hyperedges with more than 2 nodes need toWe 4(iii). This is the same query tree, but the labeling now
created in this case. corresponds to edgéC, D). Note that the only leaf with

Now consider an edge = (z,y) in Go. Let G& and label D is S;. With the labeling of the leaves as shown, if
g% denote the two connected Subgraphs (trees) Obtainedtb? internal labels are set & and D for the two internal
deleting the edge (with = € GZ andy € GY). nodes then the cost of the solution corresponds to the two
The communication cost incurred in a candidate solutidgipshed edges shown in the figure since the ends of these edges
because of the data transmitted over the edge) is fully have different labels. Note that this corresponds to the cost of
determined if we know where each internal nodefofcorre- Shipping Sy x S; from €' to D and then finally the result
sponding to a query operator) is evaluated (at a nodgimr 51 X S2 x .S; back in the other direction.
at a node inG¢); if a node is evaluated iG¢ and its parentis Steps 1 and 2 for a Multiple Queries

evaluated at a node ifi;. (or vice versa), then we must shipgjyen a set of queries and corresponding query plan trees,
the result of that internal node across the edgey). we first add new root nodes to the query trees (corresponding

We capture this using the following partition problem. I, e gestinations) as above. We then superimpose all the
the grapt, we assign a label to each node based on whighyery trees into a single directed acyclic grapty, where
connected component it lies in. All th_e leaf nodes which lie i, merge the leaves carrying the same information together
G are labeled:, and the leaf nodes i, are labeled). The jnig 5 single node. The edges’ty, are oriented from a node
new root node (corresponding to the destination) is labelgd ;o parent in a query tree. Lei(v) = {v} U {u|(v,u) €
according as well (dgpending on_wh_ether the_ destinati_on isﬁ\Q} denote the set of parents of We define the hypergraph
GZ& or G). The partition problem is simply to find a cut in theHD = (V(Ho)2 {p(v)jv € V(Ho)}), i.e., for each vertex
graph’tp that separates the nodes labeleétom the nodes , 17(3/,,), we add a hyperedge containing that vertex and all
labeledy. _ . its parents irf,. The weight of hyperedgg(v) is set to be

It is easy to see that this partition problem exactly captur@ss size of data iter.
the communication cost minimization problem for the edge rigyre 5(j) shows how this construction is done for the three
(x,y). Each gdge i{p that is cut (i.e., has different Iabelsquery trees in our running example. All three queries share
for its endpomts) corre;ponds to a data movement (of a d@la yata sourcé,, and we capture this by using a hyperedge
source or an intermediate result) across the dgg). We hat containsS, and three appropriate internal nodes from the

illustrate this with two examples. ~__ query trees. The weight of the hyperedge is set to be the size
Example 1:Continuing with the example shown in Figure

4(i), Figure 4(ii) shows the partition problem instantiated for 2v (#q) denotes the vertex set 1.

then add a directed edge framto y in G~ (and vice versa if
thei is assigned labet). For instance, in the example shown
in Figure 5,7°152% will contain a directed edge fror@' to

D (since the nodes; 525, is assigned labeD).

Now we consider a vertex in 7 with out-degree). This
implies that the decisions made on all edges incident to
agree to place onv; then we simply place the query operator
corresponding t@ at v. The input data items for that operator
are shipped from their respective locationsitd-or example,
the internal nodeS;S->S, is evaluated atD in our running
example (see Figure 2 for the complete solution), &8nd>,
which is evaluated af’, is accordingly shipped fromy' to D
(the other input data itensy is already atD).

In the next section, we will prove there is exactly one such
vertex with out-degred (denoted¢(i)), for every internal
Fig. 5. (i) Hypergraph construction for all three queries in the running@d€i € V(Hp), under the assumption that each hypergraph
example; (i) A labeling corresponding to the edd@® D) found after solving partition problem has a unique solution (this can be guaranteed
the hypergraph partition problem. by adding small random perturbations to the data item sizes).
of data itemSs. We call such a solution “gllo'bally consistgnt”. We .vv.iII also

Next consider an edger, y) in Go and letgZ, and G, be prove that the c_ost of acquiring the data |_tems (original data
the connected components obtained by delefing)). Once SOUTCes or the mter_med!ate rt_asults) required t_o evaluate the
again we assign a labek (or y) to each of the leaf nodes in operator corresponding toat v is accounted for in the costs
Hp depending on which connected componengefit lies ©f the local hypergraph cuts.
in; we then find the minimum cost cut that separates the nodes
labeledz from the nodes labeleg. C. Proof of Correctness

We denote the minimum weight cut found for edgey) e begin with some notation. L&l = (V, E) denote the
by C(Azy; Azy), Aey € V(HD), Acy € V(Hp) (With Azy communication graph as before. For an edgey) € Gc,
denoting the set of vertices labeledl let L2, and LY, denote the nodes ifi{p labeledz and

