
Multi-Threaded Programs

Shankar

September 21, 2018



Multi-threaded programs

Multiple threads executing concurrently in the same address space

Threads interact by reading and writing shared memory

eg: threads u and v read/write a structure (memory area) x

Requires synchronization of threads

u should wait to access x while v is writing x
u should wait to �add� to x while x is �full�

Canonical synchronization problems

mutual-exclusion, readers-writers, producer-consumer, ...

Standard synchronization constructs

locks, conditions, semaphores, ...

Goal: solve synchro problems using standard synchro constructs



Outline lock, cv, sem

Locks, condition variables, semaphores

Await-structured program

Achieving priority for waiting threads

Bounded Bu�er

Readers-Writers

Read-write Locks



Locks lock, cv, sem

Lock operations: acquire and release

lck ← Lock() // de�ne a lock

lck.acq() // acquire the lock; blocking

call only if caller does not hold lck
returns only when no other thread holds lck

lck.rel() // release the lock; non-blocking

call only if caller holds lck

Weak lock: lck.acq() returns if lock is continuously free

Strong lock: lck.acq() returns if lock is repeatedly free
// even if only intermittently free



Condition variables lock, cv, sem

Condition variable operations: wait, signal and signal_all

A condition variable is associated with a lock

cv ← Condition(lck) // condition variable associated with lck

cv.wait() // wait on cv; blocking

call only if caller holds lck
atomically release lck and wait on cv
when awakened: acquire lck and return

cv.signal() // signal cv; non-blocking

call only if caller holds lck
wake up a thread (if any) waiting on cv

cv.signal_all() // wake up all threads waiting on cv

lck.acq() does not give priority to threads coming from cv.wait()



Semaphores lock, cv, sem

Semaphore: variable with a non-negative integer count

Semaphore operations: P() and V()

sem ← Semaphore(N) // de�ne semaphore with count N (≥ 0)

sem.P() // blocking

wait until sem.count > 0 then decrease sem.count by 1; return
checking sem.count> 0 and decrementing are one atomic step

sem.V() // non-blocking

atomically increase sem.count by 1; return

V() does not give priority to waiting threads

Semaphore can be strong or weak (just like a lock)



Outline awaits

Locks, condition variables, semaphores

Await-structured program

Achieving priority for waiting threads

Bounded Bu�er

Readers-Writers

Read-write Locks



Awaits awaits

Standard synchro constructs (ie, lock, cv, sem) are low level

High-level construct: await (B) {S} // await B : S

if B holds execute S , all in one atomic step
if B does not hold, wait
B has no side e�ect

Weak await: does S if B holds continuously

Strong await: does S if B holds repeatedly // even if intermittent

atomic {S} // short for await (true) {S}

A program using awaits is

easier to understand than one using std synchro constructs
can be transformed to one using std synchro constructs
often provides a convenient intermediate program



Await-structured program awaits

We say code chunks S and T in a program con�ict if

a thread can write to a memory area
another thread can simultaneously read/write the same area

This is a dynamic (not textual) notion

S and T can update the same location but be con�ict-free
if two threads cannot execute them simultaneously

S and T can be the same code chunk

S con�icts with itself if it writes to a global location x
and two threads can execute S simultaneously

Await-structured program:

awaits are the only synchronization constructs
all the code outside the awaits is con�ict-free



Example await-structured program awaits

Program P0:

x, y: global int variables; initially 0

up(), down() // callable by multiple threads simultaneously

up():
int z
await (x < 100):

x ← x+1
z ← x

return 2*z

down():
int z
await (x > 0):

x ← x-1
z ← x

return 2*z



P0 → lock-cv program P1 awaits

Program P1:

x, y // as in P0
lck ← Lock()
cvNF ← Condition(lck) // for guard (x < 100)
cvNE ← Condition(lck) // for guard (x > 0)

up():
int z
lck.acq()
while (not x < 100):

cvNF.wait()
x ← x + 1
z ← x
cvNE.signal()
lck.rel()
return 2*z

down():
int z
lck.acq()
while (not x > 0):

cvNE.wait()
x ← x - 1
z ← x
cvNF.signal()
lck.rel()
return 2*z



P0 → lock-cv program P2 awaits

Program P2:

x, y // as in P0
lck ← Lock()
cv ← Condition(lck) // for both guards

up():
int z
lck.acq()
while (not x < 100):

cv.wait()
x ← x + 1
z ← x
cv.signal_all()
lck.rel()
return 2*z

down():
int z
lck.acq()
while (not x > 0):

