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Abstract—The energy costs for cooling a data center constitute
a significant portion of the overall running costs. Thermal
imbalance and hot spots that arise due to imbalanced workloads
lead to significant wasted cooling effort – in order to ensure
that no equipment is operating above a certain temperature, the
data center may be cooled more than necessary. Therefore it is
desirable to schedule the workload in a data center in a thermally
aware manner, assigning jobs to machines not just based on local
load of the machines, but based on the overall thermal profile
of the data center. This is challenging because of the spatial
cross-interference between machines, where a job assigned to a
machine may impact not only that machine’s temperature, but
also nearby machines.

Here, we continue formal analysis of the thermal scheduling
problem that we initiated recently [25]. In that work, the notion of
effective load of a machine which is a function of the local load
on the machine as well as the load on nearby machines, was
introduced, and optimal scheduling policies for a simple model
(where cross-effects are restricted within a rack) were presented,
under the assumption that jobs can be split among different
machines. Here we consider the more realistic problem of integral
assignment of jobs, and allow for cross-interference among dif-
ferent machines in adjacent racks in the data center. The integral
assignment problem with cross-interference is NP-hard, even for
a simple two machine model. We consider three different heat
flow models, and give constant factor approximation algorithms
for maximizing the number (or total profit) of jobs assigned
in each model, without violating thermal constraints. We also
consider the problem of minimizing the maximum temperature
on any machine when all jobs need to be assigned, and give
constant factor algorithms for this problem.
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I. INTRODUCTION

Modern data centers consist of thousands of computers
closely packed in a dense space, typically arranged as hundreds
of racks of processors. This results in increased power density
leading to higher temperatures of machines. The energy costs of
a data center have been compared to that of a small town, with
a significant portion contributed by the cost incurred in cooling
the machines [4]. The energy cost of cooling is directly driven
by the supply temperature (denoted Tsup) of the cold air being
blown in to cool the data center – the incoming air is often kept
at a lower than necessary temperature to prevent hotspots from
forming since those can damage the hardware. For instance,
it has been observed that servers near the top of a rack often
run hotter and are subject to higher failure rates [15]. Thermal
balancing through judicious task scheduling can lead to fewer
hotspots and thus lower overall cooling costs and lower failure

rates. Similarly in multi-core chip architectures, the increasing
density of cores and a movement toward 3D architectures [37]
has made thermal management a key challenge. Increasing
temperatures affect circuit reliability and longevity over the
long term, and result in increased power consumption (because
of increased leakage power) and overall high cooling costs.

In this framework, we address a basic scheduling problem,
referred to as the thermal scheduling problem, where we want
to maximize the number of assigned jobs while keeping the
maximum machine temperature below a pre-specified value.
Alternatively, we may want to minimize the maximum machine
temperature when all jobs need to be assigned. The key
differentiating factor here from the existing scheduling literature
is the notion of spatial cross-interference: the heat generated by
jobs running on a machine raises that machine’s temperature as
well as the temperatures of nearby machines due to recirculation
effects. These cross effects are often asymmetric depending on
the data center geometry.

In traditional scheduling models, one tries to optimize various
measures like makespan, completion time, tardiness etc. while
scheduling jobs on multiple machines. In all these models
the scheduling cost (or load) of a machine simply depends
on its local load. For thermal scheduling problems, there is a
fundamental shift in this assumption due to the cross effects.
Hence this new paradigm of scheduling and packing problems
in the presence of cross-interference among machines requires
new techniques and analysis.

A formal study of the problem of thermal scheduling in
presence of spatial cross-interference modeling a single rack
of machines was initiated by us recently [25]. In that work, we
analyze the case where fractional or continuous assignments
are allowed, i.e., a job can be arbitrarily split across a set of
machines without any penalty. We also provide justification
for the thermal model chosen [25]. In the current work, we
continue the formal analysis of the thermal scheduling problem
by considering the problem where only integral assignments
of jobs are permitted, i.e., a job must be fully assigned to a
single machine. We examine this problem for the case of a
single rack of machines, which we call the one-dimensional
case. We then extend the model to the more general case of
multiple racks of machines, which we call the two-dimensional
case. In fact, we analyze three different models to capture the
spatial cross-interference for the case of multiple racks. The
fractional version of all these problems can be solved optimally
using linear programming. However, we only need to know



the structure of an optimum solution in our algorithms for
integral assignment. We derive this structure combinatorially.
We outline our contributions in further detail below.

Contributions and Summary of Results

We first consider the problem where the maximum tempera-
ture that any machine can attain is given to us and is a hard
constraint that cannot be violated. The jobs are assumed to be
long lasting, with release time 0, and we consider the thermal
profile under steady state assumption. The jobs additionally
may have profits associated with them. Our goal is to devise
algorithms for an integral assignment of jobs to machines,
maximizing the number of jobs scheduled or the total profit of
jobs scheduled, without violating the hard thermal constraints.
This problem is NP-hard as it is a generalization of the multiple
knapsack problem.

In Section IV, we give a ( 1
2 − O(ε)) algorithm for this

problem for a single rack of multiple machines with cross
interference between them.

We then consider multiple racks, where there is cross
interference not only between machines belonging to a single
rack, but also between machines belonging to different, adjacent
racks. In Section III, we give a formal description of each of
the models with cross-interferences considered in this work.
In Section V, we first develop the structure of the optimum
fractional solution for a natural two dimensional generalization
of the one-dimensional model, and then we provide a ( 1

2−O(ε))
algorithm for the integral assignment problem in Section VI.
We extend our analysis to two other two-dimensional cross
interference models for both the fractional and the integral
assignment problems. All these models are motivated by heat
redistribution effects commonly observed in data centers. In
fact, our work can be considered a general framework for
analyzing scheduling problems with structured directional
cross-interference effects. The analysis of our algorithms is
asymptotically tight.

In Section VII, we further consider the problem of mini-
mizing the thermal makespan for a single rack of machines
in presence of spatial cross-interference. In other words, we
consider the problem of integrally assigning all the jobs such
that the maximum temperature attained by any machine is min-
imized. Again this problem is NP-hard since it generalizes the
minimum makespan problem for multiple machines. We show
that Graham’s Longest Processing Time algorithm [14] gives a
constant factor approximation to this problem and the analysis
is asymptotically tight. We then consider the online version
of the same problem and show that Graham’s List Scheduling
algorithm [13] gives a constant factor approximation to the
optimum solution. The analysis is again asymptotically tight.

II. RELATED WORK

Thermal scheduling in data centers has been an area of active
research in recent years. Spatial cross-interference effects are
well-documented (see, e.g., Schmidt and Cruz [28]). Moore et
al. [23] suggest a set of heuristics for workload placement and
scheduling for controlling hot spots. Tang et al. [31] proposes

a cross-interference model to capture heat recirculation in a
data center, and that model and its impact on task scheduling
has been explored in a series of works since then [30], [32],
[26], [33]. In [25], where we introduce the thermal scheduling
problem allowing fractional assignments, we follow the thermal
model proposed by them. Shi and Srivastava [29] also use a
similar model, but focus on the storage units (disks) instead
of the compute units (processors). Pakbaznia and Pedram [27],
using a similar model, argue that server consolidation (choosing
which servers are on) is critical in minimizing the power
consumption, and address the combined problem of task
scheduling and server consolidation.