Example 3:Consider the example in Figure 5. Here Wegpeledy respectively. As above, we denote the minimum
show all three queries super-imposed with the shared sougeg corresponding ta: by C(Agy; Azy) (SO we have that
S, creating one large hyperedge. All the other hyperedgggy C AgyandLy, C Ayy).
have size 2 and are shown as regular edges. In Figure 5(ii) Wegnsider two édjaceht edges (u,v) and ex(v,w) in
show the labeling based on edgg, D) of the communication the communication networc. We call C(A,.; A,.) and
networkGc. Several source and destination nodes are labelgd 4 . Auw), the minimum weight cuts corresponding dp
in advance, and the min hypergraph cut computation labels %62, locally consistentf A, C Aye.
remaining nodes in an optimal way. Note that this labeling)) _
corresponds to all the costs that are incurred for the datalhe following simple lemma shows that “local consistency”
shipped across edde, D). on every pair of adjacent edges implies tfyathas exactly one

For example for Query 15; x S of size 10 is shipped Vertex with out-degree 0yi.
across edgéC, D) and the result§; x S x S,) of size 5 is Lemma 1:All cuts form a globally consistent solution if
shipped back. In addition, we pay the cost to sHipof size for any two adjacent edges, the two corresponding minimum
10 across the edge (this is the cost of the hyperedge havfitjs are locally consistent.

(i) (ii)

nodes with labet” and D) so it is part of the cut. In addition Proof: First we note that/* is a tree with all its edges
for Query 3, we pay the cost of shippigSs of size6 across directed (since it is obtained by making each of the edges in
the edge. Gc directed). It can be shown that any such tree has exactly

Step 3 one node with out-degree O if and only if no two adjacent
. ~ edges in7* share the same talil.
The above two steps can be used to find the locally optimalg, J' to not satisfy the latter property, we must have that,
solutions for each edge in the communication graph. Howeugl 5 pair of adjacent edgés:, v), (v, w) € Gc:
these solutions may not be consistent with each other (the iy oyt (4,,,: A,,), i is labeledu (ie., i € A,,), but
locally optimal solutions for two different edges may not agree i, ¢yt ¢/(A,,,.: A,..), i is labeledw (i.6., i € Ayy).
on where the internal nodes should be evaluated). But if A,, C A,,, there is no such node. Therefotg has
Let i denote an internal node in the hypergrality. We oy a0ty one vertex with) out-degree for alk V(Hp). ®
will construct adirectedgraph.7* with vertex sefV’'(G¢), and
edges defined as follows: fer= (x,y) € G, if i is assigned The next lemma guarantees that local consistency holds for

label y in the hypergraph cut found above (i.e.iit A4,,), @any pair of adjacent edges.

Lemma 2:We assume the uniqueness of the minimume allow sharing of intermediate results across queries. The
cut solutions. LetC(A,,; Ay,) and C(A,.; Ayw) be min- problem is if we identify all internal nodes carrying the same
imum solutions for the instancesHp,LY,,Ly,) and information together i, the connectivity of all edges used
(Hp, Ly, Ly,,) respectively wherd.;, € A,, and Ly, C for sending this information is enforced in our solution while
Ay F LY, ULy, =Ly ULY =LandLy C Ly , then an optimal solution may have them disconnected. But if we
Ao C Ay don't merge them together, the possibility of the information

Proof: Suppose the lemma is not true. L&the the set sharing is automatically ruled out, thus still possibly rendering
of verticess such thats ¢ L, s € A,, ands ¢ A,,,. It is not a suboptimal solution.

hard to see

wfeleNS#0AeN Au #0AeN (Au = iq) =0 Recall that in this problem each query needs to compute an
<w({eleNS#PNen (Auw —85) #0NeNAw =0}) aggregate function over the values produced by a subset of the
since otherwise”(A,, — S; A, + S) is a better solution than data items, and the result needs to be transmitted to a specified

D. Many-to-many Aggregate Queries

C(Auw; Auy). But we have sink. The sizes of data items are assumed to be id_entical, a_nd
B ~ the data may be aggregated along the way to the sink (the size
C(Apw + S5 Ay — 8) = C(Ayw; Avw) of the partial aggregate is assumed to be a constant, and may

—w({eleNS #DANeNAyy ZONen(Apw —S5) =0
< C(Apw; Avw).

+w({eleNS #DAen (Apy —S) #DAen A, =0}) be different from the size of a data item). As with our setup,
1 the aggregated values cannot be shared across queries. Figure

6 (i) shows an example instance of this problem with two

gueries,Q1 which computes an aggregate function over three

The inequality holds since: sourcesSy, Sa, S3, andQ2 which computes an aggregate over
felenS#DNen(Apw —S) #0Aen Ay = 0} sourcesSs, Sy. All data sources are assumed to be unit sized,
ClelenS#0NeNAw #DAen (A —S5) =0} and the size of a partial aggregate is also assumed to be of
which follows from A,,, — S C A,, and: size 1 (corresponding to a function like SUM). As mentioned
{elenS#0Nen (Ayw —S) #DAen Ay, =0} before, this problem cannot be mapped to our general problem
CleleNS#DANeN Ay, #DANen (Apy —S) =0} directly (because of partial aggregation). Next we show how
which follows from A, — S C A,.. m to reduce this problem to a simpler problem called plaérs

: . roblem and then present an algorithm for it.
Lemma 3:The cost of moving data items as needed t% m P g

execute the query operators is equal to the total cost of tRairs problem: We define thepairs problem to be a special
hypergraph cut solutions. case of our general problem where all queries are restricted

