
Brief Announcement: Improved Approximation Algorithms

for Scheduling Co-Flows

⇤

Samir Khuller

Computer Science Department

University of Maryland, College Park

samir@cs.umd.edu

Manish Purohit

Computer Science Department

University of Maryland, College Park

manishp@cs.umd.edu

ABSTRACT
Co-flow scheduling is a recent networking abstraction intro-
duced to capture application-level communication patterns
in datacenters. In this paper, we consider the o✏ine co-flow
scheduling problem with release times to minimize the total
weighted completion time. Recently, Qiu, Stein and Zhong
[8] obtained the first constant approximation algorithms for
this problem with a deterministic 67

3 -approximation and a

randomized (9 + 16
p

2
3) ⇡ 16.54-approximation. In this pa-

per, we improve upon their algorithm to yield a deterministic
12-approximation algorithm. For the special case when all
release times are zero, we obtain a deterministic 8-approximation
and a randomized (3 + 2

p
2) ⇡ 5.83-approximation.

1. INTRODUCTION
Applications designed for data-parallel computation frame-

works such as MapReduce, Hadoop, and Spark usually alter-
nate between computation and communication stages. Typ-
ically, intermediate data generated by a computation stage
needs to be transferred across machines during a commu-
nication stage (called “shu✏e” in MapReduce) for further
processing. Chowdhury and Stoica [2] introduce co-flows as
a networking abstraction to represent the collective commu-
nication requirements of a job. Every job j is associated
with a set of flow demands (called as a co-flow) and the job
j is said to be satisfied once all of its demands are met.

Due to significant potential gains in datacenter through-
put, co-flow scheduling has been a topic of active research
[3, 4, 8, 10] since its introduction. Although the heuristics
developed by Chowdhury et al [4, 3] perform very well in
practice, they do not admit provable worst-case guarantees.
Even in the o✏ine setting, when all jobs are known in ad-
vance, no O(1) approximation algorithm was known until
recently. Qiu, Stein and Zhong [8] obtain a deterministic 67

3

approximation and a randomized (9 + 16
p

2
3) approximation

for the problem of minimizing the weighted completion time.

⇤This work is supported by NSF grant CCF 1217890.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA ’16 July 11-13, 2016, Pacific Grove, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4210-0/16/07.

DOI: http://dx.doi.org/10.1145/2935764.2935809

For the special case when all release times are zero, Qiu et
al. [8] demonstrate improved bounds of 64

3 (deterministic)

and (8 + 16
p
2

3) (randomized).

1.1 Problem Setting
A datacenter is modeled as a single m ⇥ m non-blocking

switch, i.e., it is comprised of m input ports and m output
ports. For simplicity, we assume that all ports have unit
capacity - i.e., at most one unit of data can be transferred
through any port at a time.

A co-flow is defined as a collection of parallel flow demands
that share a performance goal. Each co-flow j has weight
w

j

, release time r
j

, and is represented as a m ⇥ m integer
matrix Dj = [dj

io

] where the entry dj
io

represents the number
of data units that must be transferred from input port i to
output port o for co-flow j.

A co-flow j is available to be scheduled at its release time
r
j

and is said to be completed when all the flows in the
matrix Dj have been scheduled. We assume that time is
slotted and data transfer within the switch is instantaneous.
Since each input port i can transmit at most one unit of
data and each output port o can receive at most one unit
of data in each time slot, a feasible schedule for a single
time slot is described by a matching. Our goal is to find a
feasible, integral schedule that minimizes the total, weighted
completion time of the co-flows, i.e. minimize

P
j

w
j

C
j

.

1.2 Connection to Concurrent Open Shop
The co-flow scheduling problem as described above gener-

alizes the well-studied concurrent open shop problem [7, 1,
5, 6, 9]. In the concurrent open shop problem, we have a set
of m machines and each job j with weight w

j

is composed
of m tasks {tj

i

}m
i=1, one on each machine. Let pj

i

denote
the processing requirement of task tj

i

. A job j is said to be
completed once all its tasks have completed. Any machine
can perform at most one unit of processing at a time. The
objective is to find a feasible schedule that minimizes the to-
tal weighted completion time of jobs. An LP-relaxation us-
ing completion time variables yields a 2-approximation algo-
rithm for concurrent open shop scheduling when all release
times are zero [1, 5, 6] and a 3-approximation algorithm
for arbitrary release times [5, 6]. It can be seen that the
concurrent open shop problem is a special case of co-flow
scheduling when the demand matrices Dj for all co-flows j
are diagonal [4, 8].

1.3 Our Contribution
The main algorithmic contribution of this paper is the

following improved approximation guarantee for the o✏ine
co-flow scheduling problem.

Theorem 1. There exists a deterministic 12-approximation
algorithm for co-flow scheduling with release times and a de-
terministic 8-approximation algorithm for co-flow scheduling
without release times.

Theorem 2. There exists a randomized (3+2
p
2) ⇡ 5.83-

approximation algorithm for co-flow scheduling without re-
lease times.

2. APPROXIMATION ALGORITHMS
For every co-flow j and input port i, we define the load

Lj

i

=
P

m

o=1 d
j

io

to be the total amount of data that co-flow
j needs to transmit through port i. Similarly, we define
Lj

o

=
P

m

i=1 d
j

io

for every co-flow j and output port o. Our
algorithm consists of the following two stages.