Similar to our work here, much of the above work also makes
a steady state assumption leading to a stationary temperature
profile that is optimized. Some work has considered different
cooling models and their impact on task scheduling [33]. Zhang
et al. [35] take time into account and give an approximation
algorithm for voltage frequency scaling. Fisher et al. [10] use
the Fourier’s cooling model to model cooling and heating
phenomena, and develop algorithms for frequency scaling.
Choi et al. [6] observe that the rise- and fall-times of on-chip
temperatures are typically an order of magnitude larger than
the OS scheduler ticks, and develop an OS-level scheduler to
balance the heat and avoid formation of hotspots. Extending
our approach to formally analyze temporal effects is a rich
area for future work that we are planning to explore.

There have been several algorithmic and theoretical papers
exploring the power on and off strategies [3], [16]. Yao et
al. [34] and Irani et al. [16] consider the problem of reducing
the total energy consumed by controlling processor speed for a
single processor. Bansal et al. [1] and Bansal and Pruhs [2] also
consider the problem of minimizing energy and temperature for
a single processor using speed scaling techniques. Our work is
fundamentally different since we consider multiple processors
with cross-interference and there is no speed control.

With increasing power density on multi-core chips and a
trend toward 3D chip architectures [22] that tend to exhibit high
temperatures, micro-level thermal management has seen much
work in last few years. In addition to investigations into better
cooling technologies, techniques have also been proposed to
either reduce the power consumption locally through frequency
and voltage scaling, or by dynamically redistributing the
workload to handle hotspots. Gomaa et al. [12] propose a
technique called heat-and-run that uses intelligent thread
assignment, and thread migration to address the problem.
Coskun et al. [8] use both voltage/frequency scaling and task
migration to reduce the frequency of hotspots. Ge et al. [11]
propose using local task swaps between neighboring cores
to achieve thermal balancing; their thermal model looks very
similar to the cross-interference model that we use in this work.
Liu et al. [21] also give heuristic solutions to the problem
we study. Li et al. [19] also look at thermal management
in micro chips, but when jobs have precedence constraints.
Liu et al. [20] look at thermal management in presence of
stochastic workloads. In an earlier work, Kursun et al. [18]
examine the effects of task scheduling on thermal behavior and
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Fig. 1. Models of heating effect shown for two racks each with three machines: (i) General model, (ii) Horizontal Sibling Model, (iii) Indirect Sibling Model.

experimentally show that thermal-aware scheduling policies
can alleviate on-chip temperatures. In recent work, Zhou et
al. [36] propose and analyze several heuristics for thermal-
aware scheduling in 3D chips.

Unlike our work, prior work in spatial cross-interference
has either presented heuristics or suggested using ILP solvers
to solve the problem, and has not attempted to exploit the
structure of the cross-interference matrix to design algorithms
with worst case guarantees.

III. PROBLEM FORMULATION AND MODEL

We formulate the problem of thermal scheduling in terms
of “effective load” on a machine [25]. For completeness, we
begin with summarizing the key ideas underlying our problem
definition here.

For each job to be scheduled, we assume that we can estimate
the power that will be consumed to execute it on a machine1;
this can be computed using the estimated resources required to
execute the job, its time duration, and standard system power
modeling techniques [9].

We base our thermal model on the abstract heat circulation
model suggested by Mukherjee et al. [26]. As with much
of the prior work on thermal scheduling, we assume that
the system is in steady state; i.e., we assume the jobs are
long-lived, and analyze the system state when all the jobs
have arrived and the temperatures have stabilized. According
to the model, the temperature of a machine i is given by:
Ti = Tsup +DiL, where Tsup is the supply temperature, Di

is the ith row of the heat distribution matrix D, and L is
the load vector. The vector L = {L1, · · · , Lm}, where m is
the number of machines, denotes the loads on the machines
in terms of the power consumed by the jobs assigned to the
machine. The matrix D represents how the heat or load of any
machine j affects machine i (called cross-interference). Since
the temperature of no machine should exceed Tred, we have
that: Tsup + maxi∈[1,...,m]DiL ≤ Tred.

Given this, effective load on a machine is computed as a
linear combination of the load on the machine itself and loads
on other machines. Specifically, given that the load on machine
i is Li, and the effect of machine j’s load on machine i is

1We use the terms machines and processors interchangeably.

captured through the cross-interference coefficient Di,j , the
effective load ELi is computed as follows: ELi =

∑
j Di,jLj

where 0 ≤ Di,j ≤ 1 and Di,i = 1. Under a steady state
assumption, the effective load on a machine serves as a proxy
for the temperature of the machine [25].

A. Single rack of machines: One Dimensional Model

In the simplest case, the machines are arranged in a linear
array with cold air blowing from one end. This models the
behavior of a single rack with the cold air blowing from the
floor [28] and the warm air moving into a vent in the ceiling
and back to the HVAC unit.

In this simple model, which we call the one-dimensional
model, heat is recirculated in one direction. We number
machines from bottom to top, in increasing order from the
cold air source. The ith machine is affected only by the heat
recirculated from the machines j ≤ i located below it.

We assume the heat falls off in an exponential manner.
Specifically, the heat felt by a machine i due to machine j
is a fraction 1

Kd of the load (heat) of j, where d = |i− j| is
the distance between i and j and K is a constant > 1. More
formally, Di,j = 1

K|i−j| . For technical reasons we assume that
K ≥ 2. In practice, we expect K � 2 – a value of K < 2
would indicate an unacceptably tight thermal coupling between
two adjacent machines and is unlikely to be observed in a data
center.

B. Multiple racks of machines: 2-D Models

Here we consider a two dimensional grid, consisting of
several adjacent racks, such that there is heat distribution among
the machines of one rack, as well as heat distribution laterally
between adjacent racks. We assume that a cold air source is
located at the bottom of the racks, so the heat flows upward
along each rack. We also assume there is a cold air source
at one end of the series of racks, so that the heat also flows
laterally from one rack to another. The heating effect is felt
by a machine from the machines located below it in the same
rack, as well as from the machines located on the racks to its
left, at the same or lower position on their respective racks.

The racks are numbered in an increasing order from the
cold air source and in each rack, machines are numbered from



bottom to top. In previous works [12], [21] the lateral heat
redistribution is considered much weaker than the vertical
one. So, the temperatures of machines located in the same
rack are more strongly coupled than those across racks. To
capture this effect we define three models of heat recirculation
in the lateral direction (see Figure 1). In all these models,
the number of machines in a single rack is m1 ≥ 2 and the
number of racks is m2 ≥ 1. The total number of machines
m is therefore m1m2. The heat recirculation coefficient in
the vertical direction is called K1 and in the lateral direction
as K2. We assume K1 ≥ 2 and K2 ≥ 1 + K1

K1−2 . We now
define the Di,j as a function of (i, j,K1,K2). The specific
formulation depends on the corresponding model.

