Spin Locks from Read-Write Atomicity

Shankar

October 29, 2013
Outline

Critical Section: Problem and Solutions
Spin Lock from Peterson solution
Obtaining N-user lock given 2-user locks
Spin Lock from Bakery solution
Given program with
- threads 0, ⋯, N−1 that execute concurrently
- parts of the program designated as critical sections (CSs)

To obtain entry and exit code around each CS so that
- at any time there is at most one thread in all of the CSs
- any thread in entry code eventually enters its CS
 provided no thread stays in a CS forever
- code requires only read-write atomicity
 - no read-modify-write atomicity (e.g., no test&set)
Any solution yields a lock requiring only read-write atomicity
- lock definition: variables of CS solution
- lock acquire body: entry code
- lock release body: exit

Two of the simplest solutions
- Peterson algorithm: $N = 2$
- Bakery algorithm: arbitrary N

We will obtain locks from these two solutions

Terminology
- thread is eating if it holds the lock
- " " hungry if it is acquiring the lock
- " " thinking otherwise
Outline

Critical Section: Problem and Solutions
Spin Lock from Peterson solution
Obtaining N-user lock given 2-user locks
Spin Lock from Bakery solution
Peterson Lock

- **Threads 0 and 1**
- **Shared variables**
 - `flag[0] ← false` // true iff thread 0 is non-thinking
 - `flag[1] ← false` // true iff thread 1 is non-thinking
 - `turn ← 0 or 1` // identifies winner in case of conflict

- **acq():**
 - `j ← 1 - myid` // j is other thread’s id
 - `s1: flag[myid] ← true`
 - `s2: turn ← j`
 - `s3: while (flag[j] and turn = j) skip`

- **rel():**
 - `flag[myid] ← false`
Suppose thread \(\text{i} \) leaves s3 at time \(t_0 \).
Need to show that thread \(\text{j} \) is not eating at \(t_0 \).

- Only two ways that \(\text{i} \) leaves s3.

- Case 1: \(\text{i} \) leaves s3 because \(\text{flag[j]} \) is false.
 Then at \(t_0 \), \(\text{j} \) is thinking and so does not hold the lock.

- Case 2: \(\text{i} \) leaves s3 because \(\text{flag[j]} \) is true and turn is \(\text{i} \).
 Thread \(\text{i} \) executed s2 at some \(t_1 \) (\(< t_0 \)), setting turn to \(\text{j} \).
 Because turn is \(\text{i} \) at \(t_0 \), \(\text{j} \) executed s2 at some \(t_2 \) in \([t_1, t_0] \).
 Hence \(\text{flag[i]} \) is true and turn is \(\text{i} \) during \([t_2, t_0] \).
 Hence \(\text{j} \) is stuck in s3.
Suppose \(i\) calls \(\text{acq}(i)\) and is in \(s3\) at time \(t_0\).

Need to show that \(i\) eventually leaves \(s3\).

\(C_1\): Suppose turn is \(i\) at \(t_0\).
 It remains so. Hence \(i\) eventually leaves \(s3\).

\(C_2\): Suppose \(\text{flag}[j]\) is false at \(t_0\).
 Eventually \(i\) leaves \(s3\) or \(j\) does \(s1; s2\) \((\rightarrow C_1)\).

\(C_3\): Suppose \(\text{flag}[j]\) is true and turn is \(j\) at \(t_0\).
 So \(j\) is eating or hungry.

\(C_{3a}\): If \(j\) is eating, it eventually stops eating \((\rightarrow C_2 \rightarrow C_1)\)

\(C_{3b}\): If \(j\) is at \(s2\), it eventually does \(s2\) \((\rightarrow C_1)\).

\(C_{3c}\): If \(j\) is in \(s3\), then turn remains \(j\), so \(j\) eventually eats \((\rightarrow C_{3a} \rightarrow C_2 \rightarrow C_1)\)

So eventually \(C_1\) holds, which leads to \(i\) eating.
Outline

Critical Section: Problem and Solutions
Spin Lock from Peterson solution
Obtaining N-user lock given 2-user locks
Spin Lock from Bakery solution
Obtaining a N-user lock from 2-user locks

- Define a binary tree of (at least) N leaf nodes.
- Associate a distinct 2-user lock with every non-leaf node.
- Associate the N users with distinct leaf nodes.

- A thread acquires the N-user lock by acquiring in order the 2-user locks on the path from my leaf to root

- A thread releases the N-user lock by releasing the acquired 2-user locks (in any order)

4-user lock example
- thread 0 acquires x_1, x_0
- thread 2 acquires x_2, x_0

But there are better ways to implement N-user locks
Outline

Critical Section: Problem and Solutions
Spin Lock from Peterson solution
Obtaining N-user lock given 2-user locks
Spin Lock from Bakery solution
Bakery Solution: Approach

- Threads 0, ⋯, N-1
- Share variables num[0], ⋯, num[N-1], initially 0
 - num[i] is 0 if i thinking, else > 0; in conflict, smaller num wins

- Lock acquire: thread i does two scans of the nums
 - s1: set num[i] to a value higher than other nums
 - s2: wait at each num[j] until num[j] is 0 or greater than num[i]

- Lock release: thread i zeroes num[i]

- This works if s1 is atomic, but not with read-write atomicity.

