Operating Systems:
Deadlocks

Shankar

April 14, 2021



Outline

ARl B

Deadlocks Overview

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection & Recovery
Handling Deadlocks in Reality




What are Deadlocks overview

m Deadlock: Set of processes Py, ---, Py deadlocked iff

= every P; is blocked, and
= every P; is waiting for an event doable only by some P;
// event: release, signal, V, interrupt enable, ...

m Deadlock freedom: desired property of multi-threaded programs

= ensuring this is hard for a general multi-threaded program
= but easier for a resource-manager system examined next

m Aside: Livelock is deadlock without blocking
m processes are in fruitless loops
= harder to detect (unless loops are very localized)
= deadlock can be livelock at a lower (spin-lock) level



Resource Manager System overview

m System = resource manager -+ user processes

m processes: request resources, get them, release them
» RES: set of all resources, initially held by manager

w alloc(p): resources currently held by (user process) p
= avail: resources currently held by manager

m Function req(p, res): request by p for resources res

m call only if res+ alloc(p) C RES
= blocking call
m p gets res at return; happens only if res C avail

m Function rel(p, res): release by p of res

= call only if res C alloc(p)
= nonblocking

m System can deadlock without further constraints
m 3 approaches: prevention, avoidance, detection/recovery



Outline

Al B

Deadlocks Overview

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection & Recovery
Handling Deadlocks in Reality




Deadlock Prevention Approach prevention

m Impose further constraints on req calls to preclude deadlock
= no further constraints on req returns

m Step 1: identify a necessary condition for deadlock, eg:

» resource that is non-shareable and non-preemptable
= process holds a resource and requests more resources
= cycle of processes: each requesting a resource held by the next

m Step 2: constrain req calls to preclude a necessary condition

m Henceforth assume non-shareable/non-preemptable resources

m Examples of deadlock prevention rules
= req(p, res) can be called only when alloc(p) is empty

= Impose a total ordering on all resources in RES
req(p, res) can be called only when res > max(alloc(p))



Outline

ARl o B

Deadlocks Overview

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection & Recovery
Handling Deadlocks in Reality




Deadlock Avoidance Approach avoidance

m Deadlock avoidance:
= impose further constraints on req returns to preclude deadlock
= so req(p, res) return may wait even if res C avail
= may also involve weak constraints on req calls
= eg, limit on total resources that a process can hold

= can allow more parallelism than deadlock prevention
= burden is on manager (unlike deadlock prevention)

m Classical deadlock avoidance solution uses the “Banker’s
algorithm”



Deadlock Avoidance Solution -1 avoidance

m Resources: organized into types 1,--- M
m Tot = [Toty,- -, Toty] // total # of each resource type
m Processes: 1,--- N
m Max;: [Max;1,- - - Max; m] // max total need of process i
m Variables
w alloc;: [alloc;y, - -, alloc; m] /! resources held by process i
w avail: [avail, - -, availy] /! resources held by manager
m req;: [reqii,-- -, reqim] // process i's ongoing request

» need;: Max; — alloc; // process i's max possible request



Deadlock Avoidance Solution - 2 avoidance

m Assumption: If a process i always gets the resources it asks for, it
eventually releases all its resources

= So if need; < avail and the manager grants only requests of /,
then it eventually gets alloc; back

m A state is safe iff it has a safe sequence

m A safe sequence is a permutation iy, - - - , iy of process ids s.t.
= need;, < avail
= need;, < avail + alloc;,
u

» need;, < avail + alloc;, + --- + alloc;,_,

m A safe state is not deadlocked and cannot lead to a deadlock



Deadlock Avoidance Solution - 2 avoidance

m Banker's Algorithm: determines whether or not a state is safe

= Variables
xavail < avail // temporary avail
doneli] < false, for i=1,--- /N // true iff i accounted for

= While (there is an / s.t.
doneli] = false and need; < xavail)
xavail < xavail + alloc;
doneli] + true

= Safe iff done[i] = true for every i

m Return req(p, res) only if the resulting state would be safe,
ie, apply Banker's algorithm to the current state with
» avail decreased by res
» alloc; increased by res



Banker's Algorithm Example

m 5 processes, 3 resource types

m Tot: [10 5 7]
m State
Max alloc
P1 753 010
P2 322 200
P3 902 302
P4 222 211
P5 |433 002

m Safe?

avoidance



Banker's Algorithm Example

m 5 processes, 3 resource types

m Tot: [10 5 7]
m State
Max alloc need
P1 753 010 743
P2 322 200 122
P3 902 302 600
P4 222 211 011
P5 |433 002 431

m Safe?

avoidance



Banker's Algorithm Example

m 5 processes, 3 resource types

m Tot: [10 5 7]
m State
Max alloc need
P1 753 010 743
P2 322 200 122
P3 902 302 600
P4 222 211 011
P5 |433 002 431

m Safe?

avoidance




Banker's Algorithm Example

m 5 processes, 3 resource types

m Tot: [10 5 7]
m State
Max alloc need
P1 | 753 010 743
P2 322 200 122
P3 902 302 600
P4 | 222 211 011
P5 433 002 431
m Safe? VYes. Safe sequence: P2, P4, P1, P3

avoidance

done avail
332

P2 532
P4 743
P5 745
P1 755
P3 1057




Outline

Al B

Deadlocks Overview

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection & Recovery
Handling Deadlocks in Reality




Deadlock Detection and Recovery detection-recovery

m Do not constrain req calls or returns

m Instead periodically check for deadlock.
If yes, choose a process i and forceably release alloc;

m Deadlock detection algorithm for M resource types
// variation of Baker's algorithm

= Variables
xavail < avail // temporary avail
doneli] « false, for i=1,--- N // true iff i accounted for

= While (there is an / s.t.
doneli] = false and req; < xavail)
xavail < xavail + alloc;
doneli] + true

w If done[i] = true for every i, then no deadlock.
Otherwise, processes whose done is false are in a deadlock.



Outline

ARl B

Deadlocks Overview

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection & Recovery
Handling Deadlocks in Reality




What happens in real-life reality

m Resources are increasingly shareable

w disks (vs tapes)
= demand-paging (vs entire process space in physical memory)
= virtualization of everything

m Hence livelock (or thrashing) is more common than deadlock
m Hence deadlock prevention/avoidance/detection is rarely used

m Instead, if system “appears” to be in deadlock (or livelock),
kill and/or restart processes or entire system



	Deadlocks Overview
	Deadlock Prevention
	Deadlock Avoidance
	Deadlock Detection & Recovery
	Handling Deadlocks in Reality

