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Abstract—In this paper, we demonstrate some applications
of compressive sensing over networks. We make a connection
between compressive sensing and traditional information the-
oretic techniques in source coding and channel coding. Our
results provide an explicit trade-off between the rate and the
decoding complexity. The key difference of compressive sensing
and traditional information theoretic approaches is at their
decoding side. Although optimal decoders to recover the original
signal, compressed by source coding have high complexity, the
compressive sensing decoder is a linear or convex optimization.
First, we investigate applications of compressive sensing on
distributed compression of correlated sources. Here, by using
compressive sensing, we propose a compression scheme for
a family of correlated sources with a modularized decoder,
providing a trade-off between the compression rate and the
decoding complexity. We call this scheme Sparse Distributed
Compression. We use this compression scheme for a general
multicast network with correlated sources. Here, we first decode
some of the sources by a network decoding technique and
then, we use a compressive sensing decoder to obtain the
whole sources. Then, we investigate applications of compressive
sensing on channel coding. We propose a coding scheme that
combines compressive sensing and random channel coding for a
high-SNR point-to-point Gaussian channel. We call this scheme
Sparse Channel Coding. We propose a modularized decoder
providing a trade-off between the capacity loss and the decoding
complexity. At the receiver side, first, we use a compressive
sensing decoder on a noisy signal to obtain a noisy estimate
of the original signal and then, we apply a traditional channel
coding decoder to find the original signal.

I. INTRODUCTION

Data compression has been a research topic of many
scholars in past years. However, recently, the field of com-
pressive sensing, originated in [1], [2] and [3], looked at
the compression problem from another point of view. In this
paper, we try to make a bridge between compressive sensing
which may be viewed as a signal processing technique
and both source coding and channel coding. By using this
connection, we propose some non-trivial practical coding
schemes that provide a trade-off between the rate and the
decoding complexity.

Compressive sensing has provided a low complexity ap-
proximation to the signal reconstruction. Information theo-
retic has been mostly concerned with accuracy of the signal
reconstruction under rate constraints. In this paper, we seek
to provide new connections which use compressive sensing
for traditional information theory problems such as Slepian-
Wolf compression and channel coding in order to provide
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mechanisms to explicitly trade-off between the decoding
complexity and the rate.

Some previous work investigated the connection between
compressive sensing and information theory. For example,
reference [4] studied the minimum number of noisy measure-
ments required to recover a sparse signal by using Shannon
information theory bounds. Reference [5] investigated the
contained information in noisy measurements by viewing
the measurement system as an information theoretic channel
and using the rate distortion function. Also, reference [6]
studied the trade-offs between the number of measurements,
the signal sparsity level, and the measurement noise level
for exact support recovery of sparse signals by using an
analogy between support recovery and communication over
the Gaussian multiple access channel.

In this paper, we want to investigate applications of
compressive sensing on source coding and channel coding.
First, in Section III, we consider distributed compression
of correlated sources. In this section, by using compressive
sensing, we propose a compression scheme for a Slepian-
Wolf problem with a family of correlated sources. The pro-
posed decoder is a modularized decoder, providing a trade-off
between the compression rate and the decoding complexity.
We call this scheme Sparse Distributed Compression. Then,
We use this compression scheme for a general multicast
network with correlated sources. Here, we first decode some
of the sources by a network decoding technique and then,
we use the compressive sensing decoder to obtain the whole
sources.

Then, in Section IV, we investigate applications of com-
pressive sensing on channel coding. We propose a coding
scheme that combines compressive sensing and random chan-
nel coding for a high-SNR point-to-point Gaussian channel.
We call this scheme Sparse Channel Coding. We propose
a modularized decoder, providing a trade-off between the
capacity loss and the decoding complexity (i.e., the higher
the capacity loss, the lower the decoding complexity.). The
idea is to add intentionally some correlation to transmitted
signals in order to decrease the decoding complexity. At the
receiver side, first, we use a compressive sensing decoder on
a noisy signal to obtain a noisy estimate of the original signal
and then, we apply a traditional channel coding decoder to
find the original signal.

II. TECHNICAL BACKGROUND AND PRIOR WORK

In this section, we review some prior results, in both
compressive sensing and distributed compression, which will
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be used in the rest of the paper.