Proof: Consider an internal nodee V(Hp), and let to be over two nodes each, and furthermore, the query results
#(i) € Go denote the vertex with out-degree 0Jf. Consider are all of size 0 (in other words, the query results do not need
an edge(z,) € Ge. It is easy to see that if has labely in to be shipped to any sinks). The data items are allowed to be
C(Azy; Azy), theng(i) € G&. of unequal sizes. Note that with just two data sources in each

Let j denote a child ofi in Hy (the DAG from which query, the issue of whether partial aggregation is allowed or
Hp is derived). Now if¢(j) € G%, then we must ship the not is irrelevant.
data generated by to ¢(i) through (z,y). However sincej Definition 1: A query-overlap graph(denoted?) corre-
is labeledz in that case, the edggj,i) € E(Hp) is cutin sponding to an instance of the pairs problem is defined to
the hypergraph cuf'(A,,; A.,), and the cost of shipping thebe a graph where the vertices correspond to the set of data
data acrosgr,y) is appropriately counted in the weight ofitems and each edge corresponds to a pair query (see Figure
the hypergraph cut. On the other handgifj) € G&, then 7 for an example).

the data generated by does not have to be communicateyeqyction from many-to-many aggregate queriesiLet a
across(_.r,y); 'FhIS is appropnately ‘captured in the hypergra_\paueryQ be an aggregate query over data SouI€gs. . , Sy,
cut weight, since the nodesand j are labeled the same i ‘gt the destination be nod§;. We introduce a new
that case, and the edgg 7) is not cut. ® data sourceSR,, with size equal to the size of a partial
Theorem 1:The algorithm finds a global optimum solution.aggregate, and attach this data source to the rfdevith
Proof: It is easy to see the minimum cut instancea zero cost edge. We then cre&tépair” queries:(S1, SRy),
we solve satisfy the condition in Lemma 2. Therefore, we ., (Sk, SRs). We then construct an instance of our (pairs)
have local consistency for all adjacent edges from which tipgoblem by combining the queries generated for each of the
global consistency follows. Since each of the local solutioggregate queries.
is optimal for the corresponding communication edge, the Figure 6 (ii) shows the resulting set of queries for the
solution obtained by putting those together is also globalBxample instance, where we introduce the sourt&s and
optimal. B SR for Q1 and Q2 respectively.
We remark that our solution does not work for the case Figure 6 (iii) shows an example solution to the resulting
where multiple nodes inGo carry the same data nor dopairs problem (assuming the size of the partial aggregate to

Q1 - sink S7:
select F1(S1, S2, S3)
from S1, S2, S3

Q2 - sink S6:
select F2(S3, S4)
from 83, S4

(i)_Two aggregate queries

011: select * from S1, SR7
012: select * from S2, SR7
Q13: select * from S3, SR7

@2': select * from S3, SR6
Q22: select * from S4, SR6

Aggregation
Sites SRg (1)

- /0
’

0 roa 0
l s/ u
;

-

S.
m? \
S.

(1)

-

\

3 54
1)

nodeu. LetA = V(T'(u)),C =V(T(w)),B =V —-A—-C and
En(X;Y)={(z,y) € E(H)|z € X,y € Y}. Let Ng(v) =
{u|(u,v) € E(G)} and Ng(S) = UyesNg(v). Essentially,
for edgee;, we run minimum vertex cover (VC) algorithm on
bipartite graphG1(A, BU C; Ex(A; BUC)) and forey, on
GQ(A UuB,C; EH(A U B; C))

Proof of CorrectnessWe only need to prove that for any
vertexa € A, if a € VC(Gs), thena € VC(Gy). The
interpretation of a node € VC(G2) is that it is shipped
across edge,. For the solutions to be consistent, we need to
havea also shipped across so that it can be shipped across

es. Otherwise if the solution fog; corresponds to aggregating
a and not shipping it across, but shipping it acrosss then
Fig. 6. Reducing a set of many-to-many aggregate queries to the “pai@’ey are not consistent.
problem entails adding a new data source for each query, and replacing eacuppose this is not true, l&f be the set of vertices such
query with a collection of pair queries. thatv € VC(Gs) butv ¢ VO(G,). Let U = Ng, (S) N (C —
VC(G2)). Observe thatv(S) < w(U), since if the converse is
be the same as the size of a data item). It is easy to see thig we can replacd with U and obtain a vertex cover ifis
solution corresponds to a solution to the original two queriegith lower weight (recall that the optimum solution is assumed
Specifically, the movement o$ R or SR; (the new nodes to be unique). Sinces N VC(G,) = 0, we getNg, (S) C
added to represent the sinks) across an edge correspondgdqG,). ThusU C VCO(G1). We claim that’ C(G1)—U+S
a movement of a partial (or full) aggregate in the opposiie a vertex cover foG;. The key observation here is
direction. For example, in Figure 6 (iiif R7 is moved across
the edggS7, Sy). This corresponds to movement of the partial Ne, (U) € Ng,(U) S VO(Gz) CVC(Gr) U S.
aggregate’1(.S;, S3) across the edgesSy, S7). We formalize Thys, each edge that cannot be coveredVWy(G,) — U
this in the following lemma. has an endpoint it§. So our claim is true, but this violates
Lemma 4:A solution for the resulting pairs problem canthe optimality of VC(G;) since w(VC(Gy) — U + S) =

be mapped back to a solution for the original many-to-many(vC(G4)) — w(U) + w(S) < w(VC(Gy)).]
aggregate queries problem with the same 2ost.

