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Abstract. In this paper, we focus on finding complex annotation pat-
terns representing novel and interesting hypotheses from gene annota-
tion data. We define a generalization of the densest subgraph problem
by adding an additional distance restriction (defined by a separate met-
ric) to the nodes of the subgraph. We show that while this generalization
makes the problem NP-hard for arbitrary metrics, when the metric comes
from the distance metric of a tree, or an interval graph, the problem can
be solved optimally in polynomial time. We also show that the dens-
est subgraph problem with a specified subset of vertices that have to
be included in the solution can be solved optimally in polynomial time.
In addition, we consider other extensions when not just one solution
needs to be found, but we wish to list all subgraphs of almost maximum
density as well. We apply this method to a dataset of genes and their an-
notations obtained from The Arabidopsis Information Resource (TAIR).
A user evaluation confirms that the patterns found in the distance re-
stricted densest subgraph for a dataset of photomorphogenesis genes are
indeed validated in the literature; a control dataset validates that these
are not random patterns. Interestingly, the complex annotation patterns
potentially lead to new and as yet unknown hypotheses. We perform
experiments to determine the properties of the dense subgraphs, as we
vary parameters, including the number of genes and the distance.

1 Introduction

Biological knowledge is increasingly being represented using graphs, e.g., protein
interactions, metabolic pathways, gene regulation, gene annotation, etc. Finding
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highly dense regions in graphs is a problem of both theoretical [17, 12, 3, 14] and
practical importance. Density is one quantitative measure of the connectedness
of a subgraph and is defined as the ratio of the number of induced edges to the
number of vertices in the subgraph. Even though there are an exponential num-
ber of subgraphs, a subgraph of maximum density can be found in polynomial
time [17, 12, 3]. In contrast, the maximum clique problem to find the subgraph of
largest size having all possible edges is NP -hard; it is even NP hard to obtain
any non-trivial approximation. Finding densest subgraphs with additional size
constraints is NP hard [14]; yet, they are more amenable to approximation than
the maximum clique problem. Moreover detecting only cliques can be somewhat
restrictive, since interesting subgraphs missing a few edges are omitted by any
such procedure.

In this paper, we apply the densest subgraph problem to the task of finding
complex patterns in a gene annotation graph representing annotations of genes
using terms from controlled vocabularies (CVs) or ontologies. We attempt to
increase the biological meaning of subgraphs by favoring the inclusion of pairs
of nodes that have a meaningful relationship within the ontology structure that
was used to create the gene annotation graph; we do this by defining a distance
metric dH between pairs of nodes. The goal is to return dense subgraphs with
vertices within the subgraph satisfying a distance threshold.

We introduce a new variant of densest subgraph problems in this paper,
namely the distance restricted densest subgraph problem to capture this prop-
erty. We are given a graph G = (V,E) as well as a distance metric dH defined
over pairs of vertices u, v ∈ V . The goal is to return a maximum density subgraph
S ⊆ V (G), such that in S, any pair of vertices are within distance τ according
to dH .

Further, researchers may be interested in obtaining patterns containing pre-
specified nodes. We refer to this as the subset maximum density problem, and
this is described in Section 3. Finding only one dense subgraph may not suffice
since the researchers may wish to find many complex annotation patterns. Thus,
we address the problem of all maximum and nearly maximum dense subgraphs
with distance/ subset restrictions in Section 4. We are the first to introduce and
study the problem of detecting distance and subset restricted densest subgraphs.

In computational biology, there has been a body of work closely related to
detecting dense subgraphs. Most of these papers concentrate on protein-protein
interaction networks, where the goal is to cluster the network to detect densely
connected molecular modules [30, 15, 19, 24], that can possibly identify protein
families and molecular complexes [4, 1], or even identify missing interactions
[32] and annotations [21]. Work by Newman [22] studies community detection
in metabolic and regulatory networks. Communities are characterized by high
intra and sparse inter connectivity. Many of these works on community detection
can benefit by application of distance restricted dense subgraphs problem and
its extensions.

The works of [1, 19] consider clustering coefficients for a measure of density
on the neighborhood of each node. It is defined as the ratio of edges among the
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neighbors to the maximum possible number of edges. Thus an alternative mea-
sure for density can be to compute clustering coefficient of the entire subgraph.
However it tends to find very small subgraphs and is not effective.

1.1 Gene Annotation Data

Knowledge about genes has been captured in publicly available bibliographic
resources such as PubMed [27, 6] and PubMed Central [28, 6], general purpose
resources such as Entrez Gene [5, 20], and in more focused model organisms
or domain specific collections such as The Arabidopsis Information Resource
(TAIR) [8, 16, 9]. In order to improve interoperability, various communities have
created a number of ontologies such as the Gene Ontology (GO) [7, 11], the Plant
Ontology (PO) [26], and the Unified Medical Language System (UMLS) [2, 31].
Data entries (records) in a resource are typically annotated with concepts or
controlled vocabulary (CV) terms from one or more of these ontologies, creating
a rich Web of annotation knowledge.