A. Compressive Sensing Background

Let X ∈ Rn be a signal vector. We say this signal is
k-sparse if k of its coordinates are non-zero and the rest
are zero. Define α = k

n as the sparsity ratio of the signal.
Suppose Φ is a n×n measurement matrix (hence, Y = ΦX
is the measurement vector.). If Φ is non-singular, by having
Y and Φ, one can recover X. However, [2] and [3] showed
that, one can recover the original sparse signal by having far
fewer measurements than n. Suppose for a given n and k,
m satisfies the following:

m ≥ ρk log(n/k) (1)

where ρ is a constant. Let S be the power set of
{1, 2, ...,m}, and Sm represent a member of S with car-
dinality m (e.g., Sm = {1, 2, ...,m}). A m× n matrix ΦSm

is formed of rows of Φ whose indices belong to Sm. ΦSm

represents an incomplete measurement matrix.
Reference [7] showed that, if m satisfies (1) and ΦSm

satisfies the Restricted Isometry Property (which will be
explained later), having these m measurements is sufficient
to recover the original sparse vector. In fact, it has been
shown in [7] that, X is the solution of the following linear
programming:

min ∥X∥L1 (2)
subject to Y = ΦSmX,

where ∥.∥L1 represents the L1 norm of a vector.
Let us refer to the complexity of this optimization by
CXnoiseless

cs (m,n). We say ΦSm satisfies the restricted
isometry property (RIP) iff there exists 0 < δk < 1 such
that, for any vector V ∈ Rn, we have:

(1− δk)∥V∥2L2
≤ ∥ΦSmV∥2L2

≤ (1 + δk)∥V∥2L2
. (3)

Reference [7] showed if,

δk + δ2k + δ3k < 1, (4)

then, the optimization (2) can recover the original k-sparse
signal. This condition leads to (1). Intuitively, if ΦSm satisfies
the RIP condition, it preserves the Euclidean length of k
sparse signals. Hence, these sparse signals cannot be in the
null-space of ΦSm . Moreover, any k subset of columns of
ΦSm are nearly orthogonal if ΦSm satisfies RIP. Most of
matrices which satisfy RIP are random matrices. Reference
[8] showed a connection between compressive sensing, n-
widths, and the Johnson-Lindenstrauss Lemma. Through this
connection, [9] provided an elegant way to find δk by using
the concentration theorem for random matrices and proposed
some data-base friendly matrices (binary matrices) satisfying
RIP.

Now, suppose our measurements are noisy (i.e., Y =
ΦSmX+Z, where ∥Z∥L2 = ϵ.). Then, reference [1] showed
that if ΦSm satisfies RIP (3) and X is sufficiently sparse, the
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Fig. 1. A depth one multicast tree with n sources.

following optimization recovers the original signal up to the
noise level:

min ∥X∥L1 (5)
subject to ∥Y −ΦSmX∥L2 ≤ ϵ.

Hence, if X∗ is a solution of (5), then ∥X−X∗∥L2 ≤ βϵ,
where β is a constant. To have this, the original vector X
should be sufficiently sparse. Specifically, [1] showed that, if

δ3k + 3δ4k < 2, (6)

then, the results hold. We refer to the complexity of this
optimization by CXnoisy

cs (m,n).

B. Distributed Compression Background

In this section, we briefly review some prior results in
distributed compression. In Section III, we will use these
results along with compressive sensing results, making a
bridge these two subjects.

Consider the network depicted in Figure 1. This is a depth
one tree network with n sources. Suppose each source i, has
messages referred by Mi, wishes to send to the receiver. To
do this, each source i sends its message with a rate Ri (i.e.,
say mi has m messages of source i. This source maps mi to
{1, 2, ..., 2mRi}.). Let R =

∑n
i=1 Ri. According to Slepian-

Wolf compression ([10]), one needs to have,

R ≥ H(M1,M2, ...,Mn). (7)

By using linear network coding, reference [11] extended
Slepian-Wolf compression for a general multicast problem.
Note that, the proposed decoders in [10] and [11] (a minimum
entropy or a maximum probability decoder) have high com-
plexity ([12]). For a depth one tree network, references [13],
[14], [15], [16], [17] and [18] provide some low complexity
decoding techniques for Slepian-Wolf compression. However,
none of these methods can explicitly provide a trade-off
between the rate and the decoding complexity. For a general
multicast network, it has been shown in [19] that, there is no
separation between Slepian-Wolf compression and network
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coding. For this network, a low complexity decoder for an
optimal compression scheme has not been proposed yet.