- Next
 - define a “XBakery” lock based on the above
 - show how it fails with read-write atomicity
 - show how to fix it, resulting in the Bakery lock
X Bakery Lock

- **Lock:**

 \[\text{num}[0..N-1] \leftarrow [0, \ldots, 0] \]

- **acq():**

 \[\text{s1: num[myid]} \leftarrow \max(\text{num}[0], \ldots, \text{num}[N-1]) + 1 \]

 for (p in 0..N-1)

 \[\text{s2: do} \]

 \[x \leftarrow \text{num}[p] \]

 while (x = 0 or x < \text{num[myid]}) skip

- **rel():**

 \[\text{num[myid]} \leftarrow 0 \]
XKakery Lock with s1 atomic

- Define
 - Q: hypothetical queue of ids of non-thinking threads in increasing order
 - i joins Q when thread i executes $s1$
 - i leaves Q when thread i executes rel()

- i is ahead of j: $0 < \text{num}[i] < \text{num}[j]$ holds
- i has passed j: i is eating or i is in s2 with $i.p > j$

- Properties
 - arrival to Q joins at tail // coz s1 is atomic, right?
 - threads in Q have distinct nums """

 - if i is ahead of j then j cannot pass i
 - so only the thread at the head of Q can eat

 - if i is ahead of j then i eventually passes j
 - so the thread at the head of Q will eventually eat
X Bakery Lock with read-write atomicity

- X Bakery lock does not work if only reads and writes are atomic.

- Flaw 1
 - threads i and j enter s1 simultaneously
 - each reads the other's num before either updates its num
 - hence num[i] equals num[j] and both threads are in s2
 - each thread passes the other, both acquire the lock.

- Flaw 2
 - threads i, j, k enter s1 simultaneously
 - i completes s1 except for updating num[i], to say x
 - j completes s1, setting num[j] to x
 - k completes s1, setting num[k] to $x + 1$
 - k enters s2, passes i (because num[i] is 0)
 - i completes s1, setting num[j] to x
 - i enters s2 and passes k (because num[k] > num[i])
 - i and j can now both acquire the lock
Fixing XBakery for read-write atomicity

Fixing flaw 1

- use thread ids to break ties
- let \([\text{num}[i],i] < [\text{num}[j],j]\) denote
 \[\text{num}[i] < \text{num}[j] \text{ or } (\text{num}[i] = \text{num}[j] \text{ and } i < j)\]

Fixing flaw 2

- introduce booleans choosing\([0], \cdots, \text{choosing}[N-1]\)
 such that choosing\([i]\) true if \(i\) in \(s1\)
- in \(s2\), thread \(j\) reads \(\text{num}[i]\) only after finding choosing\([i]\) false
- so if \(\text{num}[i]\) changes after \(j\) reads it, it is because of \(i\)
 executing \(s1\) after \(j\) left \(s1\).
- so \(\text{num}[i]\) will be higher than \(\text{num}[j]\), so \(i\) cannot pass \(j\)
Bakery Lock

- **Lock:**
  ```
  choosing[0..N-1] ← false
  num[0..N-1] ← 0
  ```

- **acq():**
  ```
  t1: choosing[myid] ← true
  t2: num[myid] ← max(num[0], ..., num[N-1]) + 1
  t3: choosing[myid] ← false

  for (p in 0..N-1)
  t4: while (choosing[p]) skip
  t5: do
      x ← num[p]
      while (x ≠ 0 and [x,p] < [num[myid], myid])
  ```

- **rel():**
  ```
  num[myid] ← 0
  ```
Bakery Lock Analysis: Definitions

- Define

- **i is choosing**: choosing\[i\] is true (ie, i on t2,t3)

- **j is a peer of i**:
 - i and j are non-thinking
 - their choosing intervals overlapped
 - j is still choosing

- **Q**: hypothetical queue of ids of non-thinking non-choosing threads in increasing [num,id] order

 // “non-choosing” simply makes the argument cleaner: once a thread enters Q, it is nobody’s peer (but it can have peers)

- **i is ahead of j**: \([0,\cdot] < [\text{num}[i],i] < [\text{num}[j],j]\) holds

- **i has passed j**: i is eating or i is in t4..t5 with i.p > j
Bakery Lock Analysis: Properties

- While thread i is in Q
 - set of its peers keeps decreasing // choosing is non-blocking
 - only a peer can join Q ahead of i
 - so at most $N-1$ threads can join Q ahead of i

- When thread i reads num[j] in $t5$
 - j is not currently a peer of i
 // j not choosing, or started choosing after i finished choosing
 - so i may pass j based on an unstable num[j]
 but j will not pass i // coz num[j] will exceed num[i]

- only the head eats // coz i passes j only if i is ahead of j

- every hungry i eventually eats
 - eventually i has no peers // coz choosing is non-blocking
 - after this, no thread joins ahead of i, the head eventually eats,
 so i eventually becomes the head and eats