
Busy Time Scheduling on a Bounded Number of
Machines (Extended Abstract)?

Frederic Koehler1 and Samir Khuller2

1 Dept. of Mathematics, MIT, Cambridge MA 02139 USA
fkoehler@mit.edu

2 Dept. of Computer Science, Univ. of Maryland, College Park MD 20742 USA
samir@cs.umd.edu

Abstract In this paper we consider a basic scheduling problem called
the busy time scheduling problem - given n jobs, with release times rj ,
deadlines dj and processing times pj , and m machines, where each ma-
chine can run up to g jobs concurrently, our goal is to find a schedule to
minimize the sum of the “on” times for the machines. We develop the
first correct constant factor online competitive algorithm for the case
when g is unbounded, and give a O(logP) approximation for general g,
where P is the ratio of maximum to minimum processing time. When
g is bounded, all prior busy time approximation algorithms use an un-
bounded number of machines; note it is NP-hard just to test feasibility
on fixed m machines. For this problem we give both offline and online
(requiring “lookahead”) algorithms, which are O(1) competitive in busy
time and O(logP) competitive in number of machines used.

1 Introduction

Scheduling jobs on multiple parallel machines has received extensive attention
in the computer science and operations research communities for decades (see
reference work [3]). For the most part, these studies have focused primarily
on job-related metrics such as minimum makespan, total completion time, flow
time, tardiness and maximum throughput. Our work is part of a line of recent
results working towards a different goal: energy efficiency, in particular aiming
to minimize the total time that a machine must be turned on, its busy time
[4,12,8,11,15,5]. Equivalently, we seek to maximize the average load of machines
while they are powered on, assuming we are free to turn machines off when they
are idle. Note in this context we are concerned with multi-processing machines,
as for machines which process only one job at a time the load is either 0 or
1 always. This measure has been studied in an effort to understand energy-
related problems in cloud computing contexts; see e.g. [11,5,4] . The busy time
metric also has connections to several key problems in optical network design,
for example in minimizing the fiber costs of Optical Add Drop Multiplexers

? Full version: http://math.mit.edu/~fkoehler/busytime.pdf. Research supported
by CCF 1217890 and CNS 1262805.

http://math.mit.edu/~fkoehler/busytime.pdf

2 Frederic Koehler and Samir Khuller

(OADMs) [8], and the application of busy time models to optical network design
has been extensively outlined in the literature [8,9,18,1].

Formally the problem is defined as follows: we are given a set of n jobs, and
job j has a release time of rj , a deadline dj and a processing time of pj (it is
assumed rj + pj ≤ dj) and a collection of m multiprocessor machines with g
processors each. The significance of processors sharing a machine is that they
share busy time: the machine is on if a single processor on the machine is active.
Each job j is assigned to the time window [sj , sj +pj) on some machine mj . The
assignment must satisfy the following constraints:

1. Start times respect job release times and deadlines, i.e., [sj , sj+pj) ⊆ [rj , dj).
2. At most g jobs are running at any time on any given machine. Formally, at

any time t and on any machine m, |{j|t ∈ [sj , sj + pj),mj = m}| ≤ g.

The busy time of a machine is the duration for which the machine is pro-
cessing any non-zero number of jobs. The objective is to minimize the total sum
of busy times of all the machines. Formally, the objective function is

∞∑
i=0

µ

 ⋃
j:mj=i

[sj , sj + pj)

where µ measures the geometric length of a union of disjoint half intervals by
summing their individual lengths; e.g. µ([1, 2)∪[3, 4)∪[3, 5)) = 3 i.e. µ is Lebesgue
measure. Note that this objective is constant if g = 1.

All previous algorithms (described below) for busy time are forced to make
the assumption that m = ∞, because the number of machines required by the
schedules they generate can be as large as Ω(n), i.e. worst-possible. Our primary
interest in this paper is in improving on this front. Thus our primary interest
will really be in the simultaneous optimization problem of generating schedules
whose performance is bounded in two objectives simultaneously: both the busy
time and the number of machines required by the schedule. The best known
approximation algorithms for each of these objectives separately is 3 [5] and
O(

√
log n/ log log n) [6]. We conjecture that there exist schedules which achieve

a O(1) approximation in both objectives. However, as it stands the O(1) machine
minimization problem by itself remains a major open problem in combinatorial
optimization, so such a result is out of reach for now. The main result of our paper
will show that we can at least construct such a schedule under the assumption
that logP is bounded by a constant, where P = maxi,j pj/pi.