III. COMPRESSIVE SENSING AND DISTRIBUTED SOURCE
CODING

In this part, we propose a distributed compression scheme
for correlated sources providing a trade-off between the de-
coding complexity and the compression rate. References [10]
and [11] propose optimal distributed compression schemes
for correlated sources, for depth-one trees and general net-
works, respectively. However, their proposed compression
schemes need to use a minimum entropy or a maximum
probability decoder, which has high complexity ([12]). On the
other hand, compressive sensing provides a low complexity
decoder, by using a convex optimization, to recover a sparse
vector from incomplete and contaminated observations (e.g.,
[1], [2], [3] and [7]). Our aim is to use compressive sensing
over networks to design compression schemes for correlated
sources.

Note that, our proposed techniques can be applied on
different network topologies, with different assumptions and
constraints. Here, to illustrate the main ideas, first we con-
sider a noiseless tree network with depth one and with
correlated sources. Then, in Section III-B, we extend our
techniques to a general multicast network.

A. A one-stage tree with n-correlated sources

Consider the network shown in Figure 1, which is a
one-stage noiseless multicast tree network with n-sources.
First, consider a case where sources are independent. Hence,
the problem reduces to a classical source coding problem.
Say each source is transmitting with a rate Ri. Denote
R =

∑n
i=1 Ri. It is well-known that the following sum-rate

for this network is the minimum required sum-rate:

R ≥
n∑

i=1

H(Mi), (8)

where Mi is the message random variable of source i. Let
us refer to the complexity of its decoder at the receiver as
CXindep(n), since sources are independent.

Now, we consider a case where sources are correlated. We
formulate the correlation of sources as follows:

Definition 1. Suppose µi,t represents a realization of the ith

source message random variable at time t (i.e., a realization
of Mi at time t). Hence, the vector µt = {µ1,t, ..., µn,t} is
the sources’ message vector at time t. We drop the subscript t
when no confusion arises. Suppose sources are correlated so
that there exists a transform matrix under which the sources’
message vector is k-sparse (i.e., there exists a n×n transform
matrix Φ and a k-sparse vector µ′

t such that µt = Φµt
′.). Let

S be the power set of {1, 2, ..., n}, and Sm denote members
of S whose cardinality are m. Suppose ΦSm , defined as in
Section II-A, satisfies RIP (3), where m satisfies (1) for a
given n and k. We have, µt,Sm = ΦSmµt

′, where µt,Sm is
components of µt whose indices belong to Sm. We refer to
these sources as k-sparsely correlated sources.

If we know zero locations of µt
′ and if the transform

matrix is non-singular, by having each subset containing k
sources, the whole vector µt and µt

′ can be computed. Hence,
by the data processing inequality, we have,

H(Mi1 , ...,Mik) + nHb(α) = H(M1, ...,Mn), (9)

for and 1 ≤ i1 < i2 < ... < ik ≤ n where Mij is the
message of source ij . Also, by [2], having m sources, where
m satisfies (1) for a given k and n, allows us to recover the
whole vector µt

′ and therefore, µt. Hence,

H(Mi1 , ...,Mim) = H(M1, ...,Mn). (10)

Example 2. For an example of k-sparsely correlated sources,
suppose each coordinates of µt

′ is zero with probability
1−α, otherwise it is uniformly distributed over {1, 2, ..., 2R}.
Suppose the entries of Φ are independent realizations of
Bernoulli random variables:

Φi,j =

{
1√
m

with prob. 1
2

− 1√
m

with prob. 1
2

. (11)

Thus, as shown in [9], ΦSm satisfies RIP (3). Also, we
have,

H(M1, ...,Mn) = nHb(α) + k(R+ 1)

≈ nHb(α) + kR. (12)

The entropy of each source random variable for large n
can be computed approximately as follows:

H(Mi) ≈ R+
1

2
log(k). (13)

Note that, the individual entropies of k-sparsely correlated
sources are roughly the same. Now, we want to use compres-
sive sensing to have a distributed source coding providing
a trade-off between the compression rate and the decoding
complexity.

We shall show that, if sources are k-sparsely correlated,
if we have m of them at the receiver at each time t, by
using a linear programming, all sources can be recovered
at that time. Hence, instead of sending n correlated sources,
one needs to transmit m of them where m << n. We assume
that the entropies of sources are the same. Hence, each source
transmits with probability γ = m

n . Therefore, by the law of
large numbers, for large enough n, we have m transmitting
sources. For the case of non-equal source entropies, one can
a priori choose m sources with the lowest entropy as the
transmitting sources.