(ii)_ Reduction to "pairs" problem (iii)_A solution for the reduced problem

Silberstein-Yang Construction: Our algorithm, based on

solving a hypergraph partition problem for each edg&of .) ! L

reduces to the algorithm presented by Silberstein and Yang [8;).In this section, we first present @h(log(n)) approximation

For each edgéz,y) of Go (treated as a directed edge fronPPtained by embeddingc into a tree (using the result on

10 y), they construct a bipartite graph where on one siddnPedding arbitrary metrics into trees [35], [36]). We are

there are nodes corresponding to the queries, and the offléP able to develop an exact dynamic programming-based

side has nodes corresponding to the data items. There isalgprithm f‘?f when we have only one query plan. In the rest

edge in the bipartite graph between a query node and a datdhe section, we focus on theairs problem, and present

node if the query needs to aggregate the data item, andgsgveral cons_tant factor approximations for it b_y restricting

the query destination (sink) is iG% and the data item is in the complexity of the query overlap gragi (Section V-C).

GZ. They then solve a minimum vertex cover (VC) problerNVQ Ieaye open the question of dqvelopmg a constant factor

over this bipartite graph. The main point is that, for a quei§PProximation for the general version of this problem.

Q, either all the data items for it that are §§ are shipped .

across the edge (this corresponds to choosing the data itétn1 O(log7) Approximation for Generafic

as part of the minimum vertex cover), or the aggregation isWe use the notation from [36]. Léf be the set of vertices

done first and the result shipped across the edge (the lat&m graph, and letl, andd’ be distance functions over.

corresponds to the query node being chosen as part of Tiee metric (V,d’) is said to dominate the metri¢V,d) if

minimum vertex cover). The main issue to establish is thdt(u,v) > d(u,v) for all u,v € V. Let S be a family of

all the Vertex Cover solutions (corresponding to each edge metrics overV, andD a distribution overS. (S, D) is called

G¢) can be put together to create an optimal solution for tkeea-probabilistic approximationof (V,d) if every metric in

entire problem. Next we show a simpler proof of correctness dominates(V, d) and Ey ¢ (s pyd'(u,v) < ad(u,v). A tree

for this algorithm. metric is a metric induced by shortest path distances over a

Formally, let us consider two adjacent edges= (u,v) and tree.

ez = (v,w). RootGe atw. Let T'(u) be the subtree rooted at Theorem 2:[36] For any given metridV, d), we can pro-

duce a distribution of tree metrics which is @(logn)-
3The omitted proofs can be be found in the extended version of the pagefobabilistic approximation of in polynomial time.

V. CASE WHEN G IS NOT A TREE

We sketch our approximation algorithm: suppgseD) is 05: coleat (@9
the O(logn) approximation of(V,d). We randomly pick & TfomS1JOINS2 from S1 JOIN S4
tree T from S according to the distributio®. We solve the aq2: select * Q4: select *
problem on7 optimally by using the algorithm introduce fom STJOINSS from S1JOIN S5 — S\
earlier for trees. Suppos#0 Ly is the solution. Now, we ma @ \ S5 (20)
SOL7r back to original graph. Specifically, if an edge= /

(u,v) € T is used for sending's (¢ could be a leaf node ¢ 5

internal node of some query plan tree) informationSi@ L (10) \
for i € V(H), we use the shortest path fromto v in G for 53
sendingi’s information.

First, we claim Epcs(OPTr) < O(logn)OPT where
OPTr and OPT are optimal solution irll" and G-, respec-
tively. This can be easily shown by seeing that if there is #ly. 7. (i) An instance of the pairs problem with 4 queries; (i) The
optimal solution of cosOPT in G¢, then the expected costcorresponding query overlap graph, is astar, (i) Mapping the case when
of this solution (expectation taken over the choice of tredjis astarto Single Sink Rent-or-Buy (SROB) Problem.
increases by a factor of(logn). The cost of an optimal
solution OPTr cannot be more than this cost. Since the tre¥so be reduced to it. While the pairs problem is of interest
metric of T dominates the Origina| metric, we can see th@ its own right, we also believe that a better solution for it