We focus on The Arabidopsis Information Resource (TAIR) [8, 16, 9]. A sci-
entist can typically visit a page that provides a rich synopsis of a TAIR gene
and then follow links to reach genotype and phenotype annotation data, publica-
tions, organism specific data, ESTs, pathway data, etc. Annotations in TAIR are
associated with explanations or evidence codes reflecting the underlying method-
ology supporting the annotation. While TAIR is a valued and much visited portal
that fuels the progress of scientific research, it also requires that scientists spend
many hours manually clicking through web pages and following links, to create a
subset of annotation knowledge for pattern discovery. Scientists often use simple
tools such as a spreadsheet to maintain this subset of annotation knowledge.
Increasingly, there is a need for more sophisticated tools to help the scientist
integrate, analyze and visualize this knowledge.

We illustrate this using an example tool for integrating TAIR annotation
data. The LSLink system [18] can be used to specify a protocol to create a
background LSLink dataset of hyperlinked data records and their annotations.
The protocol follows hyperlinks from each TAIR gene, and integrates the cor-
responding GO annotations, PO annotations, and the publications in PubMed
that support the annotation. Some sample output of the integration protocol and
the LSLink dataset is illustrated in Fig. 1(a) where we visualize the annotations
for gene CRY1. The GO annotations are on the left side and the PO annotations
on the right. Each includes the identifier and the label for the Controlled Vocab-
ulary (CV) term. In addition, the figure includes the PubMed publications that
support the annotations. As of January 2009, there were 17 GO annotations and
5 PO annotations for CRY1. The figure illustrates only some of the annotations
(due to lack of space).

The LSLink annotation dataset of Fig. 1(a) represents knowledge culled from
multiple research projects and their accompanying publications. The challenge
for the scientist is to mine these datasets to discover important patterns. Con-
sider the gene GA3OX1 and a simple pattern of a pair comprising the GO CV term
gibberellic acid mediated signaling and the PO CV term germination;



4 B. Saha, A. Hoch, S. Khuller, L. Raschid, X. Zhang

(a) Associations between GO and PO CV
Terms Gene CRY1

(b) Semantic relationships in Gene On-
tology GO

Fig. 1. TAIR

it is meaningful since GA3OX1 regulates seedling growth. While these simple pat-
terns are somewhat interesting, in order to capture biological knowledge, the
scientist would be interested in finding a more complex pattern. Identifying a
complex pattern in the annotations of a single gene may be non-trivial for a
gene such as CRY1 which has many annotations since the scientist has to con-
sider many pairs of annotations and many groups of CV terms. However, the
real challenge is even more difficult. While a pattern comprising a group of GO
and PO terms annotating a single gene may correspond to a meaningful biolog-
ical phenomenon, it may not be an interesting discovery. This is because it is
annotating a single gene and the knowledge may be well known. A truly inter-
esting discovery of knowledge that is as yet unknown, typically would require
that the scientist solve the greater challenge of finding a pattern of a group of
PO terms and GO terms that annotated multiple genes. Identifying such a co-
occurrence pattern for a group of as yet unrelated genes can lead to the gold
standard of an interesting discovery that would lead to actionable hypothesis,
e.g., an experiment to verify the pattern.

The second challenge is that the GO and PO terms that form a pattern
are not independent but they occur within a (hierarchical) ontology structure.
Controlled vocabulary (CV) terms that are closer to each other in the hierar-
chy may be more closely related in meaning. Consider the fragment of the GO
hierarchy of Fig. 1(b). This fragment illustrates some of the GO terms that
annotate the TAIR gene GA3OX1. The labeled rectangular nodes annotate the
gene while the circular nodes are placeholder GO CV terms in the ontology
that do not annotate GA3OX1. We note that the following 2 terms, response
to gibberellin stimulus and gibberellic acid mediated signaling, are
more closely related whereas the pair of terms, response to red light and
gibberellin biosynthetic process may appear to be unrelated. A complex
pattern that included the first pair is more likely to be meaningful in comparison
to a complex pattern that included the second pair. Two nodes in the ontology
graph that have a smaller shortest path distance are assumed to be more closely
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related and therefore more biologically meaningful, compared to a pair that are
farther apart in the structure.

1.2 Gene Annotation Graph and Notion of Density

We can formalize our problem as follows: We are given two ontologies, GO and
PO and a collection of genes G, that are associated with some subsets of the CV
terms in the two ontologies. In other words, each gene is annotated (associated)
with a set of GO and PO nodes as seen in Fig. 1(a). We can represent this data
in the form of a bipartite graph G = (A,B, E) between the set of GO nodes and
the set of PO nodes. The bipartite graph is a weighted graph where each edge
is labeled with a set of gene names, such that each gene is annotated with the
corresponding GO and PO nodes.

Each CV term in the GO (or PO) ontology has a vertex representing it in
A (or B). If there are t genes g1, g2, .., gt ∈ G containing the CV terms corre-
sponding to vertices u ∈ A and v ∈ B in their annotations, then an edge is
added between u and v in G, with weight w′(u, v) = t. We will often refer to this
bipartite graph G as the annotation graph. We note that while we illustrate our
algorithms using this GO PO bipartite graph, our algorithm works equally well
for general graphs.

