
Operating Systems:

Deadlocks

Shankar

April 14, 2021



Outline overview

1. Deadlocks Overview

2. Deadlock Prevention

3. Deadlock Avoidance

4. Deadlock Detection & Recovery

5. Handling Deadlocks in Reality



What are Deadlocks overview

Deadlock: Set of processes P1, · · · , PN deadlocked i�

every Pi is blocked, and
every Pi is waiting for an event doable only by some Pj

// event: release, signal, V, interrupt enable, ...

Deadlock freedom: desired property of multi-threaded programs

ensuring this is hard for a general multi-threaded program
but easier for a resource-manager system examined next

Aside: Livelock is deadlock without blocking

processes are in fruitless loops
harder to detect (unless loops are very localized)
deadlock can be livelock at a lower (spin-lock) level



Resource Manager System overview

System = resource manager + user processes

processes: request resources, get them, release them
RES : set of all resources, initially held by manager
alloc(p): resources currently held by (user process) p
avail : resources currently held by manager

Function req(p, res): request by p for resources res

call only if res + alloc(p) ⊆ RES
blocking call
p gets res at return; happens only if res ⊆ avail

Function rel(p, res): release by p of res

call only if res ⊆ alloc(p)
nonblocking

System can deadlock without further constraints

3 approaches: prevention, avoidance, detection/recovery



Outline prevention

1. Deadlocks Overview

2. Deadlock Prevention

3. Deadlock Avoidance

4. Deadlock Detection & Recovery

5. Handling Deadlocks in Reality



Deadlock Prevention Approach prevention

Impose further constraints on req calls to preclude deadlock

no further constraints on req returns

Step 1: identify a necessary condition for deadlock, eg:

resource that is non-shareable and non-preemptable
process holds a resource and requests more resources
cycle of processes: each requesting a resource held by the next

Step 2: constrain req calls to preclude a necessary condition

Henceforth assume non-shareable/non-preemptable resources

Examples of deadlock prevention rules

req(p, res) can be called only when alloc(p) is empty

Impose a total ordering on all resources in RES
req(p, res) can be called only when res > max(alloc(p))



Outline avoidance

1. Deadlocks Overview

2. Deadlock Prevention

3. Deadlock Avoidance

4. Deadlock Detection & Recovery

5. Handling Deadlocks in Reality



Deadlock Avoidance Approach avoidance

Deadlock avoidance:

impose further constraints on req returns to preclude deadlock

so req(p, res) return may wait even if res ⊆ avail

may also involve weak constraints on req calls

eg, limit on total resources that a process can hold

can allow more parallelism than deadlock prevention
burden is on manager (unlike deadlock prevention)

Classical deadlock avoidance solution uses the �Banker's
algorithm�



Deadlock Avoidance Solution � 1 avoidance

Resources: organized into types 1, · · · ,M
Tot = [Tot1, · · · ,TotM ] // total # of each resource type

Processes: 1, · · · ,N
Maxi : [Maxi ,1, · · ·Maxi ,M ] // max total need of process i

Variables

alloci : [alloci ,1, · · · , alloci ,M ] // resources held by process i

avail : [avail1, · · · , availM ] // resources held by manager

reqi : [reqi ,1, · · · , reqi ,M ] // process i 's ongoing request

needi : Maxi − alloci // process i 's max possible request



Deadlock Avoidance Solution � 2 avoidance

Assumption: If a process i always gets the resources it asks for, it
eventually releases all its resources

So if needi ≤ avail and the manager grants only requests of i ,
then it eventually gets alloci back

A state is safe i� it has a safe sequence

A safe sequence is a permutation i1, · · · , iN of process ids s.t.

needi1 ≤ avail
needi2 ≤ avail + alloci1
...
neediN ≤ avail + alloci1 + · · ·+ allociN−1

A safe state is not deadlocked and cannot lead to a deadlock



Deadlock Avoidance Solution � 2 avoidance

Banker's Algorithm: determines whether or not a state is safe

Variables

xavail ← avail // temporary avail
done[i ] ← false, for i = 1, · · · ,N // true i� i accounted for

While (there is an i s.t.
done[i ] = false and needi ≤ xavail)

xavail ← xavail + alloci
done[i ] ← true

Safe i� done[i ] = true for every i

Return req(p, res) only if the resulting state would be safe,
ie, apply Banker's algorithm to the current state with

avail decreased by res
alloci increased by res



Banker's Algorithm Example avoidance

5 processes, 3 resource types

Tot: [10 5 7]

State

Max
P1 7 5 3
P2 3 2 2
P3 9 0 2
P4 2 2 2
P5 4 3 3

alloc
0 1 0
2 0 0
3 0 2
2 1 1
0 0 2

Safe?



Banker's Algorithm Example avoidance

5 processes, 3 resource types

Tot: [10 5 7]

State

Max
P1 7 5 3
P2 3 2 2
P3 9 0 2
P4 2 2 2
P5 4 3 3

alloc
0 1 0
2 0 0
3 0 2
2 1 1
0 0 2

need
7 4 3
1 2 2
6 0 0
0 1 1
4 3 1

Safe?



Banker's Algorithm Example avoidance

5 processes, 3 resource types

Tot: [10 5 7]

State

Max
P1 7 5 3
P2 3 2 2
P3 9 0 2
P4 2 2 2
P5 4 3 3

alloc
0 1 0
2 0 0
3 0 2
2 1 1
0 0 2

need
7 4 3
1 2 2
6 0 0
0 1 1
4 3 1

avail
3 3 2

Safe?



Banker's Algorithm Example avoidance

5 processes, 3 resource types

Tot: [10 5 7]

State

Max
P1 7 5 3
P2 3 2 2
P3 9 0 2
P4 2 2 2
P5 4 3 3

alloc
0 1 0
2 0 0
3 0 2
2 1 1
0 0 2

need
7 4 3
1 2 2
6 0 0
0 1 1
4 3 1

done avail
3 3 2

P2 5 3 2
P4 7 4 3
P5 7 4 5
P1 7 5 5
P3 10 5 7

Safe? Yes. Safe sequence: P2, P4, P1, P3



Outline detection-recovery

1. Deadlocks Overview

2. Deadlock Prevention

3. Deadlock Avoidance

4. Deadlock Detection & Recovery

5. Handling Deadlocks in Reality



Deadlock Detection and Recovery detection-recovery

Do not constrain req calls or returns

Instead periodically check for deadlock.
If yes, choose a process i and forceably release alloci

Deadlock detection algorithm for M resource types
// variation of Baker's algorithm

Variables

xavail ← avail // temporary avail
done[i ] ← false, for i = 1, · · · ,N // true i� i accounted for

While (there is an i s.t.
done[i ] = false and reqi ≤ xavail)

xavail ← xavail + alloci
done[i ] ← true

If done[i ] = true for every i , then no deadlock.
Otherwise, processes whose done is false are in a deadlock.



Outline reality

1. Deadlocks Overview

2. Deadlock Prevention

3. Deadlock Avoidance

4. Deadlock Detection & Recovery

5. Handling Deadlocks in Reality



What happens in real-life reality

Resources are increasingly shareable

disks (vs tapes)
demand-paging (vs entire process space in physical memory)
virtualization of everything

Hence livelock (or thrashing) is more common than deadlock

Hence deadlock prevention/avoidance/detection is rarely used

Instead, if system �appears� to be in deadlock (or livelock),
kill and/or restart processes or entire system


	Deadlocks Overview
	Deadlock Prevention
	Deadlock Avoidance
	Deadlock Detection & Recovery
	Handling Deadlocks in Reality