(expected) cost of our solution is at mdsfcs(OPTr). (e.gt;l, a constant approximation) will shed light on the general
roblem.
B. Dynamic Programming Algorithm for a Single Query P Consider a special case of the pairs problem wire
In contrast with some of the other problems in distributed a “star” graph. Figure 7 (i,ii) shows an example of this.
query processing (e.g. the many-to-many aggregate quetiigSurthermore, all data items have the same size, then the
problem), our main problem can be solved in polynomial timgroblem is exactly equivalent to the Steiner tree problem
for a single query (even if the query contains arbitrary (which is NP-hard even for planar graphs). When the data
ary operations). This follows from the observation that thiiem sizes are unequal, then it reduces to the SROB problem
principle of optimality holds in this case, and the optimalor the connected facility location problem). Essentially, in the
plan can be computed in a bottom-up fashion using dynamiduction to the SROB problem, the center of the star pushes
programming. the data to all opened facilities and each leaf of the star simply
For each subtre& in the query tree and for each node sends its data to its nearest opened facility. See Figure 7 for
we compute the optimal cost of computing and transmittingh example of the reduction. Hef is shipped on a tree to
the result of ' to v (denoted byOPT(T,v)); the final Sy andSs, with S, and.S; being shipped tdy, andS, being
operation (corresponding to the root of the subtree) may shipped taSs. This solution corresponds to “buying” the edges
may not be done at. Now, consider a subtre; with ¢ on which S; is shipped, and “renting” the other edges since
children, T}, ..., T¢. For each node;, we can easily compute we pay a fixed cost (size of;) for the edges on whicts;
the optimal cost of computing the result @ at v, using is shipped and a variable cost (depending on the size of the
OPT(T7™,v,),V1 < m < ¢,1 < k < n, by considering all other items) for the other edges.
possible locations;, for computing the final operation if;. We will make use of approximation algorithms for the
Namely, Steiner tree problem (when data item sizes are equal) or
c the SROB problem (when data item sizes are arbitrary) as
OPT(T;,v) = min <Z OPT(T™,v) +w(Ti)-d(vk,v)> subroutines. Letp denote the approximation ratio for the
eV A\ appropriate problem. As discussed in Section Il, the best
Wherew(T}) is size of the result of;. This can be done in known values forp for the Steiner tree and SROB problems

time O(nc), giving us a0(n?m-+n?) algorithm for computing &€ 1.55 [30] and 2.92 [33] respectively.
the optimal cost, wheren is the size of the query tree. The ©OUr main result is a constant approximatioif has con-
second term accounts for the cost to compute shortest patditstar arboricity. The algorithm contains many important

Sa
(10) (1)

(i) (iif)

between all pairs of nodes. special cases, for exampl#, being a tree, planar or degree-
_ bounded. In the special case whghis a tree of depth two,
C. Results for Pairs Problem we can develop an improved bound.

In the rest of this section, we focus on the pairs problem. Before presenting the algorithm, we need some definitions.
Recall that in this problem, each query is defined by a pair Definition 2: The star arboricitySN(G) of a graphG =
of nodes whose data should meet somewhere in the netwdi, £) is the minimum numbek such thatE can be parti-
and H is the query overlap graph formed by treating thed®ned into setsE,, Es, ..., E, and each connected compo-
“pairs” as edges (Figure 7). This problem generalizes timent of G; = (V, E;) is a star forl < < k.
Steiner tree and Single Sink Rent-or-Buy (SROB) problems Theorem 3:If SN (H) can be computed in polynomial time
(see below), and the many-to-many aggregation problem o&a can obtain anSN (H)-approximation.

Proof. The algorithm simply first decomposes the querydata movement during multi-query optimization in distributed
overlap grapl? into star forests,, ..., Hgn (), SOlvesH; systems, and to show the effectiveness of our approximation
separately, then glues together the solutions fakallogether. algorithms at finding good sharing plans. We begin with a
It is trivial to see that the cost of an optimal solutihPT; brief description of the experimental setup.
for H, for any ¢ is at most the cost of an optimal solution In all the experiments, we compare the performance of
OPT'. So, the cost of our approximation is at m@fﬁ(mp- our proposed algorithms with the approach of optimizing
OPT; <p-SN(H)-OPT. B each query optimally in isolation using the DP algorithm

The constant approximations for the following special casegscribed in Section V-B (calletND-DP). When using the
can be easily obtained by applying the above theorem. latter approach, although we don't try to explicitly share
1) H is a tree: It is easy to see&SN(T) < 2 for any tree data movement, any incidental sharing is accounted for when
T (by defining the centers of stars as alternate levels @@mputing the total communication cost. For each experiment,
the tree). So, we have 2y approximation. we also compute the optimal cost of MAIVE approach
2) 'H is a bounded degree tree\We can solve this caseWherein the data from all data sources that are referenced
optimally (in polynomial time) using dynamic program-in the queries, is collected at a single site. We use the cost
mmg The dynamic program is similar to the one W&pcurred by this NAIVE approach to normalize the costs of
used to solve Sing|e query case in Section V-B. Suppogér aIgorithm andND-DP, and report these normalized costs.

T, is the subtree rooted at and vy,...,v. are v's For each of the experiments, we randomly generate a set

children.OPT (T, u) is the optimal cost for the instanceof data sources, distributed in a 2-dimensional plane, and we

where H = T, U {(v,u)} with w(u) = oo Then, add communication edges between pairs of sources that are

OPT(Ty,u) = ming, . u.ev(di_y OPT(Ty,, u;) + sufficiently close to each other. If the communication network

w(v) - MST (uy,. .., uev,u)) Where MST(.) is the is required to be a tree, we compute the minimum spanning

cost of minimum Steiner (or SROB) tree connecting atree of the communication network and discard the rest of the

vertices in its argument (Note that minimum steiner gtdges. We report results for two different setups:

SROB trees can be computed in polynomial time for a , Dataset 1: The sizes of all the data sources were set to

constant number of terminals). be identical; this captures application domains such as
3) M has arboricity a: We have &ap approximatiof. sensor networks and distributed streams, where the data
4) H is a planar graph: It is known that the arboricity of sources generate equal amounts of data in each time step.
any planar graph is at most 3 ([37]). So, we can have a, Dataset 2: The data source sizes were randomly chosen
6p approximation. from a tri-modal distribution as follows: for 75% of the
5) The maximum degree of{ is a bounded constant data sources, the data item sizes were chosen uniformly

A:r We can have aA-approximation, since we can at random from the interval [100, 200], for 20% of the
decomposét into at mostA bounded degree star forests data sources, the sizes were chosen from [1000, 2000],
(by repeatedly finding a arbitrary spanning star forest whereas for the remaining 5% data sources, the sizes were
and deleting it). chosen from the interval [10000, 20000].