In Table III-A, we compare four different schemes:
• The first scheme which Theorem 3 is about, is called

Sparse Distributed Compression with independent cod-
ing (SDCIC). The idea is to send m sources from
n of them, assuming they are independent (i.e., their
correlation is not used in coding). In this case, at the
receiver, first we decode these m transmitted messages
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TABLE I
COMPARISON OF DISTRIBUTED COMPRESSION METHODS OF

CORRELATED SOURCES

Compression Methods Minimum Min-Cut Rate Decoding Complexity
SDCIC

∑m
j=1 H(Mij ) CXindep(m) + CXnoiseless

cs (m,n)

Slepian-Wolf (SW) H(M1, ...,Mn) CXsw(n)

Combination of SDC and SW H(M1, ...,Mn) CXsw(m) + CXnoiseless
cs (m,n)

Naive Correlation Ignorance
∑n

i=1 H(Mi) CXindep(n)

and then, we use a compressive sensing decoder to
recover the whole sources. The decoding complex-
ity is CXindep(m) + CXnoiseless

cs (m,n). The required
min-cut rate between each receiver and sources is∑m

j=1 H(Mij ).
• In the second scheme referred in Table III-A as the

Slepian-Wolf coding, one performs an optimal source
coding on correlated sources. The required min-cut rate
between sources and the receiver is H(M1, ...,Mn)
which is less than

∑m
j=1 H(Mij ). However, at the

receiver, we need to have a Slepian-Wolf decoder with
complexity CXsw(n).

• One can have a combination of sparse distributed com-
pression and Slepian-Wolf compression. To do this,
instead of n sources, we transmit m of them by using a
Slepian-Wolf coding. The required min-cut rate would
be H(Mi1 , ...,Mim) which by (10), H(M1, ...,Mn) =
H(Mi1 , ...,Mim) ≤

∑m
j=1 H(Mij ). At the receiver,

first we use a Slepian-Wolf decoder with complexity
CXsw(m) to decode the m transmitted sources’ infor-
mation. Then, we use a compressive sensing decoder to
recover the whole sources.

• The fourth method is a naive way of transmitting n
correlated sources so that we have an easy decoder at
the receiver. We call this scheme a Naive Correlation
Ignorance method. In this method, we simply ignore the
correlation in the coding scheme. In this naive scheme,
the required min-cut rate is

∑n
i=1 H(Mi) with a de-

coding complexity equal to CXindep(n). Note that, in
sparse distributed compression with independent coding,
the required min-cut rate is much less than this scheme
(
∑m

j=1 H(Mij ) <<
∑n

i=1 H(Mi)).

The following theorem is about sparse distributed com-
pression with independent coding:

Theorem 3. For a depth one tree network with n-sources,
k-sparsely correlated, the required min-cut rate between the
receiver and sources in sparse distributed compression with
independent coding (SDCIC) is,

R ≥
m∑
j=1

H(Mij ), (14)

where m is the smallest number satisfies (1) for a given n
and k and ij is the index of jth active source. Also, the
decoding complexity of SDCIC method is CXindep(m) +
CXnoiseless

cs (m,n).

Proof: For a given n (number of sources) and k (the
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Fig. 2. A general multicast network with n sources.

sparsity factor), we choose m to satisfy (1). Now, suppose
each source is transmitting its block with probability γ where
γ = m

n . Hence, by the law of large numbers, the probability
that we have m transmitting sources’ blocks goes to one for
sufficiently large n. Without loss of generality, say sources
1, ..., m are transmitting (i.e., active sources) and other
sources are idle. If Ri ≥ H(Mi) for active sources and zero
for idle sources, active sources can transmit their messages
to the receiver and the required min-cut rate between the
receiver and sources would be R ≥

∑m
j=1 H(Mij ). Let

Sm indicate active sources’ indices. First, at the receiver,
we decode these m active sources. The complexity of this
decoding part is CXindep(m) because we did not use their
correlation in the coding scheme. Hence, we have µt,Sm ,
active sources’ messages at time t at the receiver (in this case,
µt,Sm = (µ1,t, ..., µm,t)). Then, by having µt,Sm and using
the sparsity of µt

′, the following optimization can recover
the whole sources:

min ∥µt
′∥L1 (15)

subject to µt,Sm = ΦSmµt
′.

The overall decoding complexity is CXindep(m) +
CXnoiseless

cs (m,n).