1.1 Related Work

Winkler and Zhang [18] first studied the interval job case of busy time schedul-
ing, i.e. when pj = dj − rj , and showed that even the special case when g = 2
is NP-hard. Their work was motivated by a problem in optical communication
and assigning routing requests to wavelengths. Assuming that the number of
machines available is unbounded, Alicherry and Bhatia [1], and independently

Busy Time Scheduling 3

Kumar and Rudra [13], developed approximation algorithms with an approx-
imation factor of 2 for the case of interval jobs. Being unaware of prior work
on this problem, subsequently, Flammini et al [8] developed a very simple 4
approximation via a greedy algorithm for the interval job case.

The first constant factor approximation for the general problem, albeit on an
unbounded number of machines, was given by Khandekar et al [11]. They first
design a dynamic programming based algorithm for the case when g =∞. This
schedule is then used to fix the starting times of the jobs, and the resulting in-
stance of interval jobs is scheduled by the greedy algorithm of Flammini et al [8].
Despite the “restriction” mapping, the approximation factor of 4 is unchanged.
Since better approximation algorithms for the interval job case were available,
it is natural to attempt to use those instead. Sadly, the restriction mapping can
actually increase the cost of an optimal solution by a factor of 2, and so even if
we use these algorithms we do not get a better bound than 4 (see [5] for a tight
example). Chang et al [5] developed a 3-approximation algorithm by giving a
new interval packing algorithm. We conjecture that the correct answer for this
is 2, matching the interval job case.

Unfortunately, the number of machines used by all of these algorithms may
be as large as Ω(n), even in the case when all jobs are equal length and released
at time rj = 0. This is because the g =∞ reduction chooses start times oblivious
to the true value of g. One may hope to resolve this problem from the other dir-
ection, by adapting an algorithm for minimizing the number of machines used.
It is not difficult to get a O(log n) approximation algorithm for this problem via
randomized LP rounding. The best known result is a O(

√
log n/ log log n) ap-

proximation algorithm by Chuzhoy et al [6] which uses a sophisticated recursive
LP relaxation to the problem. Unfortunately, it appears to us quite difficult to
adapt these LP rounding methods to account for the cost of the nonlinear busy
time objective.

When g < ∞, very strong lower bounds for online minimization of busy
time were given by Shalom et al [17]. They show that when g < ∞, no online
algorithm can be better than g competitive algorithm against an online adaptive
adversary. It should be noted that their general online model is harder than the
one we consider; they have no notion of time, so in the online scenario they
envision the algorithm must be able to deal with jobs arriving in arbitrary order.
However, their proof of the lower bound does not need this additional power: it
releases jobs in left-to-right order.

Some recent work [7,10] claims a 2-competitive online algorithm when g =∞,
but it is incorrect; see Fig. 1. Independently and simultaneously to us, Ren and
Tang [16] recently studied the online problem when g = ∞ as well (see next
section). They proved the same lower bound on the competitive ratio of this
problem as we do and gave a slightly worse upper bound, 4 + 2

√
2. They also

analyzed a version of the problem where job lengths are unknown to the scheduler
and proved a strong lower bound in this setting.

4 Frederic Koehler and Samir Khuller

0 1 2 3 g − 1 g

δ δδ δ δ

g unit
jobs

g interval
jobs

Figure 1: Counter-example to online algorithm of [7]. The optimal solution delays
all the flexible unit jobs to the end and gets a busy time cost of 1 + gδ rather
than g. Setting δ = 1

g gives the gap. The figure shows the schedule produced by
the online algorithm with a cost of g.

1.2 Our Contributions

We divide the results into sections depending on the flexibility the algorithm has
with m, the number of machines. We begin with the “classic” busy time model,
where m =∞.