It H is a tree and all data items are equal-sized, we adopt thee query workload is randomly generated by choosing each
following algorithm that performs strictly better than gluingiuery to be over a random subset of the sources, with the
together Steiner trees for alternating levels of stars: Grownamber of sources in it chosen randomly between 2raag-
Steiner tree bottom up in the following manner: Btv) is query-size(an experimental parameter). We also experiment
the tree grown fromw, and vy, v, ...,v; are v’s children. with a query workload where all queries are chosen to be over
T(v) is the (approx) Steiner tree connectingnd allT(v;)s. geographically co-located sources (denoted LOCAL); this is
T(v) can be computed by first shrinking dll(v;)s to single enforced by requiring that all the sources in a query be within
nodes, then run Steiner tree approximation witland these a specified distance of each other. Each plotted point in the
shrunk nodes as terminals. We prove in next lemmaltip graphs corresponds to an average over 25 random runs.
approximation if the height of{ is at most 2. The question
whether it achieves a ratio strictly better thanis left open. A. Gc is a Tree

Lemma 5:The above algorithm is d.5p-approximation \wjith the first set of experiments, we compare the per-
whenH has maximum height 2. formance of our hypergraph-based algorithm (HYPR) with

VI. EXPERIMENTAL RESULTS IND-DP. As mentioned above, we restrict the communication

. . - etwork to be a tree by finding the minimum spanning tree
In this section, we present a preliminary performance eval: , deleting all edges that are not part of the MST

uation of the algorithms presented in this paper over Synthet"We ran experiments with several values of the experimental

cally generateq datasets gnd query wo_rkload. The main g.?ﬁgameters, and report the results from a representative set
of our evaluation are to illustrate the importance of shari % experiments in Figure 8. In these experiments, we set

4The arboricity of a graph is defined in a similar way to the star arboricit;T/,he number of data SOUI’CES_ to be 100, and compare _the
except that each connected component is required to be a tree, not a staperformance of the two algorithms as the number of queries

207 —e— IND-DP 207 —e— IND-DP 154 —=— IND-DP 207 —e— IND-DP
- a- HYPR - m- HYPR - +- HYPR - a- HYPR
—+— IND-DP (LOCAL) —— IND-DP(LOCAL)
§ 15 -4- HYPR(LOCAL) § 15-] - 4--HYPR(LOCAL) § ﬁ 15
o o O O o
g E ¥ B o
] kS| K] I kS| .
g g g 05| \‘~»*—/*\\',,44——0 g g g -
z 3 z = 05 =1l
00 . . . , ! . . 00 . . 00 . .
0 50 100 150 200 0 50 100 150 200 0 50 100 0 5 10
Number of Queries Number of Queries Number of Nodes Querysize
(i) Varying No. of Queries - Dataset 1 (ii) Varying No. of Queries - Dataset 2 (iii) Varying No. of Nodes - Dataset 2 (iv) Varying Max Query-Size - Dataset 2

Fig. 8. Results for when the communication network is a tree: the costs of HYPR and IND-DP are normalized using the cost of the NAIVE solution.
LOCAL refers to a query workload where the queries are restricted to be over geographically co-located sources.

