
Analyzing the Optimal Neighborhood: Algorithms for

Budgeted and Partial Connected Dominating Set

Problems∗

Samir Khuller † Manish Purohit ‡ Kanthi K. Sarpatwar §

Abstract

We study partial and budgeted versions of the well studied

connected dominating set problem. In the partial connected

dominating set problem (Pcds), we are given an undirected

graph G = (V,E) and an integer n′, and the goal is to find

a minimum subset of vertices that induces a connected sub-

graph of G and dominates at least n′ vertices. We obtain the

first polynomial time algorithm with an O(ln ∆) approxima-

tion factor for this problem, thereby significantly extending

the results of Guha and Khuller (Algorithmica, Vol. 20(4),

Pages 374-387, 1998) for the connected dominating set prob-

lem. We note that none of the methods developed earlier can

be applied directly to solve this problem. In the budgeted

connected dominating set problem (Bcds), there is a bud-

get on the number of vertices we can select, and the goal

is to dominate as many vertices as possible. We obtain a
1
13

(1 − 1
e
) approximation algorithm for this problem. Fi-

nally, we show that our techniques extend to a more general

setting where the profit function associated with a subset of

vertices is a “special” submodular function. This general-

ization captures the connected dominating set problem with

capacities and/or weighted profits as special cases. This im-

plies a O(ln q) approximation (where q denotes the quota)

and an O(1) approximation algorithms for the partial and

budgeted versions of these problems. While the algorithms

are simple, the results make a surprising use of the greedy

set cover framework in defining a useful profit function.

1 Introduction

A connected dominating set (Cds) in a graph is a
dominating set that induces a connected subgraph.
The Cds problem, which seeks to find the minimum
such set, has been widely studied [49, 23, 32, 51, 20,

∗The work is supported by NSF grants CCF 1217890 and CCF
0937865.
†Computer Science Department, University of Maryland, Col-

lege Park. E-mail: samir@cs.umd.edu
‡Computer Science Department, University of Maryland, Col-

lege Park. E-mail: manishp@cs.umd.edu
§Computer Science Department, University of Maryland, Col-

lege Park. E-mail: kasarpa@cs.umd.edu

27, 22, 42, 16, 17] starting from the work of Guha
and Khuller [32]. The Cds problem is NP-hard and
thus the literature has focused on the development of
fast polynomial time approximation algorithms. For
general graphs, Guha and Khuller [32] propose an
algorithm with a ln ∆ + 3 approximation factor, where
∆ is the maximum degree of any vertex. Better
approximation algorithms are known in special classes
of graphs. For the case of planar [21] or geometric
unit disk graphs [18] polynomial time approximation
schemes (PTAS) are known. This problem has also been
extensively studied in the distributed setting [49, 23].
Not surprisingly, Cds problem in general graphs is at
least as hard to approximate as the set cover problem
for which a hardness result of (1−ε) log n (unless NP ⊆
DTIME(nO(log logn))) follows by the work of Feige [25].

Cds has become an extremely popular topic, for
example, the recent book by Du and Wan [22] focuses
on the study of ad hoc wireless networks as Cdss provide
a platform for routing on such networks. In these ad hoc
wireless networks, a Cds can act as a virtual backbone
so that only nodes belonging to the Cds are responsible
for packet forwarding and routing. Minimizing the
number of nodes in the virtual backbone leads to
increased network lifetime, and lesser bandwidth usage
due to control packets, and hence the Cds problem
has been extensively studied and applied to create such
virtual backbones.

One shortcoming of using a Cds as a virtual back-
bone is that a few distant clients (outliers) can have
the undesirable effect of increasing the size of the Cds
without improving the quality of service to a majority
of the clients. In such scenarios, it is often desirable to
obtain a much smaller backbone that provides services
to, say, (at least) 90% of the clients. Liu and Liang
[42] study this problem of finding a minimum partial
connected dominating set in wireless sensor networks
(geometric disk graphs) and provide heuristics (without
guarantees) for the same.

A complementary problem is the budgeted Cds
problem where we have a budget of k nodes, and we wish

to find a connected subset of k nodes which dominate
as many vertices as possible. Budgeted domination
has been studied in sensor networks where bandwidth
constraints limit the number of sensors we can choose
and the objective is to maximize the number of targets
covered [16, 17].

Another application arises in the context of social
networks. Consider a social network where vertices of
the network correspond to people and an edge joins two
vertices if the corresponding people influence each other.
Avrachenkov et al. [2] consider the problem of choosing
k connected vertices having maximum total influence
in a social network using local information only (i.e.,
the neighborhood of a vertex is revealed only after
the vertex is bought) and provide heuristics (without
guarantees) for the same. Borgs et al. [9] show that no
local algorithm for the partial dominating set problem
can provide an approximation guarantee better than
O(
√
n). As the influence of a set of vertices is simply

the number of dominated vertices, these problems are
exactly the budgeted and partial connected dominating
set problems with the additional restriction of local only
information.

Budgeted versions of set cover (known as max-
coverage)1 are well understood and the standard greedy
algorithm is known to give the optimal 1− 1

e approxima-
tion [45]. Khuller et al. [40] give a (1− 1

e) approximation
algorithm for a generalized version with costs on sets.
In addition, we may consider a partial version of the
set cover problem, also known as partial covering, in
which we wish to pick the minimum number of sets to
cover a pre-specified number of elements. Kearns [39]
first showed that greedy gives a 2Hn + 3 approximation
guarantee (where n is the ground set cardinality and Hn

is the nth harmonic number), which was improved by
Slav́ık [47] to obtain a guarantee of min(Hn′ , H∆)(where
n′ is the minimum coverage required and ∆ is the max-
imum size of any set). Wolsey [50] considered the more
general submodular cover problem and showed that the
simple greedy delivers a best possible lnn approxima-
tion. For the case where each element belongs to at
most f (called the frequency) different sets, Gandhi
et al. [26], using a primal-dual algorithm, and Bar-
Yehuda [4], using the local-ratio technique, achieve an
f -approximation guarantee.

Unfortunately for both the budgeted and partial
versions of the Cds problem, greedy approaches based
on prior methods fail. The fundamental reason is that
while the greedy algorithm works well as a method for

1Here instead of finding the smallest sub-collection of sets to
cover a given set of elements, we fix a budget on number of sets

we wish to pick with the objective of maximizing the number of

covered elements.

rapidly “covering” nodes, the cost to connect different
chosen nodes can be extremely high if the chosen nodes
are far apart. On the other hand if we try to maintain
a connected subset, then we cannot necessarily select
nodes from dense regions of the graph. In fact, none of
the approaches in the work by Guha and Khuller [32]
appear to extend to these versions.

Partial and budgeted optimization problems have
been extensively studied in the literature. Most of these
problems, with the exception of partial and budgeted
set cover, required significantly different techniques and
ideas from the corresponding “complete” versions. We
will now cite several such problems.

The best example is the minimum spanning tree
problem, which is well known to be polynomial time
solvable. However the partial version of this problem
where we look for a minimum cost tree which spans at
least k vertices is NP-hard [46]. A series of approxi-
mation techniques [1, 3, 8, 28] finally resulted in a 2-
approximation [29] for the problem.