– Our first result is an online 5-competitive algorithm for the busytime prob-
lem when machine capacity is unbounded g = ∞. In addition, we show
that against an adaptive online adversary there is no online algorithm with
competitive ratio less than ϕ = (1 +

√
5)/2.

– The previous result is extended to the general busy time problem with g <
∞, and we get a competitive ratio of O(logP). No online algorithm for this
problem was previously known. In the online setting with lookahead of 2pmax
we can give a 12-competitive algorithm.

We then present our main results, concerned with simultaneous optimization of
busytime and number of machines used:

– We present a constant-factor approximation algorithm for the busy time
problem with fixed number of machines m, given the assumption of identical
length jobs pj = p.

– We give the first approximation algorithm for busy time scheduling with
a non-trivial bound on the number of machines used. More precisely, for
the simultaneous optimization problem we give a schedule which is 3 + ε-
competitive on busy time and O(logP

log(1+ε)) competitive on machine usage for
ε < 1.

– We give an online algorithm with O(pmax) lookahead in time, which remains
O(1)-competitive for busy time and O(logP) competitive on machine usage.

– We also give tradeoff lower bounds which show the limits on the simultaneous
optimizability of these objectives; if we optimize solely for one objective (e.g.
machine usage), we may lose a factor of Ω(g) in the other (e.g. busy time).

1.3 Preliminaries

We recall the following fundamental scheduling lemma. The interval graph of
a collection of half-intervals {[αi, βi)}ni=1 is the graph with vertices the half-

Busy Time Scheduling 5

intervals, and an edge between two half-intervals I1 and I2 iff I1 ∩ I2 6= ∅. The
interval graph is perfect, i.e.:

Proposition 1 Given a collection of half-open intervals {[αi, βi)}ni=1 there ex-
ists a k-coloring of the corresponding interval graph iff for all t ∈ R,

|{i : [αi, βi) 3 t}| ≤ k. (1)

Proposition 2 The following are lower bounds on the optimum busy time:

1. The optimal busy time for the same input instance with g =∞.
2. The load bound (1/g)

∑n
j=1 pj.

We say a job is available at time t if rj ≤ t. It is often useful to refer to the latest
start time uj = dj − p of a job. An interval job is one with no choice in start
time, i.e. j is an interval job when dj − rj = pj . We define an algorithm to be a
(r1, r2)-approximation if it generates a schedule using at most r1mopt machines
and r2busyOPT busy time, where mopt is the smallest number of machines for
which a feasible schedule exists, and busyOPT (or just OPT) is the minimum
busy time on an unbounded number of machines.

2 Online Busy Time Scheduling with an Unbounded
Capacity

2.1 The g = ∞ case, Upper Bound

We give a 5-competitive deterministic online algorithm for busy time scheduling
when g = ∞. In this setting we may assign all jobs to a single machine so we
assume w.l.o.g. m = 1. Informally, the algorithm is quite simple: everytime we
hit a latest starting time uj of an unscheduled job j, we activate the machine
from time uj to time uj + 2pj and run all the jobs that fit in this window. To
analyze this, we can pick an arbitrary optimal schedule, decompose its busy time
into connected components, and then bound the cost of our schedule by charging
the cost of running jobs to the connected components containing them.

In this section we will let T denote the active time of our machine; all jobs
are processed during this active time, i.e.

⋃
j [sj , sj + pj) ⊂ T . We also maintain

a set P of primary jobs but this is only for the purposes of the analysis. Note
that at each time t the algorithm uses only information about jobs released by
time t, so it is truly online.
Algorithm Doubler:

1. Let P = ∅. Let T = ∅.
2. For t = 0 to dmax:

(a) Let U be the set of unscheduled, available jobs at time t.
(b) Run every unscheduled job j s.t. [t, t+ pj) ⊂ T ; remove j from U .
(c) If t = uj for some j ∈ U , then pick such a j with pj maximal and set

T = T ∪ [t, t+ 2pj) (activating the machine from time t to t+ 2pj). Let
P = P ∪ {j}.

6 Frederic Koehler and Samir Khuller

(d) Run3 every unscheduled job j s.t. [t, t+ pj) ⊂ T ; j is removed from U .