If the set of genes of interest are richly annotated with GO and PO terms,
then the scientist has to examine a large annotation graph G. Even a simple
yet meaningful visualization of the annotation graph is non trivial. Our high
level objective is to discover complex patterns involving multiple genes that are
co-annotated with the same subset of GO and PO terms. One way to do this
is to identify large cliques in bipartite graphs. To be more flexible in finding
interesting patterns, we instead look for densest subgraphs that find a large
set of genes sharing a lot of common GO and PO terms; at the same time we
would like the GO and PO terms to be closely related leading to the distance
restriction.

Another formulation may consider the genes and their annotations by GO,
PO nodes as a hypergraph. GO and PO nodes correspond to vertices as before,
but now each gene is a hyperedge consisting of a set of GO and PO nodes. One
related notion of density in a hypergraph is the ratio of hyperedges completely
contained in a subgraph to the number of vertices present in that subgraph.
Our algorithms for finding maximum density subgraphs work with hypergraphs
as well. However this formulation may not be very useful in our context. A set
of GO and PO nodes may be shared by a few genes; if there is a gene that in
addition includes another GO or PO node that was not chosen, then it will not be
included. The detection of this last gene might provide valuable information by
discovering a missing annotation; but the hypergraph approach may not detect
it.

We further consider two extensions to the problem that will be of interest
to the scientist. Finding a single densest subgraph may not help the scientist
explore all the interesting patterns in the annotation knowledge. One extension
is to find all densest subgraphs. Further, there may be subgraphs that have
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density close to the maximum density that are also interesting, e.g., they include
a different set of genes, or a different set of GO or PO terms, in comparison to
the densest subgraph. Such diversity of subgraphs may also help the scientist
discover interesting patterns. Thus, a natural generalization is to find all the
subgraphs of density close to the maximum. We refer to this as the all almost
maximum density subgraph problem. Finally, scientists might be interested in
filtering the densest subgraphs so that they contain a specified subset of GO or
PO CV terms that are of interest to the scientist. We call this subset maximum
density problem.

Our main contributions are as follows:

– In Section 2 we give a formal definition of the distance restricted dense
subgraph problem. We show that for general metrics the problem is at least
as hard to approximate as the well known independent set problem, and for
special metrics such as trees and interval graphs it can be solved optimally in
polynomial time. In addition, if we are willing to relax the distance threshold
slightly we can solve it in polynomial time.

– In some cases there is a subset of GO and PO nodes that are to be studied,
and we are specifically looking for subgraphs that contain these nodes. In
Section 3 we show that the problem when a specified subset of vertices must
be part of the subgraph can also be solved optimally in polynomial time as
well.

– In Section 4 we show how Picard and Queyrannes’s framework [25] (devel-
oped to find a compact encoding of all s-t min-cuts) can be adapted to find
a collection of subgraphs whose density is close to the density of the max-
imum density subgraph. This framework can also be trivially extended for
the generalizations we mentioned above (distance restricted subgraphs as
well as the case when a subset of nodes must be part of the solution).

– Using a set of 10 photomorphogenesis genes and a set of 10 control genes,
a user evaluation demonstrates that the densest subgraph for the photomor-
phogenesis genes returns many patterns that are validated by the literature.
Further, the control genes validate that the results in the densest subgraph
are not random patterns. Of more interest, we identified complex patterns
of as yet not well known knowledge that could lead to new hypotheses. Re-
sults are reported in Section 5. We performed experiments on several other
different set of genes and studied the properties of densest subgraphs and
our algorithms on TAIR dataset. These additional results can be found in
an extended version [29].

2 Distance Restricted Densest Subgraph Problem

In this section we are interested in the distance restricted densest subgraph prob-
lem. While our methods work for general graphs, in this framework we consider
a bipartite graph G = (A,B, E) with two disjoint sets of vertices A and B, and
a set of edges E. We are also given a distance function (say a metric) dA (dB)
that specifies distances between pairs of nodes in set A (B). In addition, we
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are given distance thresholds τA, τB . The goal is to compute a densest subgraph
GS = (SA, SB , ES) by choosing subsets SA ⊂ A and SB ⊂ B to maximize the
density of the subgraph, which is defined as w′(ES)

|SA|+|SB | . Here w′(ES) denotes the
weight of the edges in the subgraph induced by ES . In addition, we require that
for all pairs of vertices u, v ∈ SA we have dA(u, v) ≤ τA, and the same con-
dition holds for pairs of vertices in SB , namely that for all x, y ∈ SB we have
dB(x, y) ≤ τB . Here G represents the annotation graph, A and B correspond
to GO and PO nodes respectively. Distance function dA (dB) comes from the
shortest path metric of the GO (PO) ontology graph.
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Fig. 2. An example of a bipartite graph G = (A, B, E) (left). GO and PO graphs are
shown on the right.

Consider the example in Fig. 2. We set τA = τB = 1 (distance is defined by the
shortest path metric).The densest subgraph that satisfies the distance constraints
is as shown - formed by the nodes SA = {L,C,D} and SB = {O,H, I}. The
number of edges is 7 in this induced graph giving a density of 7

6 . Note that the
subgraph obtained by adding node J to GS would have a higher density of 9

7 , but
we cannot add J to the subgraph since d(H,J) > τB . The proof of the following
theorem is omitted for lack of space and can be found in the extended version
[29].