2-D General Model: In the first model, which we call the
general model, a machine located at the jth row of the ith

rack, where 1 ≤ j ≤ m1 and 1 ≤ i ≤ m2, is affected by all
machines located in rows j or lower, of all racks numbered
[1 . . . i]. The heat redistribution effect from the load on the
(i′, j′)

th machine on the (i, j)
th machine is Li′j′

K1
j−j′ K2

i−i′ , i.e.,

the effective load on the (i, j)
th machine is:

ELi,j =

i∑
i′=1

j∑
j′=1

Li′,j′

K1
j−j′ K2

i−i′

2-D Horizontal Sibling Model: Here the heat redistribution in
the vertical direction is as before, but the lateral redistribution
is restricted to a single level. The vertical effect falls off
exponentially as Kd

1 , and the lateral effect falls off as K2.
The effective load on the (i, j)th machine is given as follows.

ELi,j =
Li−1,j

K2
+

j∑
`=1

Li,`

K1
j−`

2-D Indirect Sibling Model: In the third model, which we call
the indirect sibling model, the effective load on the

(
ith, jth

)
machine is defined as

ELi,j = Li,j +
ELi,j−1

K1
+
ELi−1,j

K2

The definition of this model is inspired by the effective load
behavior in the one dimensional case [25].

Fig. 1 illustrates the heating effect in the three models.

C. Thermal Scheduling Problem

Given this background, we consider the following problem.
We are given a set of jobs, with job j having size sj – the size
of a job denotes the (thermal) load caused by it on the assigned
machine. The jobs have release times 0. We are also given
a set of machines, and a cross-interference model depending
on the geometric configuration of the data center. For the first
problem, our goal is to maximize the number of jobs that can
be scheduled, given upper bounds on the maximum effective
load that any machine can handle (we call this the maximum

cardinality problem). A variation of this problem is where
each job is assigned a profit, and our goal is to maximize the
total profit instead (we call this the maximum profit problem).
For the second problem, we have to assign all jobs, and our goal
is to minimize the maximum effective load on any machine
(called the minimum thermal makespan problem).

IV. SINGLE RACK OF MACHINES: 1-D MODEL

We begin with analyzing the simple one-dimensional model
and develop algorithms for the integral version of the problem.

A. Fractional Assignments

Recall that in the fractional assignment case, a job may be
arbitrarily split among a set of machines. For this case for
the one-dimensional model, the following claims about the
behavior of effective load were shown in [25]. We list these
claims here as they will be used later for developing algorithms
for integral assignments and for 2-D case. Claim 1 relates the
effective load on adjacent machines, whereas Claim 2 gives us
an analytical expression for the effective load on any machine
due to an optimal load distribution strategy.

Claim 1: ELi = Li + ELi−1

K for all i > 1.
Claim 2: An optimal strategy for minimizing the maximum

effective load for fractional assignments, with total load L,
would result in uniform effective load of EL = L

m−m−1
K

.
Using these claims, we can also prove the following claim.

Claim 3: Let c be the capacity constraint for the processors.
An optimal strategy packs the first machine up to c and all
others up to c(1− 1

K ) until it runs out of machines or load.

In other words, the optimal capacity distribution (in terms of
load assigned to the machines) is c, c

(
1− 1

K

)
, c
(
1− 1

K

)
, . . ..

B. Integral Assignments

Here jobs need to be integrally assigned to machines and
our goal is to maximize the number of jobs scheduled without
violating thermal constraints.

The optimum fractional strategy (Claim 3) packs the first
machine to c and other machines to c

(
1− 1

K

)
. However for

integral assignments, that may not be achievable. Suppose in
an optimum packing, machine 1 is occupied up to c′ < c. The
available capacity in machine 2 would be c − c′

K > c(1 −
1
K ) that might allow machine 2 to fit an extra job. So the
optimal capacity distribution is not a straightforward pattern
of c, c(1− 1

K ), . . . c(1− 1
K ) anymore. Suppose in the optimal

packing, the ith machine is filled up to ci. We refer to the
sequence c1, c2, ..., cm, as a “pattern” or “layout” of capacities,
interchangeably. If c1 < c, we refer to δ1 = c − c1 as the
gap in machine 1. Similarly, if ci < c(1 − 1

K ) for i > 1,
δi = c(1− 1

K )− ci is the gap in machine i.
Lemma 1: There exists an optimal packing with the prop-

erty that if machine i has an effective load ELi ≤ c−∆ where
∆ is the size of the largest job, then the effective load in all
machines j (j > i) is ELj ≤ c−∆.

Proof: Suppose this is not true. In other words, in every
optimal packing for a given instance of the problem, there
exists a machine i such that ELi ≤ c − ∆ and there is a



machine j (j > i) such that ELj > c−∆. Consider one such
optimum packing. Let i be the machine with ELi ≤ c −∆.
Select the smallest numbered machine j, where ELj > c−∆.
We can assume now that j = i+ 1. Move jobs greedily from
machine i+1 to machine i until ELi > c−∆. The assumption
on ∆ ensures that the packing on i remains feasible at each
step. If the total shifted load is s then the effective load on i
goes up by s, and the load on i+ 1 goes down by s. However
the effective load on i + 1 goes up by s

K , but the drop in
the real load of s compensates for this and the new effective
load is only lower than the effective load initially. In a similar
way, the effective load of all machines with higher indices also
decreases. In other words, we now have an optimal packing
that satisfies the property of the lemma, contradicting the initial
assumption.

NOTE: This lemma holds more generally for any function
where the effect of i on j is monotonically decreasing as j
gets further away from i.

However, this does not mean that for a set of jobs with
arbitrary sizes, the optimal packing capacity “pattern” is
monotonically decreasing or of any regular form, as in the
fractional case. The optimal strategy might have a capacity
pattern that is quite irregular, decreasing in the middle, and
again rising at the ends, or any other arbitrary pattern, and
this is the case even if we assume a limit on the sizes of the
objects.

The following example shows the optimal pattern might be
complicated having “gaps” (less than the size of any object)
in two consecutive machines that helps to accommodate an
extra object in the third one. These gaps get created because
objects need to be assigned integrally. However, as can be seen
in the example, these gaps were necessary in order to fit all
the objects without thermal violation.

Example: Let K = 4. There are 4 processors, we have
one object of size c, 3 objects of size 0.2292c, 3 objects
of size 0.2135c, and 4 objects of size 0.195c. An optimal
arrangement fitting them all is the object of size c in processor
1, 3 objects of size 0.2292c in processor 2, 3 objects of
size 0.2135c in processor 3, and 4 objects of size 0.195c
in processor 4. This gives an actual load capacity layout of
c, 0.6876c, 0.6405c, 0.78c. With a little effort it can be seen
that this is an optimal packing. The optimal capacity pattern
can therefore be quite arbitrary.

We consider a further generalization of the problem where
jobs additionally have profits associated with them. We want to
maximize the profit of jobs assigned integrally without violating
the effective load capacity or thermal constraint. Henceforth we
refer to this problem as the maximum profit problem. We next
describe an algorithm (Algorithm 1) for maximizing profit.

Lemma 2: Algorithm 1 produces a thermally feasible pack-
ing.

Proof: The proof follows from Claim 3.
Let ∆ be the size of the largest job. Let µ be a lower bound

on the number of items that can be packed in any machine i

under the fixed capacity pattern. We assume µ = b c(1− 1
K )

∆ c ≥

Algorithm 1 Algorithm for the One Dimensional Model

1. Fix the capacity pattern as c for machine 1, and
c
(
1− 1

K

)
for machines [2 . . .m].