Partial versions of several classic location problems
like k-center and k-median have required new techniques
as well. The partial k-center problem, which is also
called the outlier k-center problem or the robust k-
center problem, requires us to minimize the maximum
distance to the “best” n′ nodes (while the complete
version requires us to consider all the nodes) to the
centers. Charikar et al. [13] gave a 3-approximation
algorithm whose analysis was significantly different from
the classic k-center 2-approximation algorithm [31, 36].
Chen [15] gives a constant approximation for outlier
k-median problem, while Charikar et al. [13] gave a
4-approximation for the outlier uncapacitated facility
location problem.

Several other optimization problems need special
techniques to tackle the corresponding partial versions.
Notable examples of such problems, include partial ver-
tex cover [48, 5, 43, 26, 10, 35], quota Steiner tree
problems [37], budgeted and partial node weighted
Steiner tree problems [44, 7], and scheduling with out-
liers [12, 33]. We end this subsection by noting that
partial versions of some optimization problems are com-
pletely inapproximable even though, the corresponding
complete version has a small constant approximation
algorithm. The best example of this is the robust sub-
set resource replication problem studied by Khuller et
al. [41].

1.1 Other Related Work In the group Steiner tree
problem, we are given a graph G = (V,E), an associ-
ated cost function c : E → R+ ∪ {0}, and a collection
of groups of vertices g1, g2, . . . , gk. The goal is to find a
minimum cost tree that contains at least one vertex from

each group. It can be observed that the connected dom-
inating set problem reduces to the group Steiner tree
problem by creating a group for every vertex containing
the neighborhood of that vertex. Garg et al. [30] obtain
aO(log(maxi∈[k] |gi|) log k) approximation for this prob-
lem, in the special case when the graph is a tree. Using
a decomposition result due to Bartal [6], Garg et al. [30]
extend the tree result to obtain a O(log3 n log k) approx-
imation algorithm for arbitrary graphs. Fakcharoen-
phol et al. [24] improve Bartal’s decomposition result,
consequently obtaining a O(log2 n log k) approximation
for the group Steiner tree problem in arbitrary graphs.
Halperin et al. [34] note that Garg et al. [30]’s algorithm
also gives a O(log(maxi∈[k] |gi|)) approximation for the
budgeted group Steiner tree problem on trees. They
also show a log2−ε k hardness of approximation for the
(partial) group Steiner problem and a log1−ε k hardness
of approximation for the budgeted version. Chekuri et
al. [14] gave a combinatorial algorithm for the group
Steiner tree problem on trees, with an approximation
guarantee of O((log

∑
i |gi|)1+ε log k). Calinescu and

Zelikovsky [11] extended Chekuri et al. [14]’s result to
the more general problem of polymatroid Steiner tree.

1.2 Our Contributions Our results can be summa-
rized as follows

- In Section 4, we obtain the first O(ln ∆) approx-
imation algorithm for the Pcds problem. To be
precise, our approximation guarantee is 4 ln ∆+2+
o(1), where ∆ is the maximum degree.

- In Section 5, we obtain a 1
13 (1− 1

e)-approximation
algorithm for the Bcds problem. This is the first
constant approximation known for Bcds.

- In Section 6, we generalize the above problems to
a special kind of submodular optimization problem
(to be defined later), which has capacitated con-
nected dominating set problem and weighted profit
connected dominating set problem as special cases.
Again, we obtain O(ln q) and 1

13 (1− 1
e) approxima-

tion algorithms for the partial and budgeted ver-
sion of this problem respectively where q denotes
the quota for the partial version.

2 Preliminaries

We now proceed to formally define the problems we
consider in this paper.
Partial Connected Dominating Set Problem
(Pcds). Given an undirected graph G = (V,E), and an
integer (quota) n′, find a minimum size subset S ⊆ V of
vertices such that the graph induced by S is connected,
and S dominates at least n′ vertices.

Budgeted Connected Dominating Set Problem
(Bcds). Given an undirected graph G = (V,E), and
an integer (budget) k, find a subset S ⊆ V of at
most k vertices such that the graph induced by S is
connected, and the number of vertices dominated by S
is maximized.

Before defining the remaining problems, we intro-
duce the notion of special submodularity.
Special Submodular Function. Let G = (V,E) be
an arbitrary graph. A function f : 2V → Z+ ∪ {0},
is said to have the special submodular property if it
satisfies the following-

• f is submodular. That is f(A ∪ {v}) − f(A) ≥
f(B∪{v})−f(B) ∀A,B, v such that A ⊆ B ⊆ V .

• fA(X) = fA∪B(X), if N(X) ∩ N(B) = φ
∀X,A,B ⊆ V .

where fA(X) = f(A ∪X)− f(A) is the marginal profit
of X given A and N(X) denotes the neighborhood of
X, including X itself.

We now define the generalized versions of Pcds and
Bcds.
Partial Generalized Connected Dominating
Set Problem (Pgcds). Given a graph G = (V,E),
an integer (quota) q, and a monotone special submod-
ular profit function f : 2V → Z+ ∪ {0}, find a subset
S ⊆ V of minimum size, such that f(S) ≥ q and S
induces a connected subgraph in G.
Budgeted Generalized Connected Dominating
Set Problem (Bgcds). Given a graph G = (V,E),
a budget k, and a monotone special submodular profit
function f : 2V → Z+ ∪ {0}, find a subset S ⊆ V
which maximizes f(S) such that |S| ≤ k and S induces
a connected subgraph of G.

These problems capture the following variants of
partial and budgeted connected dominating set prob-
lems.

1. Weighted Profit Connected Dominating
Set. In this variant, each vertex has an arbitrary
profit which is obtained if it is dominated by some
chosen vertex.

2. Capacitated Connected Dominating Set. In
this variant, each vertex has a capacity which is the
number of vertices it can dominate.

For all of our algorithms we will be using an
algorithm for the Quota Steiner Tree problem (Qst)
as a subroutine. We now define the Qst problem and
mention relevant results.
Quota Steiner Tree Problem (Qst). Given an
undirected graph G = (V,E), a profit function p : V →
Z+ ∪ {0} on the vertices, a cost function c : E →

Z+ ∪ {0} on the edges, and an integer (quota) q, find
a subtree T that minimizes

∑
e∈E(T) c(e), subject to∑

v∈V (T) p(v) ≥ q.
Johnson et al. [37] studied the Qst problem

and showed that an α-approximation algorithm for
the k-MST problem can be adapted to obtain an
α-approximation algorithm for the Quota Steiner
Tree problem. Using this result along with the 2-
approximation for k-MST by Garg [29], gives us the
following theorem.

Theorem 2.1. ([37, 29]) There is a 2-approximation
algorithm for the Quota Steiner Tree Problem.

3 Shortcomings of Prior Approaches.

We now describe the three approaches taken by Guha
and Khuller [32] to solve the Cds problem and show
why none of these approaches extend directly for the
budgeted and partial coverage variants.