Theorem 1. When the distance function is an arbitrary metric, the problem is
NP -hard and at least as hard to approximate as the maximum independent set
problem [10].

The relationship with the independent set problem explains why this problem
is hard to approximate and it is not possible to develop approximation algorithms
with good performance guarantee for this problem for general metrics. However,
we next show that for many family of graphs this problem can be solved exactly.
We identify a generic property of a metric, such that if the metric satisfies this
property then we can solve the problem optimally in polynomial time.
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2.1 Polynomial Time Algorithms for the Distance Restricted
Densest Subgraph Problem

Let G = (A∪B,E) and dA and dB be the two metrics. Let SA ⊆ A and SB ⊆ B
form a densest subgraph in G such that any two vertices u, v ∈ SA, dA(u, v) ≤ τA,
for a given value τA (and similarly for x, y ∈ SB , dB(x, y) ≤ τB).

For our specific problem, we encode the distance function between pairs of
nodes in A and B by the shortest path distance in a given graph H. H will
have two components, one for A and one for B. Let n be the number of nodes
in G. The high level idea is as follows: we wish to select a polynomial collection
of subgraphs Gi = (Ai, Bi, Ei) for i = 1 . . . p(n), and for each Gi compute the
densest subgraph. The computed Gi’s satisfy the following two properties:

– Distance property: All pairs of nodes in Ai (Bi) satisfy the pairwise dis-
tance constraint.

– Subset property: There exists some Gi that contains the true optimum
solution GS .

Since we find the densest subgraph within each Gi, we are guaranteed to find
GS . Thus a polynomial time algorithm for extracting Gi’s give a sufficient con-
dition for the existence of a polynomial time algorithm for the distance restricted
densest subgraph problem on G. To obtain the densest subgraph within each Gi,
we will use the procedure Find-Dense-Subgraph(Gi) (described later). The
worst case running time involves p(n) calls to an algorithm for computing the
densest subgraph, which in turn requires O(log n) calls to a a min-cut/max-flow
algorithm (worst case O(n3)). This gives rise to a polynomial time algorithm,
albeit with a rather high polynomial complexity. Luckily, in practice, the sub-
graphs we run the computation on are significantly smaller than the entire graph,
so the algorithm runs fairly quickly.

We now show how to generate a polynomial collection of subgraphs Gi’s
satisfying the two properties: distance and subset property. Let z be a small
constant. Consider every subset Yp of A such that |Yp| = z, and for all t′A ≤ τA

let Ap be defined as {v ∈ A|∀r ∈ Yp dA(v, r) ≤ t′A}. Similarly we define a
collection of subsets Bq: Consider every subset Zq of B such that |Zq| = z, and
t′B ≤ τB , let Bq be defined as {v ∈ B|∀r ∈ Zq dB(v, r) ≤ t′B}. We generate
subgraphs defined by every Ap and Bq pair.

First note that, since we are considering every subset Yp ⊆ A and Zq ⊆ B:
the subset property holds; namely that one of these subgraphs is guaranteed to
contain the optimal subset of nodes. The main difficulty is to show the distance
property, that is to show the pairwise distance between every pair of nodes in
Ap is at most t′A and the pairwise distance between every pair of nodes in Bq

is at most t′B . Now, we exhibit some classes of graphs for which the distance
property holds.

Tree Metric. Let TA, TB be the trees for A and B respectively in H. The
distance in TA(TB) induces the metric dA(dB).
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In this case we need z = 2 (recall that z is the cardinality of Yp and Zq).
Choose two vertices a and b from TA of distance, say t′A. and two vertices c, d
from TB of distance t′B . Define Yp = {a, b} and Zq = {c, d}. Obtain the sets Ap

and Bq as described in the previous subsection. Construct a subgraph induced
on the vertex sets Ap, Bq and obtain the densest subgraph. Return the densest
subgraph obtained from all of these subgraphs by making all possible choices for
{a, b} and {c, d}.

Now, we prove that the above algorithm (call it Tree-Densest-Subgraph)
produces an optimum solution, by showing that the distance property holds.

Theorem 2. Tree-Densest-Subgraph gives an optimum solution, when dA

and dB form a tree metric.

Proof. We only need to show the distance property, that is all the vertices chosen
in Ap have pair-wise distance ≤ t′A and all the vertices chosen in Bq have pair-
wise distance ≤ t′B . Pick any two arbitrary vertices x, y ∈ Ap. Therefore they
are both at distance at most t′A from a and b. Let the path from x to a, Px,a

intersect Pa,b at c1 and similarly the path from y to a intersect Pa,b at c2. Let
d(x, c1) = d1 and d(y, c2) = d2. Without loss of generality, assume, c1 is closer
to a than c2. Let d(a, c1) = r1, d(c1, c2) = r2, d(c2, b) = r3. Hence the distance
between x and y is d(x, y) = d1+r2+d2. We have the following sets of equations,
d1 ≤ r1, otherwise x, b is a furthest pair. Similarly, d2 ≤ r3, otherwise (a, y) is
a furthest pair. Hence d1 + r2 + d2 ≤ r1 + r2 + r3 ≤ t′A. Therefore, all the
vertices chosen from Ap satisfies the distance threshold. Same argument works
for vertices chosen from Bq. Thus the distance property is established. ut

Some Other Distance Metrics. The same approach can be extended for
graphs where each edge can participate in at most one or two cycles and the
problem can be solved optimally in polynomial time. In general it may be possible
to extend this approach to graphs where each edge participates in constant
number of cycles. The proof technique is similar to the case of trees. Another
class of graphs for which we can obtain polynomial time algorithm is interval
graphs. The proofs of these results can be found in an extended version [29].