2.1 Reduction to Concurrent Open Shop:
Let I denote an instance of the co-flow scheduling prob-

lem. We now construct an instance I0 of the concurrent open
shop scheduling problem on 2m machines (one for each port)
and n jobs (one for each co-flow). For a job j, set pj

s

= Lj

s

,
i.e., the processing requirement of job j on a machine s is set
to be the load of the co-flow j on the corresponding port.
Let OPT (I) denote the cost of an optimal co-flow sched-
ule and OPT (I0) denote the cost of an optimal, preemptive
concurrent open shop schedule for the instance I0.

Lemma 1. OPT (I0) OPT (I)

Proof. Let S⇤ denote an optimal co-flow schedule for
instance I. For a co-flow j and port s, let T j

s

denote the set
of time slots when data corresponding to co-flow j is being
processed (either input or output) at port s as per schedule
S⇤. Now processing one unit of the corresponding job j on
machine s in the concurrent open shop instance I0 at all
times in T j

s

leads to a feasible schedule.

Let C̄
j

denote the completion time of job j in an approx-
imate schedule for the concurrent open shop instance I0.
Further, let us assume without loss of generality that the
co-flows are ordered so that the following holds.

C̄1 C̄2 . . . C̄
n

(1)

The following statements now hold from the feasibility of
the schedule and Equation (1).

C̄
k

� r
k

+max
s

pk
s

, 1 k n (2)

C̄
k

� max
s

X

jk

pj
s

, 1 k n (3)

Corollary 1.
P

j

w
j

C̄
j

 3 ⇥ OPT (I). Further if all

release times are zero, then
P

j

w
j

C̄
j

 2⇥OPT (I)

Proof. The concurrent open shop scheduling problem
with release times has well-known 3-approximation algo-
rithms [6, 5] that also yield a 2-approximation when all re-
lease times are zero. We remark that these approximation
algorithms also yield guarantees with respect to the optimal
preemptive schedule. Combining any of these algorithms
with Lemma 1 yields the corollary.

2. Scheduling Co-flows:
The following two lemmas by Qiu et al. [8] show that

grouping co-flows in geometrically increasing groups based
on the approximate completion times (C̄

j

) and then schedul-
ing the consolidated co-flows sequentially yields a provably
good co-flow schedule.

Lemma 2 ([8]). Given a permutation of co-flows that
satisfies conditions (2) and (3), there exists a deterministic
algorithm that yields a feasible co-flow schedule such that
for every co-flow k, C

k

(alg) 4C̄
k

where C
k

(alg) is the
completion time of co-flow k in the co-flow schedule.

Lemma 3 ([8]). Given a permutation of co-flows that
satisfies condition (3) and r

k

= 0 for all co-flows k, there
exists a randomized algorithm that yields a feasible co-flow
schedule such that for every co-flow k, C

k

(alg) (32 +p
2)C̄

k

.

Theorems 1 and 2 now follow from Corollary 1 and Lem-
mas 2 and 3 respectively.

3. REFERENCES
[1] Z.-L. Chen and N. G. Hall. Supply chain scheduling:

Conflict and cooperation in assembly systems.
Operations Research, 55(6):1072–1089, 2007.

[2] M. Chowdhury and I. Stoica. Coflow: A networking
abstraction for cluster applications. In Proceedings of
the 11th ACM Workshop on Hot Topics in Networks,
pages 31–36. ACM, 2012.

[3] M. Chowdhury and I. Stoica. E�cient coflow
scheduling without prior knowledge. In Proceedings of
the 2015 ACM Conference on Special Interest Group
on Data Communication, pages 393–406. ACM, 2015.

[4] M. Chowdhury, Y. Zhong, and I. Stoica. E�cient
coflow scheduling with varys. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM
’14, pages 443–454, New York, NY, USA, 2014. ACM.

[5] N. Garg, A. Kumar, and V. Pandit. Order scheduling
models: Hardness and algorithms. In FSTTCS 2007:
Foundations of Software Technology and Theoretical
Computer Science, pages 96–107. Springer, 2007.

[6] J. Y.-T. Leung, H. Li, and M. Pinedo. Scheduling
orders for multiple product types to minimize total
weighted completion time. Discrete Applied
Mathematics, 155(8):945–970, 2007.

[7] M. Mastrolilli, M. Queyranne, A. S. Schulz,
O. Svensson, and N. A. Uhan. Minimizing the sum of
weighted completion times in a concurrent open shop.
Operations Research Letters, 38(5):390–395, 2010.

[8] Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total
weighted completion time of coflows in datacenter
networks. In Proceedings of the 27th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA
’15, pages 294–303, New York, NY, USA, 2015. ACM.

[9] G. Wang and T. E. Cheng. Customer order scheduling
to minimize total weighted completion time. Omega,
35(5):623–626, 2007.

[10] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng,
Y. Zhang, D. Li, and S. Wang. Rapier: Integrating
routing and scheduling for coflow-aware data center
networks. In Computer Communications
(INFOCOM), 2015 IEEE Conference on, pages
424–432. IEEE, 2015.