B. A General Multicast Network with Correlated Sources

In this section, we extend results of Section III-A to a
general noiseless multicast network. Note that, for a depth
one tree network, references [13], [14], [15], [16], [17] and
[18] provide some low complexity decoding techniques for
Slepian-Wolf compression. However, none of these methods
can explicitly provide a trade-off between the rate and the
decoding complexity. For a general multicast network, it
has been shown in [19] that, there is no separation between
Slepian-Wolf compression and network coding. For this net-
work, a low complexity decoder for an optimal compression
scheme has not been proposed yet. There are few practical
approaches and they rely on small topologies [20]. In this
section, by using compressive sensing, we propose a coding
scheme which provides a trade-off between the compression
rate and the decoding complexity.
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Consider a multicast network shown in Figure 2 which
has n sources and T receivers. If sources are independent,
reference [21] showed that the minimum required min-cut
rate between each receiver and sources is as (8). This rate
can be achieved by using linear network coding over the
network. Reference [11] showed that random linear network
coding can perform arbitrarily closely to this rate bound. Say
CXnc

indep(n) is the complexity of its decoder.
Now, consider a case when sources are correlated. Refer-

ence [11] extended Slepian-Wolf compression result ([10]) to
a multicast network by using network coding. The proposed
decoder is a minimum entropy or a maximum probability
decoder whose complexity is high ([12]). We refer to its
complexity by CXnc

sw(n).
In this section, we consider sources to be k-sparsely

correlated. We want to use compressive sensing along with
network coding to propose a distributed compression scheme
providing a trade-off between the compression rate and the
decoding complexity.

In the following, we compare four distributed compression
methods for a general multicast network:

• In the first scheme, we use sparse distributed compres-
sion with independent coding. With high probability, we
have m active sources. Then, we perform network cod-
ing on these active sources over the network, assuming
they are independent. At the receiver, first we decode
these m active sources and then, by a compressive
sensing decoder, we recover the whole sources. The de-
coding complexity is CXnc

indep(m)+CXnoiseless
cs (m,n).

The required min-cut rate between each receiver and
sources is

∑m
j=1 H(Mij ).

• In the second scheme, we use an extended version
of Slepian-Wolf compression for a multicast network
([22]). Reference [22] considers a vector linear net-
work code that operates on blocks of bits. The re-
quired min-cut rate between sources and the receiver
is H(M1, ...,Mn). At the receiver, one needs to have
a minimum entropy or a maximum probability decoder
with complexity CXnc

sw(n).
• A combination of sparse distributed compression and

Slepian-Wolf compression can provide a trade-off be-
tween the compression rate and the decoding com-
plexity. For example, instead of n sources, one can
transmit m of them by using a Slepian-Wolf coding for
multicast networks. The required min-cut rate would be
H(Mi1 , ...,Mim). At the receiver, first we use a Slepian-
Wolf decoder with complexity CXnc

sw(m) to decode m
active sources. Then, we use a compressive sensing
decoder to recover the whole sources.

• In a naive correlation ignorance method, we simply
ignore the correlation in the coding scheme. In this naive
scheme, the required min-cut rate is

∑n
i=1 H(Mi) with

a decoding complexity equal to CXnc
indep(n).

The following theorem is about sparse distributed com-
pression with independent coding for a multicast network:

Theorem 4. For a general multicast network with n-sources,

SOURCE/NETWORK 

DECODER

CS

DECODER

CS

DECODER

(a)

(b)

CHANNEL DECODER

Fig. 3. A modularized decoder for a) compressive sensing with source
coding, (b) compressive sensing with channel coding.

k-sparsely correlated, the required min-cut rate between each
receiver and sources in sparse distributed compression with
independent coding is,

R ≥
m∑
j=1

H(Mij ), (16)

where m is the smallest number satisfies (1) for a given
n and k. Also, the decoding complexity is CXnc

indep(m) +

CXnoiseless
cs (m,n).

Proof: The proof is similar to the one of Theorem 3.
The only difference is that, here, one needs to perform linear
network coding on active sources over the network without
using the correlation among them. At the receiver, first,
these m active sources’ blocks are decoded (the decoding
complexity of this part is CXnc

indep(m)). Then, a compressive
sensing decoder (15) is used to recover the whole sources.

Remark: In this section, we explained how compressive
sensing can be used with distributed source coding. At
the receiver side, first, we decode the active sources by a
network decoding technique and then, we use a compressive
sensing decoder to recover the whole sources. This high
level modularized decoding scheme of sparse distributed
compression is depicted in Figure 3-a. On the other hand,
when we use compressive sensing for channel coding (which
will be explained in detail in Section IV), we switch these two
decoding modules (as shown in Figure 3-b). In other words,
first, we use a compressive sensing decoder on a noisy signal
to obtain a noisy estimate of the original signal and then, we
use a channel decoder to find the original message from this
noisy estimate.