2. Run a PTAS for multiple knapsack [5] [17] using the
modified machine capacities on the instance I.

1, i.e., we assume that the largest job can fit on any machine
under modified capacities. In practice µ is likely to be much
greater than 1 and the approximation guarantee would increase
monotonically with µ.

Theorem 1: Algorithm 1 produces a µ
µ+1 (1−O(ε)) ap-

proximation to the maximum profit problem for a fixed ε > 0
in polynomial time. For µ ≥ 1, µ

µ+1 ≥
1
2 . The factor of 1

2 is
asymptotically tight.

To prove Theorem 1, we first prove the following lemma
Lemma 3: There exists a packing of jobs that would lose

at most one job per machine compared to an optimum solution,
when we fix the actual load capacities of the machines as:
c1 = c and ci = c

(
1− 1

K

)
, i ∈ [2 . . .m].

Proof: An optimal solution OPT, packs some machines
i to an extent lower than ci. We refer to such machines as
underpacked. Similarly, OPT packs some machines j to an
extent greater than cj . We refer to such machines as overpacked.
If there are no overpacked machines, then there is nothing
further to prove in this lemma.

Let i be the first overpacked machine and the sum of sizes
of jobs packed in i in OPT is c′i (c′i > c

(
1− 1

K

)
).

First we claim that if there exists a machine i which is
overpacked in OPT, then there exists a non-empty set of
underpacked machines j < i. Suppose there are no underpacked
machines j < i. That means, the first machine has been
packed to c, and machines [2 . . . (i− 1)] are all packed up
to c

(
1− 1

K

)
. Therefore, from Claim 1, the effective load

on every j < i is c, and therefore the effective load on i
is Li + c

K . However, i being overpacked, Li > c
(
1− 1

K

)
.

Hence, the effective load on i in OPT would be > c which is
infeasible.

We order the jobs in machine i in non-decreasing order of size.
repacking them in underpacked machines j < i using some
heuristic such as First-Fit, such that the thermal constraints
are not violated. A job k is moved to a machine j, only if
sk ≤ δj where δj is the size of the gap in machine j before
the reassignment. This repacking does not violate thermal
feasibility for any machine as proved in Claim 4.

Claim 4: The above repacking does not violate thermal
feasibility for any machine.

Proof: The assignment of a job k to a machine j does
not violate thermal feasibility by the repacking rule. We prove
that the thermal feasibility in other overpacked machines is
also not violated by this reassignment.

In machines located at j + d, the effect of the gap in j was
δj
Kd before the reassignment. Note that d ≥ i− j, since i is the



first overpacked machine. After the reassignment of sk from
i to j, for any overpacked machine j + d the feasibility of
the packing is not violated since a job affecting it only moved
further away.

Proof of Lemma 3 continued: After repacking some jobs, if
machine i is no longer overpacked then we move to the next
overpacked machine. Otherwise, the total size of jobs assigned
to i still exceeds c

(
1− 1

K

)
. In other words, the load on i is

Li = c
(
1− 1

K

)
+ ε, where ε > 0. If after having repacked or

reassigned some jobs, the smallest among the remaining jobs
in machine i: si,min, must be larger than any of the gaps in
any machine j (j < i). That is, si,min > δmax, where δmax
is the maximum gap in any j < i after the reassignments.

For thermal feasibility, ε ≤ δmax
(

1− 1

Ki

1− 1
K

− 1

)
. Since K ≥ 2,

ε < δmax < si,min. Hence, if we remove at most one job from
i (where all the jobs are of size ≥ si,min), i will no longer be
overpacked.

We then repeat the same procedure for the next overpacked
machine, until no machine is overpacked. The thermal feasibil-
ity in the succeeding machines is not affected by the repacking
of jobs as already proved. Hence, we convert the optimum
packing to a packing with the modified capacity pattern, losing
at most one job per machine in the process.

Proof of Theorem 1:

Proof: For the maximum cardinality problem where we
want to maximize the number of jobs assigned without violating
thermal capacity constraints, just arbitrary assignment of the
jobs in the machines with the modified capacity pattern would
give µ

µ+1 approximation, since by definition, at least µ jobs can
be fitted in every machine with the modified capacity pattern
in the given instance. When the objects have profit, if we have
access to a multiple knapsack oracle, the same approximation
guarantee is achieved. After repacking, we choose the least
profit item to discard from the overpacked machines. If the item
discarded from machine i has profit pi, the remaining objects
in the machine will have profit ≥ pi and by the assumption
on size, there will be at least µ such items in it. We use
the multiple knapsack PTAS due to Chekuri and Khanna [5]
or Jansen [17] which gives a 1−O(ε) approximation to the
optimum packing for a given capacity pattern, for a fixed ε in
polynomial time.

The factor of 1
2 is asymptotically tight as can be seen in the

following example. Let the thermal constraint limit the effective
load of any machine to 1 and there are m machines and 2m
jobs. Suppose the optimum solution packs 2 objects of size
1
2 − ε in machine 1, 2 objects of size 1− 1

K

2 + ε
4K in machine 2,

2 objects of size 1− 1
K

2 + ε
8K2 in machine 3 and so on, till on

machine m it packs 2 jobs of size 1− 1
K

2 + ε
2mKm−1 . Algorithm 1

would miss one object from each of machine [2 . . .m], hence
it will give an approximation m+1

2m = 1
2 + 1

m ≈
1
2 when m is

large.

V. MULTIPLE RACKS OF MACHINES: FRACTIONAL
ASSIGNMENTS

In this section we discuss generalizations of the thermal
model for a single rack of machines to multiple racks of
machines. Specifically, we discuss the three different two-
dimensional models, emulating different heat flow effects. We
first derive optimal load distribution strategies for fractional
assignments. From this analysis it is easy to derive the
corresponding three theorems that bound: (a) how much
extra load can be assigned due to a thermally aware strategy
compared to a naive load distribution strategy subject to a
thermal constraint, (b) the reduction in maximum effective
load on a machine for a given total load, and (c) the savings in
cooling costs. We have omitted some of the more technically
involved proofs from this paper due to space constraints.
However they can be found in the full version [24].

In Section VI we discuss how to develop approximation
algorithms for assigning jobs by fixing the effective load ca-
pacities for each machine. This method lets us now completely
ignore thermal constraints and reduces the problem (as before)
to a multiple knapsack problem. However, the proof technique
and analysis are both different and more involved than the
one-dimensional case.

A. Two Dimensional General Model

In this model, the heat redistribution effect of the load on
the (i′, j′)

th machine on the (i, j)
th machine is Li′j′

K1
j−j′ K2

i−i′

and the effective load on the (i, j)
th machine is

ELi,j =

i∑
i′=1

j∑
j′=1

Li′,j′

K1
j−j′ K2

i−i′
.

The following claim relates the effective load on neighboring
machines analogous to the 1D case.

Claim 5: The effective load ELi,j in the general model can
be given as ELi,j = Li,j +

ELi,j−1

K1
+

ELi−1,j

K2
− ELi−1,j−1

K1 K2
.

Lemma 4 gives the maximum effective load that results due
to a thermally aware strategy when fractional assignments are
allowed.