Suppose the algorithm fails to schedule a job j. Then at time uj the job was
available but was not scheduled; impossible because steps 2(c) ensures that
T ⊃ [uj , uj + pj) and so step 2(d) would necessarily schedule it. Thus the al-
gorithm schedules all jobs and, because we may trivially verify it respects rj , dj
constraints, produces a valid schedule. Henceforth sj refers to the start times
chosen by algorithm Doubler; the following proposition is immediate.

Proposition 3 Let T be the resulting active time and P the resulting set of
primary jobs. Then T =

⋃
j∈P [sj , sj + 2pj) and for every j ∈ P , sj = uj.

Theorem 1. Algorithm Doubler is 5-competitive.

Proof. Fix an input instance (rj , dj , pj) and an optimal offline schedule OPT
with start times s∗j . Let T ∗ =

⋃
j [s
∗
j , s
∗
j + pj) so µ(T ∗) is the busy time cost of

OPT . Let P be the set of primary jobs. Let P1 ⊂ P consist of those jobs j in P
with [sj , sj + 2pj) ⊂ T ∗ and P2 = P \ P1. By the Proposition,

µ(T) = µ

⋃
j∈P

[sj , sj + 2pj)

 ≤ µ
 ⋃
j∈P1

[sj , sj + 2pj)

 + µ

 ⋃
j∈P2

[sj , sj + 2pj)

≤ µ(T ∗) +

∑
j∈P2

2pj . (2)

It remains to bound the cost incurred by jobs in P2. Decompose T ∗ into connec-
ted components {Ci}ki=1 so T ∗ = C1∪· · ·∪Ck. The endpoints of Ci are inf Ci and
sup Ci. Let J(Ci) be the set of jobs j with [s∗j , s

∗
j + pj) ⊂ Ci. OPT schedules all

jobs so
⋃
i J(Ci) is the set of all jobs, thus

∑
j∈P2

2pj =
∑k
i=1

∑
j∈P2∩J(Ci) 2pj .

We now claim that ∑
j∈P2∩J(Ci)

pj ≤ 2µ(Ci). (3)

To show the claim, first we index so {eij}
k′i
j=1 = P2∩J(Ci), where k′i = |P2∩J(Ci)|,

and (s(eij))
k′i
j=1 is a monotonically increasing sequence.

Observation: reij ≤ s(e
i
1) for all j. Suppose for contradiction that reij > s(ei1)

for some j. We know [s∗(eij), s
∗(eij)+peij) ⊂ C

i, hence reij +peij ≤ sup Ci. Because

[s(ei1), s(ei1) + 2p1) 6⊂ Ci we know that s(ei1) + 2p1 ≥ sup Ci ≥ reij + peij . Thus

[reij , reij + peij] ⊂ [s(ei1), s(ei1) + 2p1) ⊂ T . We see then that at time reij , step 2

(b) the algorithm must have scheduled job eij . Thus eij /∈ P ⊃ P2 ∩ J(Ci), which

contradicts the definition of eij . By contradiction reij ≤ s(e
i
1) for all j.

3 Step 2 (b) and step 2(d) are both necessary. Consider an interval job released at
time 0 of length 2 and another at time 1 of length 4. Without step 2 (b) running at
time 1, the machine will be turned on from time 5 to 9 unecessarily.

Busy Time Scheduling 7

Now it follows that peij > 2peij−1
(for j ≥ 2): suppose otherwise, then be-

cause we know eij was available at step 2 (c) at t = s(eij−1) ≥ s(ei1) ≥ reij ,

job eij must have been scheduled at t with eij−1 and cannot have been added

to P . By contradiction, peij > 2peij−1
hence by induction pei

k′
i

> 2k
′
i−jpeij . Now

(3) follows:
∑k′i
j=1 peij ≤

∑k′i
j=1 2j−k

′
ipei

k′
i

< pei
k′
i

∑∞
j′=0 2−j

′
= 2pei

k′
i

≤ 2µ(Ci).
Thus

∑
j∈P2

2pj ≤
∑k
i=1 4µ(Ci) = 4µ(T ∗). Combining this with (2) proves the

theorem.