Algorithm 1. The first algorithm is a “one step
look-ahead” greedy algorithm where they iteratively
grow a tree by selecting a pair of vertices that together
cover the most number of previously uncovered vertices.
Figure 1 shows a bad instance on which a c-step look-
ahead greedy algorithm fails for the Bcds and Pcds.
The instance contains k “spiders” whose heads (vertices
with degree > 2) are connected by paths of length c+1.
The spider heads are the only vertices that offer profit
greater than 3. We show that on this graph, there are
Bcds and Pcds instances that can perform very poorly.
Consider a Bcds instance on the graph, with a budget
k+(c+1)(k−1). Clearly the optimal solution picks the
path connecting all the spider heads, so that the total
coverage is (M+1)k+(c+1)(k−1). On the other hand,
the c-step look-ahead greedy algorithm, might get stuck
inside one of the spiders and may end up selecting as
many as M+1 vertices from it. This is because, despite
the look-ahead capability of the algorithm, the spider
legs will become indistinguishable from the optimal
path. For a sufficiently large value of M , the c-step look-
ahead algorithm might use up all its budget on a single
spider, there by obtaining a coverage of O(M+k). Thus
in the worst case the look-ahead greedy algorithm could
have a Ω(k) approximation guarantee. Using a similar
argument, we can show that, for the Pcds instance on
the graph with quota Mk, the approximation guarantee
could be Ω(M).

Algorithm 2. The second algorithm is to find a
dominating set D and run a Steiner tree algorithm
with the vertices in D as terminals. Since the optimal
connected dominating set, by definition, is a tree that
dominates D, we can show that there exists a Steiner
tree of low cost with the set D as terminals. Using a

M

c + 1

c + 1

c + 1 c + 1

M M

Opt

k spiders

Figure 1: A bad example for the c-step look-ahead
greedy algorithm

constant factor approximation algorithm for the Steiner
tree problem, we obtain a O(lnn) approximation for
the connected dominating set. However, for the partial
and budgeted versions, the optimal solution does not
dominate all vertices and hence it’s not possible to
bound the cost of the Steiner tree in terms of the optimal
solution.

Algorithm 3. The final algorithm builds uncon-
nected components greedily and owing to the fact that
every vertex has to be dominated, makes sure that the
constructed components be connected cheaply. Again
this approach fails in the partial and budgeted case be-
cause the components created when we have dominated
a specified number of vertices could be far apart.

4 Partial Connected Dominating Set

In this section, we consider the partial connected domi-
nating set (Pcds) problem and give a 4 ln ∆ + 2 + o(1)-
approximation algorithm for the same.

4.1 Algorithm We now give a high level overview
of the algorithm. The algorithm itself is very simple
but to show that it is indeed a O(log ∆) approximation
requires non-trivial analysis. The algorithm proceeds
in the following manner. We first run a simple greedy
algorithm to find a (not necessarily connected) domi-
nating set D. In each iteration, the greedy algorithm
chooses a vertex that dominates the maximum num-
ber of previously undominated vertices. We call this
number the “profit” associated with the chosen vertex.
Given this profit function on the nodes, we now apply a
2-approximation algorithm for the Quota Steiner Tree
(Qst) problem, with quota of n′ to obtain a connected
solution2.

This is a little surprising, since the profit function
depends on the choices made by the greedy algorithm

2Note that we could have simply defined each node’s profit as

the number of vertices it can dominate and then try to connect
nodes using the algorithm for the Qst problem, however in this
setting there could be a set of high profit nodes that get chosen,

but since they all dominate the same subset of nodes, we do not
actually gain a profit of n′.

in the first phase. However, we can show that there
is a subset of vertices D′ ⊆ D, of cardinality at most
|Opt| ln ∆ + 1 whose profits sum up to at least n′

where |Opt| is the size of the optimum solution of
the Pcds instance. Furthermore the vertices in D′

can be connected with additional (ln ∆ + 1)|Opt| + 1
vertices. Thus, if we could find the smallest tree with
total profit at least n′, such a tree would cost (number
of edges in the tree) no more than (2 ln ∆+1)|Opt|+1.
This is a special case of the Qst problem (with unit
edge costs) and hence we can apply Theorem 2.1 to
obtain a tree of size (cost) no more than 2((2 ln ∆ +
1)|Opt|+ 1) = (4 ln ∆ + 2)|Opt|+ 2. Thus, we obtain
a (4 ln ∆ + 2 + o(1))-approximate solution for the Pcds
problem.

Algorithm 4.1. Greedy Profit Labeling Algo-
rithm for Pcds.
Input: Graph G = (V,E) and n′ ∈ Z+ ∪ {0}.
Output: Tree T with at least n′ Coverage.

1: Compute the greedy dominating set D and the
corresponding profit function p : V → N using the
Algorithm 4.2.

2: Use the 2-approximation for Qst problem [37] on
the instance (G, p) to obtain a tree T with profit at
least n′.

Algorithm 4.2. Greedy Dominating Set.
Input: Graph G = (V,E).
Output: Dominating Set D and profit function p :
V → Z+ ∪ {0}.

1: D ← φ
2: U ← V
3: for all v ∈ V do
4: p(v)← 0;
5: end for
6: while U 6= φ do
7: v ← arg max

v∈V \D
|NU (v)| . NU (v) is the set of

neighbors of v, including itself, in the set U
8: Cv ← NU (v)
9: p(v)← |Cv|

10: U ← U \NU (v)
11: D ← D ∪ {v}
12: end while

4.2 Analysis We first introduce some required nota-
tion.

Notation: For every vertex v ∈ D that is chosen
by the greedy algorithm, let Cv denote the set of new

vertices that v dominates i.e., we have p(v) = |Cv|. We
say that v “covers” a vertex w if and only if w ∈ Cv.
For the sake of analysis, we partition the vertices of the
graph G into layers. Let L1 = Opt be the vertices in
an optimal solution for the Pcds instance, L2 be the
set of vertices that are not in L1 and have at least one
neighbor in L1, and R = V \{L1∪L2} be the remaining
vertices. Let L3 be the subset of vertices of R that have
a neighbor in L2. Furthermore let L′i = D∩Li, 1 ≤ i ≤ 3
where D is the dominating set chosen by the greedy
algorithm. Figure 2 clarifies this notation regarding the
layers Li.

Figure 2: Pictorial Representation of Different Layers.
(a) L1 is an optimal solution (b) L2 is set of the vertices
adjacent to L1 (c) L3 is the subsequent layer (d) R is the
set of all vertices other than L1∪L2 and (e) L′i = Li∩D.

We first show the following.

Lemma 4.1. There is a subset D′ ⊆ L′1 ∪ L′2 ∪ L′3 such
that |D′| ≤ |Opt| ln ∆+1 and the total profit of vertices
in D′ is at least n′, i.e.

∑
v∈D′ p(v) ≥ n′.