Lemma 4: Any optimal strategy for minimizing the max-
imum effective load for fractional assignments, with to-
tal load L, would result in uniform effective load of

L(
m1−m1−1

K1

) (
m2−m2−1

K2

) .

On the other hand, if the load is naively split among all
machines equally, the maximum effective load in the system
can be much higher and is given by the following lemma.

Lemma 5: A naive strategy minimizing the maximum load
for total load L, would split the load uniformly and result in

maximum effective load EL = L
m1 m2

1− 1
K1

m1

1− 1
K1

1− 1
K2

m2

1− 1
K2

.

The corresponding lemmas for the other two models are given in
the following sections. The following table gives a comparison
of the thermal savings of the three different heat flow models.
The parameters used are K1 = 3, K2 = 5, m1 = 10 and
m2 = 2 and load L = 100. for all three models. The first



column gives the maximum effective load due to thermally
aware load splitting, the second column gives the maximum
effective load due to naive load splitting, and the third column
gives the % savings. We note that, even a few degrees reduction
in the maximum temperature across the machines may result
in significant savings in the cooling costs.

Model EL-aware EL-oblivious % Savings
General 7.936 8.999 11.81

Horizontal 3.279 8.4998 61.4
Indirect 8.333 9.749 14.52

TABLE I
TABLE COMPARING PERCENTAGE SAVINGS IN EFFECTIVE LOAD:

K1 = 3, K2 = 5, m1 = 10, m2 = 2, L = 100

B. Two Dimensional Horizontal Sibling Model

In this model, the effective load on the (i, j)th machine
is given as follows, assuming the machines in each rack are
numbered starting from 0 and the racks are also numbered
starting from 0.

ELi,j = Li,j +

j−1∑
`=0

Li,`

K1
j−`

+
Li−1,j

K2
.

Claim 6 relates the effective load on machines.

Claim 6: The effective load on the (i, j)
th machine

can be expressed as ELi,j = Li,j +
ELi,j−1

K1
−∑i−1

l=0

(
− 1

K2

)i−l∑min (j,i−l+1)
p=0

(
− 1

K1

)p(
i−l+1

p

)
ELl,j−p.

Lemma 6 gives the maximum effective load that results due
to a thermally aware strategy when fractional assignments are
allowed.

Lemma 6: Any optimal strategy for minimizing the maxi-
mum effective load for fractional assignments, with total load
L, would result in uniform effective load EL = L

P , where

P =
∑m2−1

i=0

(
− 1

K2

)i
(m2 − i)(

(m1 − i− 1)
(
1− 1

K1

)i+1

+
∑i

j=0 (m1 − j)
(
i+1
j

)(
− 1

K1

)j)
.

On the other hand, naively splitting load among machines
can result in a higher maximum effective load in the system,
as given below.

Lemma 7: A naive strategy splitting load uniformly be-
tween machines will result in a maximum effective load
ELmax = L

m1m2

[
K1

m1−1

K1
m1−1(K1−1)

+ 1
K2

]
.

C. Two Dimensional Indirect Sibling Model
In this model, unlike the above two models, we define the

effective load on a machine in terms of the effective loads of
their neighbors, not the actual loads.

ELi,j = Li,j +
ELi,j−1

K1
+
ELi−1,j

K2

where i > 1, j > 1.

EL1,j = L1,j +
EL1,j−1

K1

where j > 1.

Eli,1 = Li,1 +
ELi−1,1

K2

where i > 1, and EL1,1 = L1,1.
This is a natural way of defining effective load of machine.

The effective load is a measure of the temperature of a machine,
and the temperature of machine is affected by the temperature
of its two immediate neighbors in this model. This recursive
definition already takes into account the heat recirculated from
previous machines. In fact, this generalizes the one-dimensional
model in a way, because, in the 1-D model with a single rack,
we had proved in Claim 1 that ELi = Li + ELi−1

K .
The following claim relates the effective load on machine

(i, j) to the actual loads of other machines.

Claim 7: The effective load on machine (i, j) in terms
of the loads of the other machines is ELi,j =∑i−1
p=0

∑j−1
q=0

(
p+q
p

) Li−p,j−q

K1
p K2

q .

The following lemma gives the maximum effective load that
will result due to a thermally aware strategy when fractional
assignments are allowed.

Lemma 8: An optimal strategy minimizing the effec-
tive load across all machines when the total load is
L would result in an uniform effective load: EL =

L K1 K2

m1K1+m2K2+m1m2(K1K2−K1−K2) .

If the load is split equally among machines, then the maximum
effective load in the system can be quite high, as given by the
following lemma.

Lemma 9: A naive strategy that splits load uniformly across
all machines results in a maximum effective load ELm1,m2

=
L

m1 m2

∑m2−1
i=0

∑m1−1
j=0

(i+j
i )

K1
j K2

i .

VI. MULTIPLE RACKS OF MACHINES: INTEGRAL
ASSIGNMENTS

We want to maximize the number or profit of jobs integrally
assigned with respect to the thermal constraint, which is the
effective load capacity of the machines. Let this capacity be c
for all machines. Here we provide a ( 1

2 −O(ε)) algorithm for
the 2D General Model. We also give algorithms with the same
approximation ratio for 2D Horizontal and Indirect Sibling
Models.

A. General Model

We assume that the maximum object size ∆ ≤
c
(

1− 1
K1

)(
1− 1

K2

)
. Let us call the instance of jobs as I .

Hence, µ = b
c
(

1− 1
K1

)(
1− 1

K2

)
∆ c ≥ 1. In practice it is much

larger for data centers.

Lemma 10: The packing produced by Algorithm 2 is
thermally feasible for the general model.

Proof: The proof follows from Claim 5.

Theorem 2: When K2 ≥ 1 + K1
K1−2

, Algorithm 2 gives a(
1
2 −O(ε)

)
approximation under the general model in time

polynomial in input size and any fixed ε > 0.

For proving Theorem 2, we initially assume that we have
access to a multiple knapsack oracle that returns the optimum
packing maximizing the number of jobs when called with



Algorithm 2 Algorithm for General Model

1. Fix a capacity pattern:
c for the machine (1,1),
c
(

1− 1
K1

)
for machines (1, j), j ∈ [2 . . .m1],

c
(

1− 1
K2

)
for machines (i, 1), i ∈ [2 . . .m2], and

c
(

1− 1
K1

)(
1− 1

K2

)
for the all other machines.

2. Run a PTAS for multiple knapsack [5], [17] using the
modified machine capacities on the instance I .

machines of certain fixed capacities. For the one-dimensional
case we had shown how a packing, losing at most one object
per machine, can be derived from an optimal packing in a
polynomial number of operations [25]. However, it is not
necessary that we show how such a repacking can be done in
polynomial time; our purpose is to prove that such a packing
exists for proving the rest of the theorem.

Before proving the theorem, we first prove the following
lemma.