Obviously we could have defined the above algorithm replacing 2 with any α > 1,
however α = 2 minimizes α+

∑∞
i=0 α

−i and is thus optimal.

2.2 g = ∞, Online Lower Bounds

Proposition 4 No online algorithm (without lookahead) against an online ad-

aptive adversary has competitive ratio better than ϕ = 1+
√
5

2 ≈ 1.618.

Proof. Let 0 < α < 1 be a constant to be optimized later. Fix 1 > ε > 0 such
that α = εk where k ∈ Z. Here is the strategy for the adversary:

1. Release job A of length 1 available in [0, 3).
2. Until job A is started, at each t = nε for n < k ∈ Z release a single job of

length ε available in [t, t+ ε). (The ε jobs are interval jobs.)
3. If job A was started at t = nε, release a final job of length 1 available in

[2, 3).
4. Otherwise if job A is still not started at time (k− 1)ε, release no more jobs.

In the case corresponding to step (3), the online schedule has busy time nε+1+1
whereas the optimal offline schedule, which runs job A at time 2, has busy time
(n+ 1)ε+ 1. The ratio is thus nε+2

(n+1)ε+1 ≥ α−ε+2
α+1 because f(x) = x−ε+2

x+1 is mono-

tonically decreasing for x > 0. In the case corresponding to step (4), the online
schedule has busy time at least (k−1)ε+1 = α−ε+1 whereas the offline schedule

has busy time 1. Thus the competitive ratio is at least min
{
α−ε−2
α+1 , α− ε+ 1

}
and we may take the limit as ε→ 0. The positive solution to α−2

α+1 = α+ 1 is at

α =
√
5−1
2 , and thus we get a lower bound of ϕ = 1+

√
5

2 .

A similar proof also gives a weaker lower bound when the algorithm is granted
lookahead of O(pmax). Let 0 < β < 1. Release job A with a very large availability
span, and simultaneously release an interval job of length β, i.e. a job with rj =
0, pj = β, dj = β. Without loss of generality the online algorithm either schedules
job A at time 0 or chooses not to schedule job A until after time β. In the former
case, release a job of length 1 at the very end of job A’s availability window; in
the latter case, release no more jobs. The lower bound on the competitive ratio
now min{ 1+β1 , 2

1+β }, optimized at β =
√

2− 1, giving a ratio of
√

2.

Proposition 5 An algorithm with lookahead a function of pmax has competitive
ratio at least

√
2 ≈ 1.414.

8 Frederic Koehler and Samir Khuller

2.3 General Case, g < ∞

Combining with the bucketing algorithm given by Shalom et al [17] this gives
a O(log pmax

pmin
)-competitive online algorithm for busy time scheduling. More pre-

cisely, because the cost of their algorithm is bounded by 4 times the weight of the
input jobs, and 1 times the g =∞ lower bound, the approximation is 9 log pmax

pmin
.

Running Algorithm Doubler offline and combining with the 3-approximation
of Chang et al [5] gives a fast 7-approximation to the optimal busy time schedule.
This is because the Greedy Tracking algorithm [5] takes as input a g =∞ sched-
ule using busytime T and outputs a schedule with cost at most T + 2w(J)/g ≤
T + 2OPT where w(J) denotes the total processing time of all jobs. Since
T ≤ 5OPT using our algorithm, the cost is bounded by 7OPT .

If we are willing to grant the online algorithm a lookahead of 2pmax then we
can get a constant factor online algorithm. We use our g =∞ online algorithm to
determine the time placement of jobs; this algorithm requires no lookahead so we
now know the start time of jobs 2pmax ahead of the current time. We now run the
offline machine-assignment algorithm in windows of the form [kpmax, (k+2)pmax)
for k ∈ N. We can bound the cost of even k by 5OPT +2w(J0)/g where w(J0) is
the total processing time of jobs run in windows with even k; adding the matching
term for odd k shows that this gives a fast 2 ∗ 5 + 2 = 12 approximation.