Proof. Let L′1 ∪ L′2 ∪ L′3 = {v1, v2, . . . , vl} where the
vertices are arranged according to the order in which
they were selected by the greedy algorithm. Since all
vertices in L1 ∪ L2 are dominated by L′1 ∪ L′2 ∪ L′3, we

have
∑l
i=1 p(vi) ≥ |L1 ∪ L2| ≥ n′ where the second

inequality follows from the fact that L1 is a feasible
solution (in fact optimal feasible solution). Choose t

such that
∑t
i=1 p(vi) < n′ and

∑t+1
i=1 p(vi) ≥ n′. Let

S = {v1, v2, . . . , vt} denote the set of the first t vertices
chosen from the set L′1 ∪ L′2 ∪ L′3. We now show that
|S| = t ≤ |Opt| ln ∆ and hence D′ = S∪{vt+1} satisfies
the requirements of the claim.

Let C12 be the set of vertices in L1 ∪ L2 that are
covered by S in the original greedy step i.e., C12 =
∪v∈S{Cv∩(L1∪L2)}. Let UC12 = (L1∪L2)\C12 be the
vertices in L1 ∪L2 that are not covered by S. Similarly
define CR = ∪v∈S{Cv ∩ R} as the set of vertices in R

covered by S (as per the greedy step). Then, we have
that |CR| + |C12| < n′ ≤ |L1 ∪ L2| = |C12| + |UC12|,
where the first inequality follows from the definition of
S. Therefore we have |CR| < |UC12|.

We can thus assign every vertex in CR to a unique
vertex in UC12, i.e. let I : CR → UC12 denote a one
to one function from CR to UC12. In the subsequent
charging argument, any cost that we charge to a vertex
x ∈ CR is transferred to its assigned vertex I(x) ∈
UC12. Hence, after this charge transfer, only vertices
in L1 ∪ L2 will be charged. We will now use a charging
argument to show that |S| ≤ |Opt| ln ∆.

Consider a vertex u ∈ S. We recall that Cu is the set
of vertices covered for the first time by u in the greedy
step. We assign every w ∈ Cu a charge ρ(w) = 1

|Cu| .

It is clear that the total charge on all vertices is equal
to the size of S. As described above, the charge of a
vertex in w ∈ R is transfered to its mapped vertex in
I(w) ∈ UC12. Let v be a vertex in the optimal solution
set L1. We denote the set of neighbors of v, including
itself, by N (v). We claim that the total charge on the
vertices of N (v) is at most ln ∆. Initially, none of the
vertices in N (v) are charged. Let u1, u2 . . . , ul be the
vertices in S which charge some vertices of N (v) in that
order. This charge could either be the direct charge or
a transfer of charge from some vertex in R. For i ∈ [l],
let Oi ⊆ N (v) denote the set of vertices that remain
uncharged (either directly or through a transfer), after
the vertex ui is picked into S. Let O0 = N (v).

We will now show that, for every ui, |Cui | ≥ |Oi−1|.
Let us consider the iteration of the greedy algorithm in
which ui is picked. We claim that none of the vertices in
Oi−1 can be dominated by any vertex chosen before ui
in the greedy algorithm. Let w ∈ Oi−1 be some vertex
which is dominated by some vertex u′ chosen by greedy
before ui, such that w ∈ Cu′ . Clearly u′ ∈ L′1 ∪L′2 ∪L′3
should hold, because no vertex in R\L3 can dominate w.
But since u′ was chosen before ui and u′ ∈ L′1∪L′2∪L′3,
u′ must be chosen into S before ui. Hence, w cannot be
an uncharged vertex in the current iteration leading to
a contradiction.

Thus, in the iteration where the greedy algorithm
was about to choose ui, none of the vertices Oi−1 have
been dominated. Hence if the greedy were to choose v,
then p(v) ≥ |Oi−1|. Since the greedy algorithm chooses
vertex ui instead of v, we have |Cui

| ≥ |Oi−1|.
The total charge in this iteration (Cui ∩ N (v)) is

thus at most |Oi−1|−|Oi|
|Oi−1| . Adding these charges over all

l iterations, we get, using an analysis very similar to the
set cover analysis [19],

∑
w∈N (v) ρ(w) ≤ H(∆), where

H is the harmonic function and ∆ is the maximum
degree. Adding up the charges over all vertices in L1,
we get

∑
u∈C12∪UC12

ρ(u) ≤
∑
v∈L1

∑
w∈N (v) ρ(w) ≤

|Opt| ln ∆. Hence we have |S| ≤ |Opt| ln ∆. Since S
was a maximal set having profit at most n′, we obtain
a set D′ with |D′| = |S| + 1 with profit at least n′ by
adding a single vertex to S, which gives us the desired
result.

Theorem 4.1. Let Opt be the optimal solution set for
an instance of Pcds. There exists a tree T̂ with at most
2|Opt| ln ∆+|Opt|+1 edges such that

∑
v∈T̂ p(v) ≥ n′.

Proof. In Lemma 4.1, we have shown that there exists
a subset D′ ⊆ L′1 ∪ L′2 ∪ L′3 of size |Opt| ln ∆ + 1 that
has profit at least n′. However this set D′ need not
be connected. We now show that this set D′ can be
connected without paying too much. Firstly we note
that for every vertex v ∈ L3 ∩D′, there exists a vertex
w ∈ L2 such that w dominates v. Thus we can pick a
subset D′′ ⊆ L2 of size at most |L3∩D′| ≤ |Opt| ln ∆+1
which dominates all vertices of L3 ∩ D′. Now, it is
sufficient to ensure that all the vertices of (D′∩L2)∪D′′
are connected. This can be achieved by simply adding
all the vertices of L1 to our solution. Thus we have
shown that D̂ = D′ ∪ D′′ ∪ L1 induces a connected
subgraph with profit at least n′ and the number of
vertices in D̂ ≤ |D′|+|D′′|+|L1| ≤ 2|Opt| ln ∆+|Opt|+
2. Hence there exists subtree T̂ on these vertices with
at most (2 ln ∆ + 1)|Opt| + 1 edges with the requisite
total profit.

Corollary 4.1. Algorithm 4.1 is a 4 ln ∆ + 2 + o(1)-
approximation algorithm for Pcds.

Proof. Let Opt be the optimal solution of the Pcds
instance. As per Theorem 4.1, we know that there exists
a Steiner tree T̂ with at most 2|Opt| ln ∆ + |Opt| + 1
edges whose total profit exceeds the quota n′. Hence,
the tree T returned by the 2-approximation for the
Qst problem has at most 4|Opt| ln ∆ + 2|Opt| + 2
edges. Thus, we obtain a 4 ln ∆+2+o(1) approximation
algorithm.

5 Budgeted Connected Dominating Set

We now turn our attention to the Budgeted Connected
Dominating Set (Bcds) problem. We recall that in the
Bcds problem, we have to choose at most k vertices that
induce a connected subgraph and maximize the number
of dominated vertices.