2.2 Generalization to arbitrary graphs

For general graphs, it is not possible to obtain an exact polynomial time algo-
rithm. Here we describe two methods that we implemented. The first method
guesses a vertex a ∈ GS from GO (b ∈ GS from PO) and selects all the vertices
within distance say t′A

2 ( t′B
2 ) of a(b). Suppose that the set of vertices are denoted

by Xa(Xb). We now run the algorithm Find-Dense-Subgraph(Xa∪Xb). This
ensures that the vertices are all close to each other, but we may not find the
densest subgraph due to the shorter distance requirement.

The second method is identical except that we guess a node a from GO and
a node b from PO and select all the vertices within distance say t′A(t′B) of a (b).
Now clearly, V (GS) ⊆ Xa∪Xb and any two vertices in Xa have distance at most
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2t′A and any two vertices in Xb have distance at most 2t′B . Thus if the optimum
solution has density dS with distance threshold t, then we guarantee obtaining
a subgraph with density at least dS and distance at most 2t.

3 Densest Subgraphs with a Specified Subset

In this section, we describe the densest subgraph algorithm, where a subset of
GO and PO nodes are given apriori and must appear in the returned solution.
A distance threshold may also be specified. In that case, we force the subset
of nodes that must appear in the solution, into Gi and obtain the rest of the
vertices by proper guessing as has been shown in the previous section. Thus in
this section, we just consider the problem of finding a densest subgraph of a
graph when a subset of nodes must appear in the solution.

Given a graph G = (V,E) and a weight function on the edges w′ and a weight
function on the vertices w, and a subset C of vertices, we wish to compute a
densest subgraph that contains C. The density of a subgraph is defined as the
ratio of the total weight of the edges in the induced graph, to the weights of
the nodes in the subgraph (in the unweighted case, all weights are 1). If S is a
subset of nodes then E(S) is the subset of edges in the subgraph induced by S.
Let w′(E(S)) =

∑
e∈E(S) w′(e). For a node c, let w′(S, c) =

∑
(x,c)|x∈S w′(x, c).

Let E(S) be the set of edges incident to nodes in S for any S ⊂ V .
We first contract all the nodes in C to a single node c. We define w(c) =∑

i∈C w(i). All the edges between nodes in C become a self loop on c with
w′(c) =

∑
(i,j)∈E(C) w′(i, j).

In other words, we wish to compute a subset S ⊂ V \ {c} such that we
maximize the following ratio:w′(E(S))+w′(c)+w′(S,c)

w(S)+w(c) .

3.1 Algorithm for Densest Subgraph without a specified subset

We first discuss the basic algorithm for finding a densest subgraph by a series
of max-flow (min-cut) computations [17]. This is the procedure Find-Dense-
Subgraph mentioned earlier. We guess α, the density of the maximum density
subgraph and then refine our guess by doing a network flow computation. Sup-
pose a subset S∗ exists with density α∗ and this is the maximum density sub-
graph. Suppose our guess is α. By appropriately defining a flow network and by
examining its min-cut structure we are able to determine if α = α∗, or α < α∗ or
α > α∗. It is very easy to start the binary search since we have upper and lower
bounds on the optimal density α∗ and since all densities are rational numbers,
once the interval size drops to below 1

|V |2 we can stop.
We next describe the flow network that is constructed. Create a flow network

G′ with a source s and sink t. We have a node corresponding to each edge in G
(call this set E′) and a node corresponding to each node in G (call this set V ′).
Add edges from s to e ∈ E′ of capacity w′(e) and an edge from v ∈ V ′ to t with
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capacity αw(v). Add edges from e = (x, y) ∈ E′ to both x ∈ V ′ and y ∈ V ′ with
capacity ∞ 1.

If C = ∅ then the construction proceeds as follows (original problem). First
note that there is a s-t min-cut of value w′(E). Suppose the max density sub-
set has density α∗. Suppose our guess α < α∗ = w′(S∗)

w(S∗) , then it follows that
αw(S∗) < w′(S∗).