3 Offline Algorithm for Equal length jobs, Bounded
Number of Machines

Although it is impossible in the general case (see Lower Bounds, Section 6), in the
case of pj = p we are able to compute a schedule which is (1, O(1))-approximate,
i.e. with the optimal number of machines and O(1) busy time vs. the busy time
optimum. Proposition 7 shows that a (O(1), 1)-approximation is impossible to
achieve, even in this scenario. Our algorithm is two-step: it starts with a feasible
schedule, and then uses a “pushing scanline” to push jobs together and reduce
the busytime cost.

Algorithm Compact

1. Find the minimum number of machine required to feasibly schedule the jobs
by binary search (0 ≤ mopt ≤ n), using a feasibility algorithm for the problem
with mg identical single-processor machines. Then construct a schedule on
S on these jobs and mopt machines that minimizes the sum of completion
times,

∑
Cj . A O(n2) time algorithm for these tasks is known [14].

2. Let s0j be the start time of job j in S, and let sj := s0j , K := ∅ and P := ∅.
3. For t from rmin to dmax: (main loop)

(a) For every unscheduled job j, let sj := max{s0j , t}. Let U be the set of
unscheduled jobs.

(b) If |{j ∈ U : sj ∈ [t, t + 2p]}| ≥ mg, run each job j in this set at time
sj . Let K := K ∪ {[t, t + 3p)}. We say these jobs were run in a cluster.
Return to the main loop at t := t+ 2p.

Busy Time Scheduling 9

(c) Otherwise if t = uj for some unscheduled job j, run each job in the set
{j ∈ U : sj ∈ [t, t + p]} at its start time sj . Return to the main loop at
t := t+ p. Let P := P ∪ {j}.

In step 3 it is necessary to consider only t ∈ {uj , sj − 2p}, so we can run this
step in O(n log n) time.

Theorem 2. Algorithm Compact is a 6-approximation for busy time, and gen-
erates a feasible schedule using mopt machines.

4 Offline Algorithm for Bounded Number of Machines

In this section we will use the fact that scheduling jobs on a minimum number of
machines with integer release times and deadlines and with p = pj = 1 is trivial
offline. For a fixed m, it is well-known that an EDF (earliest-deadline first)
schedule, i.e. one given by running at each time up to m of the jobs with earliest
deadlines, gives a feasible schedule iff the input instance is feasible. Computing
the minimum m can be done by binary search in log n steps.

We would like to describe some intuition before launching into the formal
analysis. As before, we use something like a “pushing scanline” approach, mov-
ing jobs rightward from a “left-shifted” schedule and starting a group of jobs
whenever a large number have been pushed together. To make this approach
have bounded busy time usage, we first need to bucket jobs by similar lengths,
but this alone cannot attain our desired performance ratio, because we may need
for busy time purposes to group some long jobs with some short jobs. There-
fore, in each bucket, when a job does not nicely group together with other jobs
of the same length, we temporarily drop it. A second “clean-up pass” (step 3
below) runs the remaining jobs using an algorithm which has good busy-time
performance but a priori unbounded machine usage. By arguing that we drop few
jobs with overlapping availability times from each bucket, it is then possible to
bound the machine usage. Below is our (O(log pmax/pmin), O(1))-approximation
algorithm for the general problem. Fix a constant α > 1 to be optimized later.

1. Bucket jobs by processing time increasing exponentially by α, so the buckets
contain jobs of processing time in the intervals [pmin, αpmin), [αpmin, α

2pmin), . . . ,

[αq−1pmin, α
qpmin] where q =

⌈
logα

pmax
pmin

⌉
.

2. For each bucket Bi
(a) Let p be the supremum of the processing times of jobs in this bucket.

We round job availability constraints down to multiples of p, so r′j =
pbrj/pc, u′j = pbuj/pc, and p′j = p. This is a unit job scheduling problem
after we rescale by a factor of p.

(b) We generate a left-shifted feasible schedule (referred to as the initial
schedule) for the rounded (r′j , d

′
j , p
′
j) instance using the minimum number

of machines m. Let s0j be the start time of job j in this schedule.
(c) Execute Algorithm RunHeavy.