(default value: 50), the number of nodes, and the max-queSteiner trees. We would like to note that this algorithm does
size (default value: 5) were varied. not take the data item sizes into consideration, and hence is
Figures 8 (i) and (ii) show the effect of increasing number afot expected to perform well for Dataset 2.
queries on the performance of the two algorithms for the two In Figures 9 (i) and (ii), we report the results for the two
datasets and for the two query workloads. As we can see, in@ditasets, Dataset 1 and Dataset 2, and for the two query
four cases, the communication cost incurred by our approasbrkloads. As we can see, for Dataset 1, STN always performs
(HYPR) is significantly lower than the costs of the other twbetter than IND-DP for both query workloads, and both of
approaches (IND-DP or NAIVE); this validates our assertiothem find much better solutions than NAIVE for the LOCAL
that sharing of data movement is paramount when executiggery workload. However, both STN and IND-DP perform
many queries over distributed data sources. The performamgarse than NAIVE for the non-local query workload for larger
of HYPR and NAIVE illustrates several interesting featuresiumbers of queries. As expected, STN performs much worse
As the number of queries is increased, there is a point at whittan IND-DP and NAIVE for Dataset 2.
the optimal solution degenerates to NAIVE (i.e., the optimal In Figure 9 (iii), we compare the performance of the
solution requires collecting all data at a central location). Thikree algorithms for the case when the query overlap graph
is especially true for Dataset 1 (equal-sized data sources) adestricted to be a tree. Note that this limits the number
non-local queries. Since the query may involve data souragfsqueries to 99 (snumber-of-data-sources — 1). As we
that are far from each other, the total amount of data movemeain see, STN performs significantly better than IND-DP, but
required to execute the queries is quite high, and the NAIVdpproaches NAIVE as the number of queries approaches its
option soon becomes preferable. upper limit. Finally in Figure 9 (iv), we report the performance
Dataset 2 however penalizes the NAIVE approach signifif the algorithms as the number of data sources is varied.
cantly — it contains several very large data sources (about Bhe number of queries was set to be half the number of data
because of which the optimal solution typically collects thsources. As we can see, the comparative performance of the
rest of the data sources at those locations and evaluatesttitee algorithms is quite consistent across a range of network
queries there; on the other hand, NAIVE is forced to move alzes. We observed similar behavior for other settings of the
but one of those data sources, thus incurring a high penajigrameters.
For both datasets, the performance of IND-DP and HYPR isOur experimental evaluation for the general case suggests
much better than NAIVE for the LOCAL query workload; thethat the best option might be to run all three algorithms, and
NAIVE solution forces a much higher data movement thamake the best solution among those. Development of better
required to execute such local queries. algorithms, with guaranteed approximation ratios, is clearly
Figures 8 (iii) and (iv) show the results of experimentan open and fertile area of further research.
where the number of nodes in the network, and the max-query-
size were varied, for Dataset 2. As we can see, HYPR contin-
ues to outperform both NAIVE and IND-DP by large margins In recent years we have seen a rise in distributed query
across a range of values of the experimental parameters. processing driven by an increasing number of distributed mon-
. itoring and computing infrastructures. In many of these envi-
B. Ge is anota Tree ronments the communication cost forms the chief bottleneck.
In this case, we restrict ourselves to the case when Hhil environments such as sensor networks, the communication
gueries are of size 2. IND-DP once again optimizes eacbst directly affects the energy consumption of the sensing
query optimally but independently from the other querieslevices and dictates the lifetime of the network. In Internet-
We compare it against an approach that greedily chooses $igale environments such as scientific federations, the network
largeststar in the query overlap graph, and uses the Steinbandwidth is the limiting factor. In this paper we addressed
tree-based algorithm (STN) presented in Section V. We udes problem of optimizing data movement when executing
the 11/6 approximation by Zelikovsky [31] for computinga large number of queries over distributed data sources. We

VIl. CONCLUSIONS

20+

—e— IND-DP —e— IND-DP

- a- SIN - a--STN
” —+— IND-DP (LOCAL) " —+— IND-DP (LOCAL) "
g — - STN(LOCAL) g 154 - -a-- STN(LOCAL) g
o o . m--" o
E E 10 --erene oo M E
= 3 - 3
£ £ £
<] <] 5
=z =z =z

0 T T | 00 T T T

T T 1
100 120 140
Number of Queries

(ii) Varying No. of Queries- Dataset 2

& 100 10
Number of Queries
(i) Varying No. of Queries- Dataset 1

Fig. 9.

0.5

0.0

155 —e— IND-DP

- a--STN

Cm--B - % g n

05+

Normalized Costs

(iii) Querieswith Tree Overlap - Dataset 1

presented a framework for analyzing this problem by showintp]

the similarities between several variations of the problem. O
main contribution is a new algorithm for finding an optima

ur
13]

sharing plan when the communication is restricted to be alopg)

a tree. This algorithm also allows us to develo@@og(n))
approximation algorithm for general communication graph

As]

We also develop several approximation algorithms for special
cases of the problem. Interestingly, even some very special
cases correspond to well studied problems in the literatuF)
Our preliminary experimental analysis shows that sharing @f;

data movement is critical when executing a large number
gueries over distributed data sources.

of

(18]

Our work has opened up many avenues for further researgly
Although we exploit sharing of base data sources, we do

not consider sharing of intermediate results. Incorporati

intermediate result sharing, load balancing, and join ordl%’]
optimization into our framework for multi-query optimization[21]

remains a rich area for further research. Our algorithms assume

that the set of queries to be executed is provided as the mdlzj?f]
in practice, we expect the queries to arrive one-by-one and yxg]

plan to address the issue of developing online algorithms to
handle such scenarios. [24]
[25]

REFERENCES

[1] A. S. Szalay, J. Gray, A. R. Thakar, P. Z. Kunszt, T. Malik, J. Raddick
C. Stoughton, and J. vandenBerg, “The SDSS skyserver: public acc?s@

to the Sloan digital sky server data,” iIGMOD, 2002, pp. 570-581.
[2] T. Malik, A. S. Szalay, T. Budavari, and A. Thakar, “Skyquery: A web
service approach to federate databasesCIDR, 2003.
[3] D. T. Liu and M. J. Franklin, “The design of griddb: A data-centric
overlay for the scientific grid,” irVLDB, 2004, pp. 600-611.

(27]

[4] X. Wang, R. Burns, A. Terzis, and A. Deshpande, “Network-aware joi[?s]

processing in global-scale database federationslCIDE, 2008.

(5]

systems,” inlICDE, 2006, p. 49.
(6]
Y. Xing, and S. Zdonik, “Scalable distributed stream processingdirst
Conference on Innovative Data Systems Research (CIRPIR)3.
(7]
query optimization for sensor networks,” ICOSS 2005, pp. 307-321.