Now consider an s-t cut (s ∪ V1, t ∪ V2) in the flow network G′, then let
S = V1∩V ′. The cut includes all the edges from nodes in S to t of capacity αw(S)
as well as edges from s to nodes in E′ that are not in V1. All edges e = (x, y) ∈ E
with one end in V \ S must be in V2 since otherwise there will be an edge of ∞
capacity across the cut. All the edges in the induced graph formed by S must be
in V1, since otherwise we can reduce the capacity of the cut. The weight of this
cut is exactly w′(E\E(S))+αw(S). Note that w′(E\E(S)) includes the weight of
all edges that are incident on some node in E\S. The weight of this cut is exactly
w′(E \ E(S)) + αw(S) = w′(E) − w′(S) + αw(S) = w′(E) − (w′(S) − αw(S)).
But for the optimal subset S∗, we have w′(S∗) − αw(S∗) > 0 thus there is a
cut of value < w′(E). So if this happens we know that our guess for α is < α∗.
Similarly, when our guess for α is > α∗ then the (unique) min-cut has value
w′(E). When we make the correct guess, then there are multiple min-cuts of
value w′(E). Any min-cut other than the trivial gives the correct solution.

3.2 Algorithm for Densest Subgraph with a specified subset C

We now show how to modify this construction when C 6= ∅. We create a new
source s′ and add an edge to s with capacity w′(E)− αw(c). We also remove c
from V ′. Again suppose that α < α∗. In this case, a subset S∗ exists such that
w′(E(S∗))+w′(c)+w′(S∗,c)

w(S∗)+w(c) > α. Thus, w′(E(S∗)) + w′(c) + w′(S∗, c) − α(w(S∗) +
w(c)) > 0. Rreplace w′(E) − w′(E(V \ (S∗ ∪ c))) for the first term. (Note that
w′(E(V \ (S∗ ∪ c))) includes all edges incident on nodes in V \ (S∗ ∪ c), and not
only the edges induced by those nodes). We now obtain:

w′(E)− w′(E(V \ (S∗ ∪ c)))− α(w(S∗) + w(c)) > 0.

(w′(E)− αw(c))− (w′(E(V \ (S∗ ∪ c))) + αw(S∗)) > 0.

(w′(E)− αw(c)) > w′(E(V \ (S∗ ∪ c))) + αw(S∗).

This means that a min-cut exists (defined by the subset S∗ for example) that is
smaller than w′(E)− αw(c).

So again by looking at the min-cut structure we should be able to know that
α < α∗. If α > α∗ then the trivial min-cut separating s′ from the rest of the
graph is unique. A binary search for α can be done.
Side Note: A simple method that will not work is to snap the edges to c as
self loops and to then compute the densest subgraph in G with c removed. If
1 If E′ is a set of hyper-edges then we add such edges from e to all x ∈ V ′ such that

x ∈ e.
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the density of the densest subgraph found is lower than w′(c)/w(c) then we
just return C as the answer. Otherwise we return S ∪ C. The main problem is
that the density of S could get lowered when we merge with C. The level of
dilution depends on the size of the densest subgraph in G with c removed; hence
a subgraph with slightly lower density than the optimal solution, but of much
larger size could be a better choice.

4 Finding All almost Maximum Densest Subgraphs

In this section, we describe an algorithm for computing all densest subgraphs as
well as all almost maximum densest subgraphs. It might not be sufficient just
to find only one subgraph of highest density, and sometimes subgraphs having
density close to the maximum might be interesting as well. If α∗ is the highest
density, our goal is to find all subgraphs that have density close to α∗. A subgraph
S that has density α∗(1−δS) is lacking by a factor of (1−δS) from the optimum.
Thus if we want to detect it, we have to relax the density requirement of S by
a (1− δS) factor. The amount of relaxation may differ depending on the size of
the returned subgraph. We denote by D(S) the density of the subgraph induced
by S.

Formally, given a graph G = (V,E), if α∗ = maxS⊆V D(S), then given an

ε > 0, we want to return T = {S | S ⊆ V,D(S) ≥
(
1− ε

|S|

)
α∗}. Therefore,

we have δS = ε
|S| . We consider the unweighted case, where vertices and edges

all have unit weights. Extension to arbitrary weight is trivial. Also we can pose
the distance restriction as in Section 2 easily and get the same approximation
results as we obtained earlier.

Recall the construction of flow network from Section 3. We guess α as the
value of density and create a flow network N(G) for graph G. If {s ∪ V1, t ∪ V2}
is the minimum cut and V1 ∧ V = S, then the value of min-cut is K = |E| −
(E(S) − α|S|). Thus when, α = α∗, K = |E|. The algorithm searches for the
value of α∗ using a binary search. Since the gap between two consecutive density
values, is at least 1

|V |2 [12], the value of α∗ can be guessed accurately in O(log n)
time.

We construct the flow network Nα∗ with α∗ as the guess, and compute all
min-cuts having value ≤ |E|+ εα∗. There are two questions, “how can we com-
pute all min-cuts of value ≤ |E|+εα∗ ?” and “how can T be detected from these
min-cut computations ?”. While we address the first question in Subsection 4.1,
following lemma answers the second.

Lemma 1. Let M = {V1 | cut(s ∪ V1, t ∪ (V \ V1)) ≤ |E| + α∗ε}, then T =
{V1 ∩ V }.

Proof. Let S′ ∈ T and S′ = V ′
1 ∧ V . Then the cut induced by s ∪ V ′

1 is |E| −
(E(S′) − α∗|S′|) = |E| − |S′|(D(S′) − α∗). Since S′ ∈ T , D(S′) ≥ α∗(1 − ε

|S′| ).
Thus, the cut induced by s∪V ′

1 is at most |E|−|S′|(α∗(1− ε
|S′| )−α∗) = |E|+α∗ε.