10 Frederic Koehler and Samir Khuller

(d) Let U ′i denote the set of jobs unscheduled in Bi after running Algorithm
RunHeavy.

3. Now let U ′′ be the union of the U ′i for all buckets, and schedule the jobs in
U ′′ by the 3-approximation of Chang et al [5] upon a new set of machines.

Algorithm RunHeavy

1. Let U initially be the set of all jobs in the bucket. Split machines into groups
M1 and M0; we will require at most m machines in each group (see analysis).

2. For t = kp from r′min to u′max:
(a) Let Jt = {j ∈ U : s0j = t}. Let k1 = b|Jt|/gc and run k1 groups of g

jobs from this set on the group of machines Mk mod 2 with start times
sj = max(s0j , rj). Remove these jobs from U .

(b) Let J ′t = {j ∈ U : s0j ≤ t ≤ u′j}. Let k2 = b|J ′t|/gc jobs, and run k2
groups of g jobs from this set on the group of machines Mk mod 2 with
start times sj = max(s0j , rj). Remove these jobs from U .

Note in the loop in RunHeavy, we only need to do something when t = s0j for
some job j so the loop is really over polynomially many t.

Theorem 3. The above algorithm generates a schedule feasible using (2α +
1)OPT busy time on dlogα pmax/pmine(2dαemopt + 8) machines.

5 Online Algorithm for Bounded Number of Machines

Since the formal details in this section are quite long, we give a brief summary of
the main idea. In order to get an online algorithm, we still use the approach of
the previous section, but interweave an agressive variant of Algorithm Doubler in
order to pick start times for the “leftover” jobs which fit poorly into their buckets.
In the previous section we could use that the (rj , dj , p = pj = 1) problem was
exactly solvable offline; now, we must instead rely upon the online e-competitive
online algorithm of [2] for this task. We also must use our g = ∞ algorithm in
order to schedule the jobs in U ′′ online with bounded performance.

Theorem 4. The online algorithm with lookahead 3pmax generates a schedule
requiring at most dlogα pmax/pmine(16 + 4dedαemopte) machines and (20 + 42α)
busy time.

6 Simultaneous Optimization of Busy Time and Machine
Usage

6.1 Lower Bounds

Proposition 6 For any input g, there exist input instances (with g processors
per machine) where every machine-optimal schedule uses (g−ε)busyopt busy time
for ε arbitrary small.

Busy Time Scheduling 11

Proof. Fix 1 > δ > 0. Release g jobs of length 1 at time 0 with availability
windows [0, g). For k = 0 to g− 1, release g− 1 jobs of length δ with availability
windows [k, k+ δ), and g− 1 jobs of length δ with availability windows [k+ 1−
δ, k + 1). The machine-optimal schedule runs all jobs on one machine, but due
to the presence of the δ-jobs cannot overlap the execution of the long jobs, and
thus has busy time cost g (see Fig. 2a). The busy time optimal schedule runs
the δ jobs on a separate machine and runs all of the long jobs in parallel, giving
a busy time cost 1 + 2gδ. Thus the ratio is g

1+2gδ and taking δ sufficiently small
gives the desired result.

0 1 2 3 g − 1 g

δ

OPT cost on one machine = g

g − 1

interval jobs

g unit jobs

δ δ δ δ δ

(a) On one machine the busytime is g.

0 1 2 3 g − 1 g

δ
g − 1

interval jobs

g unit jobs

δ δ δ δ δ

OPT cost on two machines = 1 + g · 2δ

(b) On two machines the busytime is 1 + 2gδ.

Figure 2: Illustrations of trade-off lower bounds.

Proposition 7 For any g, there exist input instances where every busy time
optimal schedule uses gmopt machines, even with the restriction pj = p.

Proof. We set p = pj = 1 for all jobs. For k = 0 to g − 1, we release an interval
job with availability window [k/g, k/g+1), and we release g(g−1) unconstrained
jobs with availability windows [0, 2g2).

There exists a busy time optimal schedule using g machines, which runs g−1
unconstrained jobs along with a single interval job together on a machine. Here
the busy time cost equals the load bound exactly. There exists a feasible schedule
using only 1 machine: for k = 0 to g − 1, on processor k of the machine it runs
first the interval job followed by g − 1 unconstrained jobs, end-to-end. Thus
mopt = 1.