IV. COMPRESSIVE SENSING AND CHANNEL CODING

In this section, we make a bridge between compressive
sensing, which is more a signal processing technique, and
channel coding. We consider a high-SNR Gaussian point-
to-point channel depicted in Figure 4. We propose a coding
scheme that combines compressive sensing and random chan-
nel coding with a modularized decoder to provide a trade-
off between the capacity loss and the decoding complexity
(i.e., the higher the capacity loss, the lower the decoding
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Fig. 4. A Point-to-Point Gaussian Channel

complexity.). We call this scheme Sparse Channel Coding.
We add intentionally some correlation to transmitted signals
to decrease the decoding complexity. This is an example of
how compressive sensing can be used with channel coding
and could be extended to other types of channels.

Consider a point to point channel with additive Gaussian
noise with noise power N and transmission power constraint
P , shown in Figure 4. Suppose we are in a high SNR regime
(i.e., P

N ≫ 1). The capacity of this channel is,

C ≈ 1

2
log (

P

N
). (17)

An encoding and a decoding scheme for this channel can
be found in [12]. As explained in [12], at the receiver, one
needs to use a m-dimensional maximum likelihood decoder
where m, the code length, is arbitrarily large. We refer to the
complexity of such a decoder as CXml(m). Our aim is to
design a coding scheme to have a trade-off between the rate
and the decoding complexity.

Suppose m is arbitrarily large. Choose n and k to satisfy
(6).

Definition 5. A (2mR,m) sparse channel code for a point-
to-point Gaussian channel with power constraint P satisfies
the following:

• Encoding process: message i from the set
{1, 2, ..., 2mR} is assigned to a m-length vector
Wi, satisfying the power constraint; that is, for each
codeword, we have,

1

m

m∑
j=1

W 2
ij ≤ P, (18)

where Wij is the jth coordinate of codeword Wi.
• Decoding process: the receiver receives Y, a noisy

version of the transmitted codeword Wi (i.e., Y =
Wi +Z, where Z is a Gaussian noise vector with i.i.d.
coordinates with power N ). A decoding function g maps
Y to the set {1, 2, ..., 2mR}. The decoding complexity
is CXml(k) + CXnoisy

cs (m,n).
A rate R is achievable if Pm

e → 0 as m → ∞, where,

Pm
e =

1

2mR

2mR∑
i=1

Pr(g(Y) ̸= i|M = i), (19)

and M represents the transmitted message.

Theorem 6. For a high-SNR Gaussian point-to-point channel
described in Definition 5, the following rate is achievable,
while the decoding complexity is CXml(k)+CXnoisy

cs (m,n):

R =
k

m
C +

n

m
Hb(α) +

k

2m
log(

1

β(1 + δk)
), (20)

where C is the channel capacity (17), α, β and δk are
parameters defined in Section II-A, and Hb(.) is the binary
entropy function.

Before expressing the proof, let us make some remarks:
• if we have (1) (i.e., m/n = ρα log(1/α)), the achievable

rate can be approximated as follows:

R ≈ 1

log(1/α)
C +

1

α log(1/α)
Hb(α) (21)

where α = k/n is the sparsity ratio. The first term of
(21) shows that the capacity loss factor is a log function
of the sparsity ratio. The term 1

α log(1/α)Hb(α) is the rate
gain that we obtain by using compressive sensing in our
scheme. Note that, since the SNR is sufficiently high,
the overall rate would be less than the capacity.

• The complexity term CXml(k) is an exponential func-
tion, while CXnoisy

cs (m,n) is a polynomial.
Proof: We use random coding and compressive sensing

arguments to propose a concatenated channel coding scheme
satisfying (20). First, we explain the encoding part:

• Each message i is mapped randomly to a k-sparse vector
Xi with length n so that its non-zero coordinates are
i.i.d. drawn from N (0, m

k(1+δk)
P ). n is chosen to satisfy

(6), for a given k and m.
• To obtain Wi, we multiply Xi by a m×n matrix (ΦSm)

satisfying the RIP condition (3) (i.e., Wi = ΦSmXi).
We send Wi through the channel.

In fact, it is a concatenated channel coding scheme [23].
The outer layer of this coding is the sparsity pattern of Xi.
The inner layer of this coding is based on random coding
around each sparisty pattern. To satisfy transmission power
constraint P , we generate each non-zero coordinate of Xi

by N (0, m
k(1+δk)

P ). Note that, the encoding matrix ΦSm is
known to both encoding and decoding sides.