Lemma 11: There exists a packing that loses at most one
object per machine, as compared to an optimum solution, when
we fix the actual load capacities of the machines as c1,1 = c,
c1,j = c

(
1− 1

K1

)
, j ∈ [2 . . .m1], ci,1 = c

(
1− 1

K2

)
, i ∈

[2 . . .m2], ci,j = c
(

1− 1
K1

)(
1− 1

K2

)
, i ∈ [2 . . .m2], j ∈

[2 . . .m1].
Proof: Let OPT be an optimum packing. We call the

machines (i, j) in which the sum of sizes of assigned objects
exceed the assigned capacity ci,j in OPT as overpacked,
and those in which the sum of sizes is lower than ci,j , as
underpacked. Let O be the set of overpacked machines and U
be the set of underpacked machines. If O = ∅, then we have
nothing to prove. Let us therefore assume that there exists a
machine (i, j) ∈ O. We first prove the following claim about
the sets O and U before proceeding with the proof of the
Lemma 11.

Claim 8: If (i, j) ∈ O, then there exists some machine
(i′, j′) ∈ U , such that i′ ≤ i and j′ ≤ j, and (i′, j′) 6= (i, j).

Proof: Suppose for contradiction that there is no such
machine (i′, j′). Therefore, all the machines (i′, j′) ∈
([1 . . . i], [1 . . . j]) are packed such that Li′,j′ ≥ ci′,j′ for all
such (i′, j′). However, from Claim 5, it can be verified by
induction that the effective load on each of these machines is
at least c. But in that case, the effective load in (i, j) is > c
(this again follows from Claim 5), which is infeasible.

Proof of Lemma 11 continued:
Let J ti,j denote the set of jobs that are accommodated in an
overpacked machine (i, j) in OPT. Since (i, j) is overpacked,
S(J ti,j) =

∑
`∈Jt

i,j
s` > ci,j . Let S(J ti,j) = ci,j + Si,j , where

Si,j is the “extra capacity” used by (i, j). Among the set of
jobs J ti,j , let J ′i,j denote a maximal set of jobs such that their
total size is ≤ ci,j . Since we assume µ ≥ 1, there will be at

least one job in the set J ′i,j and hence it is well-defined 2. Let
J ′′i,j = J ti,j − J ′i,j .

Our goal is to find the maximal (in terms of cardinality)
set of jobs from (i, j) which will completely fit in Si,j . In
case S(J ′′i,j) > Si,j , note that if we discard any job from J ′′i,j ,
the remaining jobs would fit in Si,j . Otherwise, the set J ′i,j
was not maximal, since we can add at least one more job
to it. Let us therefore discard a job from J ′′i,j to create our
new set J ′′i,j . This set is define for every overpacked machine.
Now we define a set J as the union of the sets J ′′i,j for all
(i, j) ∈ O. The rest of the proof shows that the set of jobs can
be accommodated elsewhere in the packing when we force the
machines to have the capacities defined by us.

Let us consider the “gap” δi′,j′ in every underpacked machine
(i′, j′) ∈ U as a knapsack of capacity δi′,j′ . Now we have a
set of empty knapsacks of fixed capacity. Let our items in this
multiple knapsack problem be the set of jobs in J . Considering
each job ` ∈ J to be an item of size s` and profit 1, we call
our multiple knapsack oracle to pack these bins or knapsacks
optimally. If all the items or jobs have been successfully packed
then we have our required packing where each machine (i, j)
is packed to an extent ≤ ci,j , with the loss of at most one job
per overpacked machine. Note that this repacking would not
violate the thermal constraints by definition since the total size
of jobs reassigned to a machine (i′, j′) is ≤ δi′,j′ . Let us call
the gaps in each of these knapsacks (i′, j′), (not the machines),
after the packing to be εi′,j′ .

If all items or jobs could not be packed, let Jrem be the
set of jobs that could not be assigned to any of the knapsacks.
Let smin be the smallest size of any job in Jrem; we know
smin > εmax, where εmax ≥ εi′,j′ for (i′, j′) ∈ U . The
total contribution by all the gaps in U is S ≥ S(J) =
S(Jrem) + S(J \ Jrem), hence S(Jrem) ≤ S − S(J \ Jrem).
The contribution of each δi′,j′ in S is
Ci′,j′ = δi′,j′

(∑m2

p=i′
∑m1

q=j′
1

K1
q−j′ K2

p−i′ − 1
)

since the contribution of δi′,j′ can only be on machines located
higher up in the same rack, or on the same row or higher for
racks to the right. Obviously, S =

∑
(i′,j′)∈U Ci′,j′ . However,

S(J \ Jrem) =
∑

(i′,j′)∈U δi′,j′ − εi′,j′ Writing Ci′,j′ in terms
of δi′,j′ and εi′,j′ , we get

Ci′,j′ = (δi′,j′ − εi′,j′)

 m2∑
p=i′

m1∑
q=j′

1

K1
q−j′K2

p−i′
− 1

+

εi′,j′

 m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′
− 1

 .

Therefore,

S =
∑

(i′,j′)∈U

(δi′,j′ − εi′,j′)

 m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′
− 1


+εi′,j′

 m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′
− 1

 .

2Since this is for the purpose of analysis, we do not need to define a
polynomial procedure to identify the set J ′i,j from Jt

i,j .



Since K2 ≥ 1 + K1

K1−2 , it can be verified that K1

K1−1
K2

K2−1 −
1 ≤ 1.
Substituting S(J \ Jrem) and S in S − S(J \ Jrem),

S(Jrem) ≤
∑

(i′,j′)∈U

εi′,j′
 m2∑

p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′
− 1


≤

∑
(i′,j′)∈U

εmax

 m2∑
p=i′

m1∑
q=j′

1

K1
q−j′ K2

p−i′
− 1


≤ εmax

where the last inequality follows from the relation between
K1 and K2. However, smin > εmax and smin ≤ S(Jrem),
which is a contradiction. Therefore, Jrem = ∅. Hence we
have proved that there exists a packing with the fixed capacity
pattern, which, if packed optimally would lose no more than
one job per overpacked machine.

Proof of Theorem 2:

Proof: Due to assumption on size, we know a machine that
loses one object, has at least one other object packed in it. In
fact, arbitrarily placing the jobs in the machines with reduced
capacity gives a µ

µ+1 ≥
1
2 approximation to the maximum

cardinality problem.
If the objects have different profits, we would first choose J

to be the set of least profit jobs that could be accommodated
due to the extra space. This can be done by listing out the least
profit jobs from each machine (i, j) in an optimal packing, till
the first job when the sum of the sizes of the jobs listed out
from (i, j) exceeds the extra space Si,j . Note that we need not
drop the largest job from Ji,j to make the remaining jobs fit in
Si,j . If we drop any single job from Ji,j , the remaining would
fit in Si,j . So let us drop the least profit job from Ji,j , to find
the maximal set of jobs that are completely accommodated in
Si,j . If the profit of the job dropped from (i, j) is pi,j , then the
profit of the remaining jobs would be ≥ µpi,j . Hence we get
at least half the profit from every machine that loses an object
compared to its original contribution to the total profit. Since
this is a thermally feasible packing, any optimum packing
strategy would therefore give ≥ 1

2 the profit, and using the
multiple knapsack packing PTAS we lose at most O(ε) of the
profit.

B. Horizontal Sibling Model

We now consider the horizontal sibling model. Again there
are m2 racks, and m1 machines in each rack. Each machine
has effective load capacity c.