5.1 Algorithm Algorithm 5.1 is very similar to the
one we used to obtain a partial connected dominating
set. We start by running the standard greedy algorithm
to find a dominating set D in the graph. We set the
profits of vertices in D as the number of newly covered
vertices at each step of the greedy algorithm, while we

assign zero profit for the remaining vertices in V \ D.
In the analysis section, we show that there is a tree
on at most 3k vertices that has a total profit of at
least (1 − 1

e)Opt where Opt is the number of vertices
dominated by an optimal solution. Note that we may
assume that we have guessed Opt by trying out values
between k and n using, say, binary search. We run
the 2 approximation algorithm for the Quota Steiner
tree problem on this instance with the quota being
set to (1 − 1

e)Opt. This will result in a tree with at
most 6k nodes with total profit at least (1 − 1

e)Opt.
Thus we obtain a (6, 1 − 1

e) bicriteria approximation
algorithm. To convert this bicriteria approximation
into a true approximation, we use a dynamic program
(Section 5.2.2) to find the “best” subtree on at most k
vertices from this tree of 6k vertices. We use a simple
tree decomposition scheme to show that the best tree
dominates at least 1

13 (1− 1
e)Opt nodes.

Algorithm 5.1. Greedy Profit Labeling Algo-
rithm for Bcds.
Input: Graph G = (V,E) and k ∈ N.
Output: Tree T̃ with cost at most k.

1: Compute the greedy dominating set D and the
corresponding profit function p : V → N using the
Algorithm 4.2.

2: Opt← number of vertices dominated by an optimal
solution. . Guess using binary search between k
and n

3: Use the 2-approximation for Qst problem [37] to
obtain a tree T with profit at least (1− 1

e)Opt. .
We show that |T | ≤ 6k.

4: Use the dynamic program of Section 5.2.2 to find T̃ ,
the best subtree of T having at most k vertices.

5.2 Analysis Let L1 denote the vertices in an opti-
mal solution. Let layers L2, L3, R, and L′i be defined as
in Section 4. Opt = |L1 ∪L2| is the number of vertices
dominated by the optimal solution.

Let L′1∪L′2∪L′3 = {v1, v2, . . . , vl} where the vertices
are according to the order in which they were selected by
the greedy algorithm. Let D′ = {v1, v2, . . . , vk} denote
the first k vertices from L′1∪L′2∪L′3. In Lemma 5.1, we
prove that the total profit of D′ =

∑
v∈D′ p(v) is at least

(1− 1
e)Opt. Next, we can show that these k vertices can

be connected by using at most 2k more vertices, thus
proving the existence of a tree with at most 3k vertices
having the desired total profit.

Let gi denote the total profit after picking the first
i vertices from D′, i.e., gi =

∑i
j=1 p(vj). We start by

proving that the following recurrence holds for every
i = 0 to k − 1.

Claim 1. gi+1 − gi ≥ 1
k (Opt− gi)

Proof. Consider the iteration of the greedy algorithm,
where vertex vi+1 is being picked. We first show that
at most gi vertices of L1 ∪ L2 have been already been
dominated. Note that any vertex w ∈ L1 ∪ L2 that has
been already dominated must have been dominated by
a vertex in {v1, v2, . . . vi}. This is because no vertex

from R \ L3 can neighbor w. Since gi =
∑i
j=1 p(vj)

is the total profit gained so far, it follows that at most
gi vertices from L1 ∪ L2 have been dominated. Hence
we have that there are at least Opt − gi undominated
vertices in L1 ∪ L2. Since the k vertices of L1 together
dominate all of these, it follows that there exists at least
one vertex v ∈ L1 which neighbors at least 1

k (Opt− gi)
undominated vertices.

We conclude this proof by noting that since the
greedy algorithm chose to pick vi+1 at this stage, instead
of the v above, it follows that p(vi+1) = gi+1 − gi ≥
1
k (Opt− gi).

Lemma 5.1. Let Opt be the number of vertices dom-
inated by an optimal solution for Bcds. Then there
exists a subset D′ ⊆ D of size k with total profit at least
(1− 1

e)Opt. Further, D′ can be connected using at most
2k Steiner vertices.

Proof. From the Claim 1, the profit after i+1 iterations
is given by

gi+1 ≥
Opt

k
+ gi(1−

1

k
).

By solving this recurrence, we get gi ≥ (1−(1− 1
k)i)Opt.

Hence, we obtain the following.∑
v∈D′

p(v) = gk ≥ (1− (1− 1

k
)k)Opt ≥ (1− 1

e
)Opt

We show that D′ can be connected by at most 2k
Steiner nodes to form a connected tree. Note that for
every vertex v ∈ L3 ∩D′, there exists a vertex w ∈ L2

such that w neighbors v. Thus we can pick a subset
D′′ ⊆ L2 of size at most |L3 ∩D′| ≤ k which dominates
all vertices of L3∩D′. Now, it is sufficient to ensure that
all the vertices of (D′ ∩ L2) ∪ D′′ are connected. This
can be achieved by simply adding all the k vertices of
L1. Thus we have shown that D̂ = D′∪D′′∪L1 induces
a connected subgraph with profit at least (1 − 1

e)Opt

and |D̂| ≤ |D′|+ |D′′|+ |L1| ≤ 3k.

Lemma 5.2. There is a (6, (1 − 1
e)) bicriteria approxi-

mation algorithm for the Bcds problem.

Proof. Lemma 5.1 shows that there exists a Steiner tree
with at most 3k vertices having total profit greater

than a quota of (1 − 1
e)Opt. Hence, using the 2-

approximation for the Qst problem, we obtain a tree T
of at most 6k nodes and total profit at least (1− 1

e)Opt.
Thus we obtain a (6, (1 − 1

e)) bicriteria approximation
algorithm for the Bcds problem.

5.2.1 Converting the Bicriteria Approximation
to a True Approximation In order to obtain a true
approximate solution (solution of size k), we need a
technique to find a small subtree T̃ ⊆ T of k vertices
which has high total profit. In Section 5.2.2, we show
that this problem can be easily solved in polynomial
time using dynamic programming. However, simply
finding the subtree which maximizes the profit is not
enough to give a good approximation ratio. We need a
way to compare the total profit of the subtree T̃ with
the entire profit P =

∑
v∈T p(v). We now show that if

n = 6k, we can obtain a subtree having profit at least
1
13P .

The following lemma is well known in folklore and
can be easily proven by induction. It can also be seen
as an easy consequence of a theorem by Jordan [38].

Lemma 5.3. (Jordan [38]) Given any tree on n ver-
tices, we can decompose it into two trees (by replicating
a single vertex) such that the smaller tree has at most⌈
n
2

⌉
nodes and the larger tree has at most

⌈
2n
3

⌉
nodes.

We now show the following -

Lemma 5.4. Let k be greater than a sufficiently large
constant. Given a tree T with 6k nodes, we can
decompose it into 13 trees of size at most k nodes each.

Proof. We use Lemma 5.3 to decompose the tree into
two trees T1 and T2 such that |T1| ≤ |T2|. In this de-
composition, at most one vertex is duplicated, therefore
|T1| + |T2| ≤ 6k + 1. Also, we have |T1| ≤ 3k. We now
have two cases:
Case 1: |T1| ≥ 3k−1. In this case, |T2| ≤ 6k+1−|T1| ≤
3k+2. Now repeatedly using Lemma 5.3 we can see that
T1 can be decomposed into at most 6 trees and T2 can
be decomposed into at most 7 trees of size at most k.
This is shown in the Figure 3. Hence, in this case, we
can decompose the tree T into 13 trees.
Case 2: |T1| ≤ 3k − 2. In this case, |T2| ≤ 4k. In
this case, we can decompose T1 into 5 trees and T2 can
be decomposed into 8 trees. This is shown in Figure 4.
Thus in this case, we can decompose T into 13 trees.