Now consider any schedule using fewer than g machines. By the pigeonhole
principle, it must run two interval jobs on a single machine M . Let these jobs
start at k1/g and k2/g respectively with k1 < k2; then the processor running the
job at k2/g must be idle in [0, k2/g) ⊃ [k1/g, k2/g). Since the load is positive but
below g in this interval, the busy time exceeds the busy time lower bound, and
so is greater than the cost of the busy time optimal schedule described earlier.

Acknowledgements: We are grateful to Chunxing Yin for extremely useful
discussions.

12 Frederic Koehler and Samir Khuller

References

1. Mansoor Alicherry and Randeep Bhatia. Line system design and a generalized
coloring problem. In ESA, pages 19–30, 2003.

2. Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy
and temperature. J. ACM, 54(1):3:1–3:39, March 2007.

3. Peter Brucker. Scheduling algorithms. Springer, 2007.
4. Jessica Chang, Harold Gabow, and Samir Khuller. A model for minimizing active

processor time. Algorithmica, 70(3):368–405, November 2014.
5. Jessica Chang, Samir Khuller, and Koyel Mukherjee. Lp rounding and combinat-

orial algorithms for minimizing active and busy time. In SPAA, pages 118–127.
ACM, 2014.

6. Julia Chuzhoy, Sudipto Guha, Sanjeev Khanna, and Joseph Seffi Naor. Machine
minimization for scheduling jobs with interval constraints. In FOCS, pages 81–90.
IEEE, 2004.

7. Xiaolin Fang, Hong Gao, Jianzhong Li, and Yingshu Li. Application-aware data
collection in wireless sensor networks. In Proceedings of INFOCOM, 2013.

8. Michele Flammini, Gianpiero Monaco, Luca Moscardelli, Hadas Shachnai, Morde-
chai Shalom, Tami Tamir, and Shmuel Zaks. Minimizing total busy time in parallel
scheduling with application to optical networks. In IPDPS, pages 1–12, 2009.

9. Michele Flammini, Gianpiero Monaco, Luca Moscardelli, Mordechai Shalom, and
Shmuel Zaks. Approximating the traffic grooming problem with respect to adms
and oadms. In Proceedings of Euro-Par, pages 920–929, 2008.

10. Chi Kit Ken Fong, Minming Li, Shi Li, Sheung-Hung Poon, Weiwei Wu, and
Yingchao Zhao. Scheduling tasks to minimize active time on a processor with
unlimited capacity. In MAPSP, 2015.

11. Rohit Khandekar, Baruch Schieber, Hadas Shachnai, and Tami Tamir. Minimizing
busy time in multiple machine real-time scheduling. In FSTTCS, pages 169 – 180,
2010.

12. Frederic Koehler and Samir Khuller. Optimal batch schedules for parallel machines.
In WADS, pages 475–486, 2013.

13. Vijay Kumar and Atri Rudra. Approximation algorithms for wavelength assign-
ment. In FSTTCS, pages 152–163, 2005.

14. Alejandro López-Ortiz and Claude-Guy Quimper. A fast algorithm for multi-
machine scheduling problems with jobs of equal processing times. In STACS,
pages 380–391, 2011.

15. George B. Mertzios, Mordechai Shalom, Ariella Voloshin, Prudence W.H. Wong,
and Shmuel Zaks. Optimizing busy time on parallel machines. In IPDPS, pages
238–248, 2012.

16. Runtian Ren and Xueyan Tang. Online flexible job scheduling for minimum span.
In SPAA, 2017. To Appear.

17. Mordechai Shalom, Ariella Voloshin, Prudence W.H. Wong, Fencol C.C. Yung,
and Shmuel Zaks. Online optimization of busy time on parallel machines. TAMC,
7287:448–460, 2012.

18. Peter Winkler and Lisa Zhang. Wavelength assignment and generalized interval
graph coloring. In SODA, pages 830 – 831, 2003.

	Busy Time Scheduling on a Bounded Number of Machines (Extended Abstract)