At the receiver, we have a noisy version of the transmitted
signal. Suppose message i has been transmitted. Hence, Y =
Wi + Z = ΦSmXi + Z. The decoding part is as follows:

• Since Xi is k-sparse, first, we use a compressive sensing
decoder to find X̃i such that ∥Xi − X̃i∥2L2

≤ βmN , as
follows, where β is the parameter of (5):

min ∥X∥L1 (22)

subject to
1

m
∥Y −ΦSmXi∥2L2

≤ N.

We assume that the complexity of this convex optimiza-
tion is smaller than the one of a maximum likelihood
decoder.

• Since we are in a high-SNR regime, by having X̃i, we
can find the sparsity pattern of Xi. It gives us the outer
layer code of message i. The higher the outer layer code
rate, the higher the required SNR. We shall develop this
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argument with more detail later (26).
• Having the sparsity pattern of Xi, we use a maximum

likelihood decoder in a k-dimensional space (i.e., non-
zero coordinates of Xi) to find non-zero coordinates
of Xi (the inner layer code). The complexity of this
decoder is denoted by CXml(k).

Before presenting the error probability analysis, let us
discuss different terms of (20). Since in our coding scheme,
for each message i, we send a k-sparse signal by sending a
m-length vector, we have the fraction k

m before the capacity
term C. The capacity term C in (20) comes from the inner
layer coding scheme. The term n

mHb(α) comes from the
outer layer coding scheme. Note that, since α is a small
number, Hb(α) is close to one. Also, the ratio n

m depends
on the outer layer code rate. Here, we assumed the SNR
is sufficiently high so that we can use all possible outer
layer codes. The term k

2m log( 1
β(1+δk)

) is because of the
power constraint and the RIP condition. Note that, if one
performs a time-sharing based channel coding, a rate k

mC is
achievable with a decoding complexity CXml(k). By using
the compressive sensing, we obtain additional rate terms
because of the outer layer coding with approximately the
same complexity.

We proceed by the error probability analysis. Define Ξi

as the sparsity pattern of Xi (i.e., Ξij = 0 if Xij = 0,
otherwise, Ξij = 1.). Also, define Ξ̃i as the decoded sparsity
pattern of message i. Without loss of generality, assume that
message 1 was transmitted. Thus, Y = ΦSmX1 +Z. Define
the following events:

E0 = { 1

m

m∑
j=1

W 2
1j > P}

Ei = { 1
n
∥Xi − X̃1∥2L2

≤ βm

n
N}

Ep1 = {Ξ̃1 ̸= Ξ1}. (23)

Hence, an error occurs when E0 occurs (i.e., the power
constraint is violated), or Ep1

occurs (i.e., the outer layer
code is wrongly decoded), or Ec

1 occurs (i.e., the underlying
sparse signal of the transmitted message X1 and its decoded
noisy version X̃1 are in a distance greater than the noise
level), or one of Ei occurs while i ̸= 1. Say M is the
transmitted message (in this case M = 1) and M̂ is the
decoded message. Let E denote the event M ̸= M̂ . Hence,

Pr(E|M = 1) = Pr(E)

= Pr(E0

∪
Ep1

∪
Ec

1

2mR∪
j=2

Ej) (24)

≤ Pr(E0) + Pr(Ep1) + Pr(Ec
1)

+
2mR∑
j=2

Pr(Ej),

by union bounds of probabilities. We bound these proba-
bilities term by term as follows:

• By the law of large numbers, we have Pr(∥X1∥2L2
>

m
1+δk

P+ϵ) → 0 as n → ∞. By using the RIP condition
(3) and with probability one, we have,

∥ΦSmX1∥2L2
≤ (1 + δk)∥X1∥2L2

≤ mP. (25)

Hence, Pr(E0) → 0 as n → ∞.
• After using the compressive sensing decoder mentioned

in (22), we have X̃1 such that 1
n∥X1−X̃1∥2L2

≤ βm
n N .