Using Lemma 5.4, we can convert the bicriteria approx-
imation for Bcds to a true approximation algorithm.
In particular, we show the following -

Theorem 5.1. There is a 1
13 (1 − 1

e) approximation
algorithm for the Bcds problem.

Figure 3: First tree decomposes into 6 subtrees and
second tree decomposes into 7 trees. In total, we obtain
13 subtrees. The number associated with each node is
the upper bound on the size of the subtree.

Proof. By Lemma 5.2, we obtain a tree T with at most
6k nodes with profit (1− 1

e)Opt. Now using Lemma 5.4,
we obtain 13 trees in the worst case, say T1, T2, . . . T13.
Finally, out of these 13 trees (each of size at most k),
we pick the tree T̃ with the highest total profit. Let,
p(T) =

∑
v∈T p(v) denote the total profit of tree T .

Then we have,

p(T̃) ≥ 1

13

13∑
i=1

p(Ti) ≥
1

13
p(T) ≥ 1

13
(1− 1

e
)Opt

Thus we have a 1
13 (1− 1

e) approximation guarantee.

5.2.2 Finding the Best Subtree Although the de-
composition Lemma 5.4 is useful to prove a theoreti-
cal bound, from a practical perspective it is better to
use a dynamic programming approach to find the best
k sub-tree. Formally, we have the following problem.
Given a tree T = (V,E) of n vertices, profits on ver-
tices p : V → Z+ ∪ {0}, and an integer k, find a sub-
tree T̃ of k vertices which maximizes the total profit
P̃ =

∑
v∈T̃ p(v). We show that this problem can be

solved in polynomial time using dynamic programming.
Let the tree T be rooted at an arbitrary vertex and Tv
denote the subtree rooted at a vertex v. We define the
following -

Figure 4: First tree decomposes into 5 subtrees and
second tree decomposes into 8 trees. In total, we obtain
13 subtrees. The number associated with each node is
the upper bound on the size of the subtree.

F (v, i) ← best solution of at most i vertices com-
pletely contained inside Tv.

G(v, i) ← best solution of at most i vertices com-
pletely contained inside Tv such that v is a part of the
solution.

The desired solution is thus at F (root, k). The base
cases (when v is a leaf) are trivial. Let v1, v2, . . . , vl
denote the children of vertex v. We now have the
following recurrence -

F (v, i) = max

{
max
1≤j≤l

{F (vj , i)}, G(v, i)

}
G(v, i) = p(v) +M(l, i− 1)

where M(j, i′) denotes the best way to distribute a
budget of i′ among the first j children of v. In other
words,

M(l, i− 1) = max
i1+i2+...+il=i−1

∑
j

G(vj , ij)


M(j, i′) is computed using another dynamic program as
follows. Again the base cases when j = 0 or i′ = 0 are
trivial. For 1 ≤ j ≤ l and 1 ≤ i′ ≤ i − 1, we have the

following recurrence -

M(j, i′) = max
0≤i∗≤i′

{M(j − 1, i∗) +G(vj , i
′ − i∗)}

6 Budgeted Generalized Cds

In this section, we show that our approach extends to
more general budgeted connected domination problems.
Formally, given a graph G = (V,E), a budget k, and a
monotone special submodular profit function f : 2V →
Z+∪0, find a subset S ⊆ V which maximizes f(S) such
that |S| ≤ k and induces a connected subgraph of G.
As mentioned earlier in Section 2, this problem captures
the budgeted variants of the capacitated and weighted
profit connected dominating set problems.

6.1 Algorithm. Algorithm 6.1 begins by running
the standard greedy algorithm to find a basis of the
polymatroid associated with f . In other words, we
greedily pick a vertex v with the maximum marginal
profit f(D ∪ {v}) − f(D) until all vertices have zero
marginal profit. With every selected vertex, we as-
sociate the marginal profit gained, and associate zero
profit with the other vertices. Finally, we run a quota
Steiner tree algorithm using these profits to find the
smallest tree that yields a profit of at least (1− 1

e)Opt
where Opt is the optimal profit (which we guess). In
the analysis section, we show that there exists a tree T̂
of size at most 3k with f(T̂) ≥ (1 − 1

e)Opt. Hence,
the 2-approximation for the quota Steiner tree yields a
tree T of size at most 6k yielding the desired profit. Fi-
nally using the tree decomposition described earlier, we
show that we can obtain a tree T̃ of size at most k with
f(T̃) ≥ 1

13 (1− 1
e)Opt.

6.2 Analysis. Let the L1 denote the vertices in the
optimal solution and f(L1) = Opt. Let L2 denote
the set of vertices which have at least one neighbor
in L1, and similarly let L3 denote the set of vertices
having a neighbor in L2 (and NOT in L1). Let R =
V \ {L1 ∪ L2 ∪ L3} denote the rest of the vertices. Let
L′i = D∩Li where D is the set of vertices chosen by the
greedy algorithm.

Further, let D′ denote the first k vertices picked by
the greedy algorithm from L′1 ∪ L′2 ∪ L′3. To simplify
notation, let D′ = {v1, v2, . . . , vk} and let Di denote
the the set of vertices already picked by the greedy
algorithm when the vertex vi+1 is being chosen. Hence
we have vi+1 = arg maxv∈V \Di

f(Di ∪ {v}) − f(Di)
and p(vi+1) = f(Di ∪ {vi+1}) − f(Di). Note that in
particular Di ⊆ D but may not be a subset of D′. Also
let D′i = ∪ij=1vj denote the first i vertices in D′. Let
P (D′i) =

∑
v∈D′i

p(v) denote the total profit associated

with the set D′i. Finally let D′′i = Di\D′i be the vertices

in Di ∩R.

Claim 2. p(vi+1) = P (D′i+1) − P (D′i) ≥ 1
k (Opt −

P (D′i))

Proof. Consider the marginal profit of the set L1 \D′i.
Since N(D′′i) does not intersect with N(L1), we have,

fD′i(L1 \D′i) = fD′i∪D′′i (L1 \D′i)
= fD′′i (D′i ∪ (L1 \D′i))− fD′′i (D′i)

≥ fD′′i (L1)− fD′′i (D′i)

= f(L1)− fD′′i (D′i)

= Opt− fD′′i (D′i)(6.1)

Let us now consider the term fD′′i (D′i). Adding up over
successive marginal profits,

fD′′i (D′i) =

i∑
j=1

fD′′i ∪D′j−1
(vj) ≤

i∑
j=1

fDj−1(vj)(6.2)

=

i∑
j=1

p(vj) = P (D′i)

From Eq (6.1) and Eq (6.2),

fD′i(L1 \D′i) ≥ Opt− P (D′i)

As f is submodular, we have

fD′i(L1 \D′i) ≤
∑

w∈L1\D′i

fD′i({w})