Hence, V ′
1 ∈ M . On the other hand, if V ′

1 ∈ M , then the cut value of s ∪ V ′
1
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is, |E| − (E(S′)− α∗|S′|) ≤ |E|+ α∗ε. Thus, α∗|S′| − E(S′) ≤ α∗ε, or D(S′) ≥
α∗(1− ε

|S′| ). ut

Now we show how by modifying Picard and Queyranne’s algorithm [25], we
can compute all cuts of value ≤ |E|+ εα∗ in Nα∗ .

4.1 Finding All Almost Min-Cuts

In Picard’s algorithm, we are given a finite directed network N = (V,E, c),
with vertex set V , including a source s and a sink t, arc sets E and positive
capacities ci,j defined on every (i, j) ∈ E. The goal is to compute all s-t cuts
having minimum value. Given a binary relation R on V , a subset C ⊆ V is said
to be closure for R, iff for all vertices i, j ∈ V , the conditions i ∈ C and iRj
imply j ∈ C. Picard showed that, if f is a maximum flow in N , cres is the
residual capacity and R is defined as, iRj, iff cres(i, j) = 0, then a cut (S, S̄)
separating s from t is a minimum cut iff S is a closure for R containing s and
not t. By enumerating all closures of R, all the min-cuts can now be detected.

We define the relation R as, iRj iff cres(i, j) ≤ εα∗ = δ instead of cres(i, j) =
0. The following lemma connects all almost s-t cuts with the closures for R.

Theorem 3. All s-t cuts of value ≤ K + δ are closures for R, where K is the
value of minimum s-t cut.

Proof. Consider a cut S of value K ′ ≤ K + δ. Let the edges across the cut
E(S, S̄) = {e1, e2, . . . , el}, ei ∈ E(G) with capacities {c1, c2, . . . , cl} and flow
{f1, f2, . . . , fl}. The flow emanating from S is, f(S, S̄) ≤ K, since K is the max-
flow. Let if possible one of the residual capacity, say of e1 be higher than δ. We
have f1+f2+ . . .+fl < (c1−δ)+c2+ . . .+cl = K ′−δ, and K ≥ f1+f2+ . . .+fl.
So K ′ > K + δ, giving a contradiction. Now consider the edges from S̄ to
S. Let they be {e′1, e′2, . . . , e′l′}. Let if possible the flow on any one of them,
say e′1 is higher than δ. Then the inflow in S is f(S̄, S) > δ. Hence we have,
K ′ =

∑l
i=1 ci ≥ f(S, S̄) + f(S̄, S) > K + δ, where the last inequality follows

from using the max-flow–min-cut theorem and noting that f(S̄, S) < δ. This is
again a contradiction. Therefore S is a closure for R. ut

Therefore, we again enumerate all the closures, and discard any closure for
which cut value is > K + δ. This last step is necessary, since there can be some
closures for R that do not necessarily give a cut of value ≤ K + δ. The closures
for R contain all the cuts of value ≤ K + δ and some cuts of value K + δ(l + l′).

5 Experiments on the TAIR Dataset

We briefly summarize the results of several experiments. In a first experiment
(dataset SD1) we analyze 10 photomorphogenesis genes. We use the literature to
validate patterns identified in a dense subgraph. We highlight some interesting
patterns that are novel and could lead to new hypotheses. A control experiment



14 B. Saha, A. Hoch, S. Khuller, L. Raschid, X. Zhang

(dataset SD2) includes the 10 photomorphogenesis genes and 10 additional con-
trol genes. The control experiment is used to confirm that all patterns identified
in the dense subgraphs are true positives and are validated in the literature.
There were no false positive patterns identified in our experiment. In a subse-
quent experiment (dataset SD3), we analyze 20 genes involved in different (and
currently unrelated) biological pathways. We also perform experiments to study
the properties of the dense subgraphs, for different experiment protocols and pa-
rameters such as the number of genes and the GO and PO distance thresholds.
These results are in an extended report [29].

We execute a protocol to retrieve all TAIR genes, their GO and PO anno-
tations, and the reference publications from PubMed. As of January 2009, the
LSLink TAIR dataset contains 3540 GO CV terms, 350 PO CV terms, 18861
genes, 70128 GO annotations, 484261 PO annotations and 1873250 (GO, PO)
pairs. The average number of GO annotations and PO annotations for the TAIR
genes is 3.97 and 3.13, respectively. The maximum number of annotations for
any gene is 22 GO annotations and 50 PO annotations.