Suppose this error is uniformly distributed over different
coordinates. We use a threshold comparison to deter-
mine the sparsity pattern Ξ̃1. The probability of error in
determining Ξ̃1 determines how high the SNR should be.
Intuitively, if we use all possible outer layer codes (all
possible sparsity patterns), we should not make any error
in determining the sparsity pattern of each coordinate j
(i.e., Ξ̃1j). Hence, we need sufficiently high SNR for a
given n. On the other hand, if we decrease the outer
layer code rate, the required SNR would be lower than
the case before. Here, to illustrate how the required SNR
can be computed, we assume that we use all possible
sparsity patterns. Say Epj1 is the event of making an
error in determining whether the jth coordinate is zero
or not. We say Ξ̃1j = 0 if Xij < τ . Otherwise, Ξ̃1j = 1.
Hence, for a given threshold τ , we have,

Pr(Epj1 |Ξ1j = 0) = ϕ(
τ√
βm
n N

)

Pr(Epj1 |Ξ1j = 1) = 1− 2ϕ(
τ√

P + βm
n N

)

where ϕ(.) is the cumulative distribution function of a
normal random variable. Hence,

Pr(Ep1) = 1− Pr(Ec
p1
) (26)

= 1−
(
1− ϕ(

τ√
βm
n N

)
)n(1−α)

×
(
2ϕ(

τ√
P + βm

n N
)
)nα

Note that, one can choose τ and P
N large enough to have

Pr(Ep1) arbitrarily small.
• By [2], Pr(Ec

1) is zero.
• At the last step, we need to bound Pr(Ej) for j ̸= 1.

We have,

Pr(Ej) = Pr(Ξj = Ξ1)Pr(Ej |Ξj = Ξ1)

+ Pr(Ξj ̸= Ξ1)Pr(Ej |Ξj ̸= Ξ1)

= αk(1− α)n−kPr(Ej |Ξj = Ξ1).(27)

Note that, Pr(Ej |Ξj ̸= Ξ1) goes to zero in a high
SNR regime. By bounding the noise power of non-zero
coordinates by βmN (the whole noise power) and using
random coding argument in a k dimensional space, we
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have,

Pr(Ej |Ξj = Ξ1)≤̇
1

(1 + 1
β(1+δk)

P
N )

, (28)

where ≤̇ indicates the right hand side is less or equal
than the left one in an exponential rate. Therefore, by
(27) and (28), and doing some manipulations, we have,

P (Ej)≤̇2
−n(Hb(α)+

α
2 log( 1

β(1+δk)
P
N ))

, (29)

for j = 2, ..., 2mR.
Thus, in a sufficiently high SNR regime, by (24) and (29),

we have,

Pm
e = Pr(E) = Pr(E|M = 1) (30)

≤̇ 2mR2
−n(Hb(α)+

α
2 log( 1

β(1+δk)
P
N ))

≤̇ 2
m(R− n

mHb(α)− k
mC− k

2m log( 1
β(1+δk)

))
.

For any given ϵ > 0, we can choose n large enough to
have R ≤ k

mC+ n
mHb(α)+

k
2m log( 1

β(1+δk)
)− ϵ achievable.

V. CONCLUSIONS

In this paper, we demonstrated some applications of
compressive sensing over networks. We made a connection
between compressive sensing and traditional information
theoretic techniques in source coding and channel coding in
order to provide mechanisms to explicitly trade-off between
the decoding complexity and the rate. Although optimal
decoders to recover the original signal compressed by source
coding have high complexity, the compressive sensing de-
coder is a linear or convex optimization. First, we investigated
applications of compressive sensing on distributed compres-
sion of correlated sources. For a depth one tree network,
references ([13]-[18]) provide some low complexity decoding
techniques for Slepian-Wolf compression. However, none of
these methods can explicitly provide a trade-off between the
rate and the decoding complexity. For a general multicast
network, reference [11] extended Slepian-Wolf compression
for a multicast problem. It is showed in [19] that, there is no
separation between Slepian-Wolf compression and network
coding. For this network, a low complexity decoder for an op-
timal compression scheme has not been proposed yet. Here,
by using compressive sensing, we proposed a compression
scheme for a family of correlated sources with a modularized
decoder providing a trade-off between the compression rate
and the decoding complexity. We called this scheme Sparse
Distributed Compression. We used this compression scheme
for a general multicast network with correlated sources. Here,
we first decoded some of the sources by a network decoding
technique and then, we used a compressive sensing decoder
to obtain the whole sources.

Next, we investigated applications of compressive sensing
on channel coding. We proposed a coding scheme that
combines compressive sensing and random channel coding
for a high-SNR point-to-point Gaussian channel. We called

this scheme Sparse Channel Coding. Our coding scheme pro-
vides a modularized decoder to have a trade-off between the
capacity loss and the decoding complexity. The idea is to add
intentionally some correlation to transmitted signals in order
to decrease the decoding complexity. At the decoder side, first
we used a compressive sensing decoder to get an estimate of
the original sparse signal, and then we used a channel coding
decoder in the subspace of non-zero coordinates.
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