Since |L1 \ D′i| ≤ k, there exists at least one vertex
w ∈ L1 \D′i satisfying

fD′i({w}) ≥
1

k
fD′i(L1 \D′i) ≥

1

k
(Opt− P (D′i))

Using fDi({w}) = fD′i({w}) and the fact that greedy
picked vi+1 at this stage

p(vi+1) = fDi
({vi+1}) ≥ fDi

({w})

≥ 1

k
(Opt− P (D′i))

Solving the recurrence of Claim 2, we have P (D′) ≥
(1− 1

e)Opt.
We thus have a set D′ of size k which yields a total

profit of at least (1− 1
e)Opt. We now proceed to show

that the above set D′ can be connected at a relatively
low cost. Since every vertex in D′ can be connected to
L1 using at most one vertex (from L2), we can obtain
a connected subset T̂ of size at most 3k by choosing
D′, L1 and vertices in L2 as described. Hence, the 2-
approximation for the Qst problem will yield a tree T
of size at most 6k which would give a profit of at least
(1 − 1

e)Opt. Finally applying the tree decomposition

described earlier we obtain a tree T̃ of size ≤ k with
f(T̃) ≥ P (T̃) ≥ 1

13 (1− 1
e)Opt.

Algorithm 6.1. Greedy Profit Labeling Algo-
rithm for Bgcds.
Input: Graph G = (V,E), a monotone special submod-
ular function f : 2V → Z+ ∪ {0} and k ∈ Z+ ∪ {0}.
Output: Tree T̃ with at most k vertices.

1: Run the Generalized Greedy Dominating Set Rou-
tine (Algorithm 6.2) on (G, f) to obtain a subset D
and a profit function p : V → N.

2: Opt← profit of an optimal solution. (Guess using
binary search 0 and f(V)).

3: T ← 2-approximation for QST with quota (1 −
1
e)Opt.

4: Use the dynamic program of Section 5.2.2 to find T̃ ,
the best subtree of T having at most k vertices.

Algorithm 6.2. Generalized Greedy Dominat-
ing Set.
Input: Graph G = (V,E) and a monotone special
submodular function f : 2V → Z+ ∪ {0}.
Output: D ⊆ V such that f(D) = f(V) and profit
function p : V → Z+ ∪ {0}.

1: D ← φ
2: while f(D) 6= f(V) do
3: v ← arg max

v∈V \D
f(D ∪ {v})− f(D)

4: p(v)← f(D ∪ {v})− f(D)
5: D ← D ∪ {v}
6: end while
7: for all v ∈ V \D do
8: p(v)← 0
9: end for

7 Partial Generalized Connected Domination

We now consider a partial coverage version of the gen-
eralized connected domination presented in Section 6.
In this problem, the goal is to find the smallest subset
of vertices which induce a connected subgraph and have
total profit at least q (quota). Just as for the budgeted
case, the algorithm proceeds by finding a spanning sub-
set greedily. Using profits as defined by the greedy al-
gorithm, we then find a Qst having total profit at least
q. In the analysis section, we show that there exists a
tree T̂ of size at most 2k ln q + k with total profit at
least q. Hence, the 2-approximation for Qst yields a
tree T of size at most 4k ln q+ 2k leading to a O(4 ln q)
approximation.

7.1 Analysis We reuse notation from Section 6 re-
garding the layers Li and L′i. Let D′ denote the first

k ln q + 1 vertices picked by the greedy algorithm from
L′1 ∪ L′2 ∪ L′3. We now show that the total profit of
vertices in D′ is at least q.

Claim 3. P (D′) ≥ q

Proof. As per Claim 2, we obtain the following recur-
rence

P (D′i+1) ≥ (1− (1− 1

k
)i+1)q(7.3)

Substituting i+ 1 = k ln q, we get,

P (D′k ln q) ≥ (1− (1− 1

k
)k ln q)q(7.4)

≥ (1− 1

q
)q ≥ q − 1(7.5)

Since profit function f is integral, we have

P (D′k ln q+1) ≥ q(7.6)

Theorem 7.1. Given that the optimal solution is of
size k, there exists a tree T̂ of size at most k ln q+k+ 2
such that

∑
v∈T̂ p(v) ≥ q

Proof. In Claim 3 above, we have demonstrated the
existence of a set of size at most k ln q + 1 with the
requisite total profit. We now show that this set can be
connected at low cost. As in Theorem 4.1, we can see
that by selecting at most k ln q + 1 more vertices from
layer L2 and at most k vertices from layer L1, the set
D′ can be connected to form a tree T̂ .

Finally using the 2-approximation for Qst, we
obtain a O(4 ln q) approximation.

8 Conclusion and Future Work

We consider partial and budgeted versions of the
well studied connected dominating set problem. We
observe that various algorithms which perform well
in the complete version of the connected dominating
set have unbounded approximation guarantee in the
partial case. Using a surprising greedy profit labeling
algorithm we obtain the first O(log n) approximation
for the partial connected dominating set problem and a
1
13 (1 − 1

e) approximation for the budgeted version. We
also extend our results to a special submodular problem,
which includes capacitated and weighted profit versions
of the Pcds and Bcds problems as special cases. Our
results are tight up to a constant factor in all the cases.
A natural open question is to improve these constants.

Acknowledgment: The first author would like

to thank Yossi Azar for useful discussions, held during
the Dagstuhl seminar on Scheduling (2013), about the
failure of prior methods for the budgeted Cds problem.

References

[1] Sanjeev Arora and George Karakostas. A 2 + ε
approximation algorithm for the k-MST problem. In
SODA, pages 754–759, 2000.

[2] Konstantin Avrachenkov, Prithwish Basu, Giovanni
Neglia, Bruno F. Ribeiro, and Don Towsley. Online
Myopic Network Covering. CoRR, abs/1212.5035,
2012.

[3] Baruch Awerbuch, Yossi Azar, Avrim Blum, and San-
tosh Vempala. Improved approximation guarantees for
minimum-weight k-trees and prize-collecting salesmen.
In STOC, pages 277–283, 1995.

[4] Reuven Bar-Yehuda. Using homogenous weights for
approximating the partial cover problem. In SODA,
pages 71–75, 1999.

[5] Reuven Bar-Yehuda, Guy Flysher, Julián Mestre, and
Dror Rawitz. Approximation of partial capacitated
vertex cover. In ESA, pages 335–346, 2007.

[6] Yair Bartal. Probabilistic approximation of metric
spaces and its algorithmic applications. In FOCS,
pages 184–193, 1996.

[7] MohammadHossein Bateni, MohammadTaghi Haji-
aghayi, and Vahid Liaghat. Improved Approxima-
tion Algorithms for (Budgeted) Node-weighted Steiner
Problems. In ICALP, pages 81–92, 2013.

[8] Avrim Blum, R. Ravi, and Santosh Vempala. A
constant-factor approximation algorithm for the k
MST problem (extended abstract). In STOC, pages
442–448, 1996.

[9] Christian Borgs, Michael Brautbar, Jennifer Chayes,
Sanjeev Khanna, and Brendan Lucier. The power of
local information in social networks. In Internet and
Network Economics, pages 406–419. Springer, 2012.