Algorithm 3 Algorithm for Horizontal Sibling Model

1. Fix a capacity pattern ci,j =

c
(
1− 1

K1
+
∑i−2

`=0

∑min j−1,i−`
p=0 (− 1

K2
)
i−`−1

(− 1
K1

)
p (i+`

p

))
.

2. Run the multiple knapsack PTAS on instance I using the
machines with modified capacities.

Lemma 12: The packing produced by the Algorithm 3 is
thermally feasible for the horizontal model.

Proof: This follows from the proof of Claim 3.
Let cmin be the minimum value of any ci,j computed as above,
and µ = b cmin

∆
c.

We assume µ ≥ 1 as before which is reasonable for data
centers. As already stated, µ is much larger in practice.

Theorem 3: When K2 ≥ 1 + 1
K1−2 , Algorithm 3 gives a(

1
2
−O(ε)

)
approximation to the optimal solution for any fixed

ε > 0 in polynomial time both for the maximum profit and
cardinality of integrally assigned jobs.

C. Indirect Sibling Model

We now consider the indirect sibling model. As before, there
are m2 racks, and m1 machines in each rack. The effective
load capacity is c for every machine.

Algorithm 4 Algorithm for Indirect Sibling Model

1. Fix the capacities of the machines as c1,1 = c,
c1,j = c

(
1− 1

K1

)
for j ≥ 2, ci,1 = c

(
1− 1

K2

)
for i ≥ 2,

and ci,j = c
(

1− 1
K1
− 1

K2

)
for i ≥ 2, j ≥ 2.

2. Run the multiple knapsack PTAS on instance I using the
machines with modified capacities.

Lemma 13: The packing produced by Algorithm 4 is
thermally feasible for the indirect sibling model.

Proof: This follows from the definition of the indirect
sibling model.

Let µ = b
c
(

1− 1
K1
− 1

K2

)
∆ c) ≥ 1.

Theorem 4: When
∑m2−1

i=0

∑m1−1
j=0

(i+j
i )

K1
j K2

i ≤ 2, Algo-
rithm 4 gives a

(
1
2 −O(ε)

)
approximation to the optimal

solution for a fixed ε > 0 in polynomial time to the maximum
cardinality and profit problems.

VII. MINIMIZING THERMAL MAKESPAN

In this section we consider the dual problem where we
need to assign all jobs and the objective is to minimize
the maximum effective load or thermal makespan over all
the machines. In [25], we had analyzed this problem where
fractional assignments are allowed, while here we only allow
integral assignments. We analyze both offline and online
variants of this problem for a single rack of machines (1D
model).

A. Single Rack of Machines

We consider here the 1D model or a single rack of machines.
Formally, there are m machines and and n jobs. The objective
is to minimize maxi∈[1...m]ELi while scheduling all the
jobs. This problem is obviously NP-hard for general m and n
as it is a generalization of the minimum makespan problem.



Note that the maximum effective load may be on a machine
that may not have the maximum load assigned among all
machines. For example, suppose we have m = n and we have
(m− 1) unit jobs, and one job of size 1− ε, and the unit jobs
have been assigned to machines [1 . . . (m− 1)] and machine
m gets the job of size 1− ε. The machine m therefore has the
lowest load among all machines. However, the effective load
on m is 1− 1

Km

1− 1
K

− ε. It can be verified that if ε < 1
Km−1 , then

machine m has the largest effective load.

1) NP-hardness: The problem of minimizing maximum
effective load obviously generalizes the minimum makespan
problem, which is strongly NP-hard. However, when the
number of jobs is less than the number of machines, the
minimum makespan problem is not NP-hard, and any arbitrary
arrangement of the jobs will result in the same value of
optimum objective function value, equal to the length of the
longest job.

However, the minimum effective load problem does not have
any such trivial solution for the case of n ≤ m. Chrobak et
al. [7] proved the NP-hardness for a different version of the
thermal problem. They proved the NP-hardness of maximizing
throughput in thermal aware scheduling for a single machine,
where there is a temporal drop off in temperature. Specifically,
in their model, the heat contribution of a job h is known. The
jobs are unit length. If at the time the job is scheduled, the
temperature of the machine is τ , then after the execution of
the job, the temperature of the machine is τ+h

2 . They have a
hard constraint on the maximum temperature that the machine
can reach at any time step. This temperature constraint is
normalized to 1, and the goal is to schedule as many jobs as
possible without violating the temperature constraint at any
time step. They show that even when all the jobs have release
times 0 and equal deadlines, it is NP-hard to maximize the
number of jobs scheduled. Their reduction can be modified to
prove the NP-hardness of minimizing the effective load when
all jobs have to be scheduled and there is no release time or
deadline constraint.

The crucial observation is that the time axis can be inter-
preted to be the space axis; specifically, every time unit on a
single machine can be interpreted as a separate machine. After
that minor modifications are required. They show the reduction
for an instance where all jobs have release time 0 and deadlines
equal to some integer, say m and variable thermal sizes. This
can be interpreted in our model as jobs with variable sizes (all
jobs available at the beginning), and the number of machines
is equal to m which is the deadline of all of the jobs. The
model of Chrobak et al. considers the temperature only after
every time step, after the execution of a job scheduled on
the machine. However, in our model, when a job is assigned
to a machine, we do not consider any time lag. Hence, the
sizes of the jobs as considered by their reduction, need to be
reduced accordingly. Finally, the decision question asked needs
to be modified. Their reduction assumes an exponential decay
factor of 2. In our case, that can be interpreted as K = 2. The
reduction is from numerical 3D matching. We do not repeat

the construction here since the modifications are minor other
than the crucial interpretation of time as space.

The following theorem follows from the work of Chrobak
et al. [7].

Theorem 5: The offline problem of minimizing the maxi-
mum effective load for the one-dimensional case is NP-hard
even when the number of jobs n is equal to the number of
machines m.

2) Offline Algorithm: We show that applying Graham’s
LPT scheduling [14] algorithm gives a max

(
K
K−1 ,

4K−3
3K−3

)
approximation. This analysis is tight both for K = 2 which is
the minimum value of K, as well as asymptotically, since for
no cross-effects, or K →∞, it is well known that LPT gives
a 4

3 approximation.
The algorithm is formalized below. The intuitive reason for

favoring lower indices is that these machines are closer to the
source of cold air. Let Lk be the load on machine k.

Algorithm 5 Algorithm using load as the decision metric

1. Sort and order jobs in a list in non-increasing sizes.

2. Assign the next job on the list to machine k such that,
Lk ≤ Lj ∀j ∈ [1 . . .m] and Lk < Lp ∀p < k.

Theorem 6: Algorithm 5 achieves an approximation ratio
of max( K

K−1 ,
(

4K−3
3K−3 + 1

3m

)
) for 2 ≤ K < 3 and 4K−3

3K−3 for
K ≥ 3.

Proof: Let us consider the machine with the maximum
effective load after all jobs have been assigned. Let this machine
be i. Machine i was assigned p ≥ 1 jobs. Let the size of the
last job assigned to this machine be si,p.

For proving the theorem, we consider two cases separately.

Case 1: si,p > OPT
3

In this case, our solution is ≤ K
K−1OPT . When si,p was

placed on i, Li ≤ Lj ∀j ∈ [1 . . .m]. All the jobs constituting
these loads were larger in size than si,p. So, if p ≥ 3, obviously
OPT ≥ 3si,p. Hence p = 1 or p = 2.