P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, al#®]
M. Seltzer, “Network-aware operator placement for stream-processir[1sgO

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. etintemel,

31]

N. Trigoni, Y. Yao, A. J. Demers, J. Gehrke, and R. Rajaraman, “Multit32]

[8] A. Silberstein and J. Yang, “Many-to-many aggregation for sens¢s3]

networks,” inICDE, 2007.

[9] W. Hong and M. Stonebraker, “Optimization of parallel query execution

plans in XPRS,Distributed and Parallel Databasesol. 1(1), 1993.

[10] Q. Zhu, “Query optimization in multidatabase systems,"GASCON

(34]

'92: Proceedings of the 1992 conference of the Centre for Advancégb]

Studies on Collaborative research|BM Press, 1992, pp. 111-127.
[11]
federated database systems,1@DE, 2002, pp. 716-732.

A. Deshpande and J. M. Hellerstein, “Decoupled query optimization f¢86]

T T T 1 00 T
40 60 80 100 50

Number of Queries

100 150 20
Number of Nodes
(iv) Varying No. of Nodes - Dataset 1

T
20

Results for the general case - all queries are restricted to be over two sources each

M. N. Garofalakis and Y. E. loannidis, “Parallel query scheduling and
optimization with time- and space-shared resourcesYLbB, 1997.

D. Kossman, “The state of the art in distributed query processkgi
Computing SurveysSeptember 2000.

P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. R.
Jr., “Query processing in a system for distributed databases (SDD-1),”
TODS vol. 6, no. 4, 1981.

R. S. Epstein, M. Stonebraker, and E. Wong, “Distributed query process-
ing in a relational data base system,”fmoceedings of the 1978 ACM
SIGMOD International Conference on Management of D4378.

C. Evrendilek, A. Dogac, S. Nural, and F. Ozcan, “Multidatabase query
optimization,” Distributed and Parallel Database4997.

S. Salza, G. Barone, and T. Morzy, “Distributed query optimization in
loosely coupled multidatabase systems,1@DT, 1995.

C. T. Yu, Z. M. Ozsoyoglu, and K. Lam, “Optimization of distributed
tree queries,'JCSS 1984.

D. Shasha and T.-L. Wang, “‘Optimizing Equijoin Queries in Distributed
Databases Where Relations Are Hash Partitione@®DS vol. 16,

no. 2, pp. 279-308, June 1991.

T. K. Sellis, “Multiple-query optimization,ACM Trans. Database Syst.
vol. 13, no. 1, pp. 23-52, 1988.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efficient and exten-
sible algorithms for multi query optimization,” iSIGMOD, 2000.

S. Ganguly, W. Hasan, and R. Krishnamurthy, “Query optimization for
parallel execution,” i'SIGMOD, 1992, pp. 9-18.

W. Hasan and R. Motwani, “Coloring away communication in parallel
query optimization,” invVLDB, 1995.

C. Chekuri, W. Hasan, and R. Motwani, “Scheduling problems in parallel
query optimization,” inPODS 1995, pp. 255-265.

Y. Huang and H. Garcia-Molina, “Publish/subscribe tree construction
in wireless ad-hoc networks,” iMobile Data Management (MDM)
London, UK: Springer-Verlag, 2003, pp. 122-140.

S. Banerjee, A. Misra, J. Yeo, and A. Agrawala, “Energy-efficient
broadcast and multicast trees for reliable wireless communication,”
Wireless Communications and Networking (WCNZD)03.

J. Wong, G. Veltri, and M. PotkonjalEnergy-Efficient Data Multicast

in Multi-Hop Wireless Networksser. System-Level Power Optimization
for Wireless Multimedia Communication, 2002, pp. 69-85.

O. Papaemmanouil and U. Cetintemel, “Semcast: Semantic multicast for
content-based data dissemination,”I@DE, 2005.

M. Garey and D. JohnsofiComputers and Intractability: A Guide to
the Theory of NP-Completeness”W.H. Freeman, 1979.

] G. Robins and A. Zelikovsky, “Improved Steiner tree approximation in

graphs,” inSODA 2000.

A. Zelikovsky, “An 11/6-approximation algorithm for the network steiner
problem,” Algorithmicg vol. 9, no. 5, pp. 463-470, 1993.

A. Gupta, A. Kumar, and T. Roughgarden, “Simpler and better approx-
imation algorithms for network design,” IBTOC 2003, pp. 365-374.

F. Eisenbrand, F. Grandoni, T. Rothvoss, and G. Schafer, “Approximating
connected facility loccation problems via random facility sampling and
core detoruring,” inSODA 2008, pp. 1174-1183.

T. C. Hu and K. Moerder, “Multiterminal Flows in a HypergrapN,LSI
Circuit Layout: Theory and Desigrpp. 87-93, 1985.

Y. Bartal, “On approximating arbitrary metrices by tree metrics,” in
STOG 1998, pp. 161-168.

J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on approxi-
mating arbitrary metrics by tree metrics,” 8TOG 2003, pp. 448-455.

[37] D. West,Introduction to Graph Theory (2nd Edition) Prentice Hall,
2000.