[10] Nader H Bshouty and Lynn Burroughs. Massaging a
linear programming solution to give a 2-approximation
for a generalization of the vertex cover problem. In
STACS, pages 298–308, 1998.

[11] G. Calinescu and A. Zelikovsky. The polymatroid
Steiner problems. Journal of Combinatorial Optimiza-
tion, 9:281–294, 2005.

[12] Moses Charikar and Samir Khuller. A robust max-
imum completion time measure for scheduling. In
SODA, pages 324–333, 2006.

[13] Moses Charikar, Samir Khuller, David M. Mount,
and Giri Narasimhan. Algorithms for facility location
problems with outliers. In SODA, pages 642–651, 2001.

[14] Chandra Chekuri, Guy Even, and Guy Kortsarz. A
greedy approximation algorithm for the group Steiner
problem. Discrete Applied Mathematics, 154(1):15–34,
2006.

[15] Ke Chen. A constant factor approximation algorithm
for k-median clustering with outliers. In SODA, pages
826–835, 2008.

[16] Maggie X Cheng, Lu Ruan, and Weili Wu. Achiev-
ing minimum coverage breach under bandwidth con-
straints in wireless sensor networks. In INFOCOM,
pages 2638–2645, 2005.

[17] Maggie X Cheng, Lu Ruan, and Weili Wu. Coverage
breach problems in bandwidth-constrained sensor net-
works. TOSN, page 12, 2007.

[18] Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu,
and Ding-Zhu Du. A polynomial-time approximation
scheme for the minimum-connected dominating set in
ad hoc wireless networks. Networks, 42(4):202–208,
2003.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms,
3rd Edition. page 977, 2009.

[20] Bevan Das and Vaduvur Bharghavan. Routing in ad-
hoc networks using minimum connected dominating
sets. In IEEE International Conference on Communi-
cations (ICC), volume 1, pages 376–380. IEEE, 1997.

[21] Erik D Demaine and MohammadTaghi Hajiaghayi.
Bidimensionality: New Connections between FPT al-
gorithms and PTASs. In SODA, pages 590–601, 2005.

[22] D.Z. Du and P.J. Wan. Connected Dominating Set:
Theory and Applications. Springer Optimization and
Its Applications. Springer New York, 2013.

[23] Devdatt P. Dubhashi, Alessandro Mei, Alessandro
Panconesi, Jaikumar Radhakrishnan, and Aravind
Srinivasan. Fast distributed algorithms for (weakly)
connected dominating sets and linear-size skeletons. In
SODA, pages 717–724, 2003.

[24] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar.
A tight bound on approximating arbitrary metrics by
tree metrics. In STOC, pages 448–455, 2003.

[25] Uriel Feige. A threshold of lnn for approximating set
cover. J. ACM, 45(4):634–652, July 1998.

[26] Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan.
Approximation algorithms for partial covering prob-
lems. J. Algorithms, 53(1):55–84, 2004.

[27] Rajiv Gandhi and Srinivasan Parthasarathy. Dis-
tributed algorithms for connected domination in wire-
less networks. Journal of Parallel and Distributed
Computing, 67(7):848–862, 2007.

[28] Naveen Garg. A 3-approximation for the minimum tree
spanning k vertices. In FOCS, pages 302–309, 1996.

[29] Naveen Garg. Saving an epsilon: a 2-approximation
for the k-MST problem in graphs. In STOC, pages
396–402, 2005.

[30] Naveen Garg, Goran Konjevod, and R. Ravi. A Poly-
logarithmic Approximation Algorithm for the Group
Steiner Tree Problem. In SODA, pages 253–259, 1998.

[31] Teofilo F. Gonzalez. Clustering to Minimize the Max-
imum Intercluster Distance. Theor. Comput. Sci.,
38:293–306, 1985.

[32] Sudipto Guha and Samir Khuller. Approximation al-
gorithms for connected dominating sets. Algorithmica,
20(4):374–387, 1998.

[33] Anupam Gupta, Ravishankar Krishnaswamy, Amit
Kumar, and Danny Segev. Scheduling with Outliers.

In APPROX-RANDOM, pages 149–162, 2009.
[34] Eran Halperin and Robert Krauthgamer. Polylogarith-

mic inapproximability. In STOC, pages 585–594, 2003.
[35] Eran Halperin and Aravind Srinivasan. Improved ap-

proximation algorithms for the partial vertex cover
problem. In Approximation Algorithms for Combina-
torial Optimization, pages 161–174. 2002.

[36] Dorit S Hochbaum and David B Shmoys. A unified
approach to approximation algorithms for bottleneck
problems. Journal of the ACM (JACM), 33(3):533–
550, 1986.

[37] David S Johnson, Maria Minkoff, and Steven Phillips.
The prize collecting Steiner tree problem: theory and
practice. In SODA, pages 760–769, 2000.

[38] Camille Jordan. Sur les assemblages de lignes. Journal
für die reine und angewandte Mathematik, 70:185–190,
1869.

[39] Michael J Kearns. The computational complexity of
machine learning. The MIT Press, 1990.

[40] Samir Khuller, Anna Moss, and Joseph (Seffi) Naor.
The budgeted maximum coverage problem. Informa-
tion Processing Letters, 70(1):39 – 45, 1999.

[41] Samir Khuller, Barna Saha, and Kanthi K Sarpatwar.
New Approximation Results for Resource Replication
Problems. In APPROX-RANDOM, pages 218–230.
2012.

[42] Yuzhen Liu and Weifa Liang. Approximate coverage in
wireless sensor networks. In ICN, pages 68–75, 2005.

[43] Julián Mestre. A primal-dual approximation algorithm
for partial vertex cover: Making educated guesses.
Algorithmica, 55(1):227–239, 2009.

[44] Anna Moss and Yuval Rabani. Approximation algo-
rithms for constrained for constrained node weighted
Steiner tree problems. In STOC, pages 373–382, 2001.

[45] George L Nemhauser, Laurence A Wolsey, and Mar-
shall L Fisher. An analysis of approximations for max-
imizing submodular set functions I. Mathematical Pro-
gramming, 14(1):265–294, 1978.

[46] R. Ravi, R. Sundaram, M. V. Marathe, D. J.
Rosenkrantz, and S. S. Ravi. Spanning Trees—Short
or Small. SIAM J. Discret. Math., 9(2):178–200, May
1996.

[47] Petr Slav́ık. Improved performance of the greedy
algorithm for partial cover. Information Processing
Letters, 64(5):251–254, 1997.

[48] Aravind Srinivasan. Distributions on level-sets with
applications to approximation algorithms. In FOCS,
pages 588–597, 2001.

[49] Peng-Jun Wan, Khaled M Alzoubi, and Ophir Frieder.
Distributed construction of connected dominating set
in wireless ad hoc networks. In INFOCOM, volume 3,
pages 1597–1604, 2002.

[50] Laurence A. Wolsey. An analysis of the greedy algo-
rithm for the submodular set covering problem. Com-
binatorica, 2(4):385–393, 1982.

[51] Jie Wu and Hailan Li. On calculating connected
dominating set for efficient routing in ad hoc wireless
networks. In DIALM, pages 7–14, 1999.