Suppose p = 2. Consider the iteration when si,2 was placed
on i. The following claims are true at that iteration.

Claim 9: Lj = sj,1 ≥ si,1 ∀j ≤ i
Proof: Algorithm 5 places si,2 on the machine with the

minimum load, favoring lower indices. Hence, Lj > si,1 ∀j <
i. Further, each such j could have only received a single job
so far, since Algorithm 5 considers jobs in non-increasing size
order, and assigns them to lowest load machines, favoring lower
indices. Hence, jobs larger than si,1 were placed on machines
j < i.

Claim 10: Either Lk = sk,1 = si,1 or Lk ≥ 2si,2 ∀k > i.
Proof: Since Algorithm 5 placed si,2 on i, all machines

Lk ≥ si,1 ∀k > i. However, for each such machine, sk,1 ≤ si,1.
If some k > i has only one job, then sk,1 = si,1, otherwise,



si,2 would have been placed on k. On the other hand, if k
has ≥ 2 jobs, since these jobs were placed earlier than si,2,
Lk ≥ 2si,2.

Lemma 14: If p = 1 or p = 2, Li ≤ OPT .
Proof: It is obvious for p = 1. For p = 2, we use the

above claims to prove the lemma. If i = m then obviously
Li = Lm ≤ OPT . This follows from Claim 9. Hence, let us
assume i < m. Let the number of machines k > i with single
jobs be `. Therefore, from Claim 9, we know that, in OPT,
there are i+ ` jobs of size ≥ si,1. Let us call them big jobs.

We know from Claim 10 that there are at least
2 (m− (i+ `))+1 jobs of size ≥ si,2 that OPT would need to
assign. Let us call this set as small jobs. Further, we know that
in OPT none of the big jobs were paired with any of the small
jobs, since that would result in load ≥ Li > OPT . Hence,
the small jobs in OPT were distributed among (m− (i+ `))
machines. However, that means, that at least one of these
machines would get ≥ 3si,2 for (i + `) < m, and hence
OPT ≥ 3si,2. But that gives a contradiction to the assumption
si,2 >

OPT
3 . On the other hand, if i+ ` = m, then again from

Claim 9, Li ≤ OPT . Hence, we have proved Li ≤ OPT .
From Claim 1, we know ELi = Li + ELi−1

K . Since by
assumption, ELi ≥ ELj∀j, ELmax ≤ Li+ ELmax

K . Applying
Li ≤ OPT , we get, ELmax ≤ K

K−1OPT .

Case 2: si,p ≤ OPT
3

Let the load on i when si,p was assigned be Li. Since
LPT assigned si,p to i for job si,p, Li ≤ Lj∀j. Hence, Li ≤∑m

j=1 Lj

m . If the total load is L, we have Li ≤ L−si,p
m . The

effective load on i is ELmax ≤ Li+si,p+ ELmax

K . Substituting
for Li, we get

ELmax ≤
K

K − 1

(
L− si,p
m

+ si,p

)
=

K

K − 1

(
L

m
+ si,p

(
1− 1

m

))
.

We know si,p ≤ OPT
3 . From Claim 2, the minimum

effective load for the one-dimensional system when jobs can
be distributed fractionally is EL = L

m−m−1
K

. Therefore this
is a lower bound on OPT . Applying these lower bounds on
OPT , we get

ELmax <
K

K − 1
OPT

(
1− 1

K
+

1

mK
+

1

3
− 1

3m

)
= OPT

(
1 +

K

3(K − 1)
− K − 3

3m(K − 1)

)
.

Therefore, ELmax ≤ OPT
(

4K−3
3K−3 + 1

3m

)
for 2 ≤ K < 3

and ELmax ≤ OPT
(

4K−3
3K−3

)
for K ≥ 3.

For K = 2, K
K−1 = 2 ≥

(
4K−3
3K−3 + 1

3m

)
. For this case,

there is a tight example. Let instance I have a very large
number of machines m → ∞. Let the number of jobs be
very large n, however, n << m and all jobs are of unit size.

The optimal strategy would space out the jobs with one job
on the first machine, one on the last machine, and the rest
distributed sparsely such that, the effective load on any machine
is ≤ (1 + ε), where ε→ 0. This will be possible if n << m.
However, our algorithm will place the jobs on the n consecutive
machines, resulting on a maximum effective load on the nth

machine which is 1− 1
Kn

1− 1
K

≈ K
K−1 = 2 for very large n. Hence

the approximation is ≈ 2− o(ε).
For K > 3, K

K−1 ≤
4K−3
3K−3 . For higher values of K, the

approximation tends to 4
3 , which is a tight approximation

factor for minimum makespan problem as well. Hence this
analysis is tight.

3) Online Algorithm: Here we consider the above problem
in an online setting. Specifically, we have m machines, and
the jobs arrive in an online fashion. Once a job arrives, we
have to assign it to a machine and the decision is irrevocable.
The objective is to minimize the maximum effective load or
the thermal makespan. We assume the jobs are long-lasting,
and hence ignore any temporal effects.

We show Graham’s List Scheduling algorithm gives a
2K−1− 1

m

K−1 approximation to the online problem of minimizing
thermal makespan. The algorithm is simple. When a job arrives,
assign it to the machine with the minimum load.

Theorem 7: Graham’s list scheduling algorithm gives a
2K−1− 1

m

K−1 approximation to the online problem of minimizing
thermal makespan.

Proof: Let the machine with the largest effective load
ELmax be i. Let the last job assigned to this machine be
si and the load on i before assigning si be Li. We know
ELmax ≤ Li + si + ELmax

K , or, ELmax ≤ K
K−1 (Li + si).

Obviously, si ≤ OPT . When si was assigned to i, Li ≤
Lj∀j ∈ [1 . . .m]. Hence, Li ≤

∑
j∈[1...m] Lj

m . If the total load
to be assigned is L, we have Li ≤ L−si

m . We know, from
Claim 2, OPT ≤ L

m−m−1
K

. Applying the lower bounds on
OPT , we get,

ELmax ≤
K

K − 1
OPT

(
1− 1

K
+

1

mK
+ 1− 1

m

)
≤ OPT

(
2K − 1− 1

m

K − 1

)
.

The analysis is essentially tight, since it is well known that
for no cross effects, or K →∞, list scheduling gives a 2− 1

m
approximation, which is what we get asymptotically.

VIII. CONCLUSION

In this work we have considered the thermal scheduling
problem in a formal setting for several different models. We
have derived approximation algorithms for maximizing profit
of jobs scheduled without violating thermal constraints by first
solving the fractional problem. We have also shown constant
factor algorithms for the problem of minimizing the maximum
temperature or equivalently, effective load on any machine
when all jobs need to be scheduled. Of course, the derived



expressions depend on the precise thermal heating model that
one considers; however we have paved the way by showing
how to deal with three different models, and one could use a
different model and do the analysis in a similar manner.

The thermal scheduling problem opens up several new
research directions and interesting questions. These problems
are different than what has been considered in the literature
so far, in fact, they are generalizations of existing problems
and may require new techniques and ideas. Further we have
not considered any temporal effects which may give rise to
another paradigm of problems.
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