5.1 Photomorphogenesis Case Study

We report on promising results of a photomorphogenesis case study on dataset
SD1 with the following 10 TAIR genes: CRY1, CRY2, HFR1, CIB1, CIB5, SHB1,
COP1, HY5, PHOT1, PHOT2. These 10 genes are associated with 107 annotations
(66 GO terms and 41 PO terms) and 2230 combinations of (GO, PO) terms.
The edge weight from the corresponding bipartite graph ranged from a mini-
mum of 1 (1368 edges) to a maximum of 7 (2 edges). We applied the distance
restricted dense subgraph algorithm with GO distance threshold of 2 and PO dis-
tance threshold of 3, which identified a complex pattern involving the following
subset: 9 genes, CRY1, CRY2, HFR1, CIB5, COP1, HY5, PHOT1, PHOT2, SHB1
3 GO terms, 5634: nucleus; cellular component, 5773: vacuole;
cellular component, and 5794: Golgi apparatus; cellular component; and
13 PO terms. These obtained GO and PO terms are shown in Figure 3. Figure
3 also shows a subgraph chosen from the densest subgraph involving 2 GO terms,
5634: nucleus; cellular compo- nent and 5773: vacuole; cellular component;
and 2 PO terms, 13: cauline leaf; plant structure and 37: shoot apex;
plant structure are shown in Figure 3. This creates 4 (GO, PO) pairs as fol-
lows: (5634, 13); (5634, 37); (5773, 13); (5773, 37). Figure 3 also illustrates the
genes that are annotated by these pairs.

We make the following observations:

– The combinations of (GO,PO) edges observed in this complex pattern are
consistent with the literature and provides validation that the complex pat-
tern is meaningful. Details of all the observations can be found in an extended
version [29].

– Specific combinations of genes and (GO,PO) edges are interesting in that
they can lead to further hypothesis. We identify 5 potentially interesting
patterns from the subgraph. We elaborate on two patterns. Details can be
found in an extended version [29].
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Fig. 3. Potential Complex Pattern of Photomorphogenesis Genes

– HFR1 is not annotated with the following GO and PO combination: (5634:
nucleus; cellular component and 37: shoot apex; plant structure).
This is indicated by an arrow in Figure 3. A review of the literature suggests
that this is a novel observation about the mechanism controlling this gene
that should be pursued further.

– The next observation confirms the potential benefits of our approach to
finding complex patterns in the annotated LSLink datasets. Consider the
pattern of annotation that includes the 2 genes CRY2 and PHOT1. Both are
annotated with the following 2 GO and PO combinations: (5773: vacuole;
cellular component and 13: cauline leaf; plant structure) and (5773:
vacuole; cellular component and 37: shoot apex; plant structure).
These annotations are also marked with an arrow in Figure 3. We observe
that there are only 2 papers in the literature, [23] published in 2004, and
[13] published in 2008, that postulate that some members of the CRY and
PHOT families may be functionally interactive in vacuoles. Indeed, these two
papers came to this conclusion only after significant experimental research.

To summarize, our user evaluation confirmed the benefit of using the dense
subgraph approach of identifying complex patterns based on the underlying pat-
terns of annotation, without having to completely digest the scientific literature
and/or complete an experiment protocol.

We performed a control experiment using SD2; SD2 included the 10 genes
of SD1 and 10 additional genes that were chosen randomly from genes that had
some common annotations with the genes in SD1. The goal of this experiment is
to verify that the pattern emerged from experimenting on SD1 alone still persists
and thus to confirm that it was not a random pattern. The dense subgraph for
SD1 included 9 genes, 3 GO terms, 13 PO terms and 39 (GO, PO) edges. The
dense subgraph for SD2 included 14 genes, 4 GO terms, 11 PO terms and 44
(GO, PO) edges. The genes included the 8 photomorphogenesis genes (HFR1
CRY2 CIB5 COP1 PHOT1 CRY1 SHB1 HY5) and 6 control genes (GAPC2
FT ARF3 AG ARF4 REV). The gene PHOT2 is not included. Further, the
GO term Golgi apparatus and 3 PO terms cauline leaf, leaf whorl and
petiole were not present. Two GO terms mitochondrion and cytosol and
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1 PO term inflorescence meristem were introduced. Detailed observations
from the control dense subgraph for SD2 can be found in an extended version
[29].

While the control dense subgraph for SD2 does show some variations in terms
of photomorphogenesis genes, GO and PO terms from that obtained using SD1,
we verified that none of these variations are significant, i.e., the variations do
not contradict any of the patterns of annotation of the dense subgraph for SD1.
Further the patterns of SD1, that were found validating the literature or can
lead to potentially new hypothesis are unchanged. For example, PHOT2 which is
excluded from the control subgraph, as well as the GO and PO terms that are
excluded were not included in any of the SD1 patterns. An unexpected benefit is
that the control densest subgraph for SD2 was itself able to yield some interesting
patterns that could lead to new hypotheses.

We note that developing a NULL hypothesis to test the significance of the
dense subgraphs that we generate is non trivial since there are many metrics
to compare the similarity of two graphs. One option is to add control genes as
described. Other alternatives include comparing the density distribution of dense
subgraphs from a random graph versus the dense subgraphs from our datasets.
Another would generate all almost dense subgraphs to determine if they are
different with respect to both metrics as well as the observed patterns. One may
also consider random labeling of the GO and PO terms in the datasets. We will
explore these alternatives in future work.

Additional experiments on different set of genes and empirical study on the
properties of the densest subgraph algorithms can be found in an extended ver-
sion [29].
Acknowledgments: We thank Carl Kingsford and Mihai Pop for useful dis-
cussions about our results and their feedback has been invaluable.
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