cv.wait()
x ← x - 1
z ← x
cv.signal_all()
lck.rel()
return 2*z



P0 → semaphore program P3 (via P1) awaits

Program P3:
x, y // as in P1
mutex ← Semaphore(1) // for lck
gateNF ← Semaphore(0) // for cvNF
gateNE ← Semaphore(0) // for cvNE

up():
int z
mutex.P()
while (not x < 100)

mutex.V()
gateNF.P()
mutex.P()

x ← x + 1
z ← x
gateNE.V()
mutex.V()
return ← 2*z

down():
int z
mutex.P()
while (not x > 0)

mutex.V()
gateNE.P()
mutex.P()

x ← x - 1
z ← x
gateNF.V()
mutex.V()
return ← 2*z



Outline awaits→ sem

Locks, condition variables, semaphores

Await-structured program

Achieving priority for waiting threads

Bounded Bu�er

Readers-Writers

Read-write Locks



Method: Await→ Sem priority for waiting awaits→ sem

Await-structured program with distinct await guards B1, · · · , BN

Want an equivalent semaphore program such that processes stuck
in an await have higher priority than processes arriving freshly to
the await

Solution:

Semaphores mutex and gate1, · · · , gateN // as before
After executing the update of an await

do mutex .V() if no Bi holds and has waiting processes
o/w select one such Bi and do gatei .V ()
(do not mutex .V())



Method: Await→ Sem priority for waiting awaits→ sem

Await-structured program with distinct await guards B1, · · · , BN

mutex ← Semaphore(1)

For every Bi

gatei ← Semaphore(0) // to wait for Bi

nwi ← 0 // number of processes waiting at gatei

Replace each await (Bi) Si by
mutex.P()
if (not Bi)

nwi+ +; mutex.V(); gatei.P(); nwi- -
Si

for k in 1, · · · , N
if (Bk and nwk > 0)

gatek.V()
return

mutex.V()



Applying method to program P0 awaits→ sem

Program P4:
x, y, mutex, gateNF, gateNE // as in P2
nwNF, nwNE: initially 0 // # waiting on gateNF, gateNE

up():
int z
mutex.P()
if (not x < 100)

nwNF + +
mutex.V(); gateNF.P()
nwNF - -

x ← x+1
z ← x
if x > 0 and nwNE > 0

gateNE.V()
else

mutex.V()
return 2*z

down():
int z
mutex.P()
if (not x > 0)

nwNE + +
mutex.V(); gateNE.P()
nwNE - -

x ← x - 1
z ← x
if x < 100 and nwNF > 0

gateNF.V()
else

mutex.V()
return 2*z



Outline bounded bu�er

Locks, condition variables, semaphores

Await-structured program

Achieving priority for waiting threads

Bounded Bu�er

Readers-Writers

Read-write Locks



Bounded Bu�er Problem bounded bu�er

Given BB // has no synchronization

buf: bu�er of capacity N items
num: number of items in buf
add(x): add item x to buf; non-blocking
rmv(): return an item from buf; non-blocking

Obtain enQ(x) and deQ() such that

callable by multiple threads simultaneously // safety
enQ(x) calls add(x) once, waiting if buf is full // " "
deQ() calls rmv() once, waiting if buf is empty // " "
at most one add() or rmv() ongoing at any time // " "

if buf not full and at least one enQ() ongoing,
eventually an enQ() returns // progress
if buf not empty and at least one deQ() ongoing,
eventually a deQ() returns // " "



Solution using Awaits bounded bu�er

Program BB0:

buf, num, add(x), rmv() // as in BB

enQ(x):
await (num < N):

add(x)
return

deQ():
await (num > 0):

tmp ← rmv()
return tmp

awaits with weak progress adequate to achieve desired progress
(do not require progress for every waiting enQ or deQ)



Program BB0 → Lock-cv program bounded bu�er

Program BB1

buf, num, add(x), rmv() // as in BB0
lck: lock
cvNF, cvNE: cond vars // not-full, not-empty

enQ(x):
lck.acq()
while (num = N):

cvNF.wait()
add(x)
cvNE.signal()
if num < N:

cvNF.signal()
lck.rel()
return

deQ():
lck.acq()
while (num = 0):

cvNE.wait()
tmp ← rmv()
cvNF.signal()
if num > 0:

cvNE.signal()
lck.rel()
return tmp

Is red code needed?



Program BB0 → semaphore program bounded bu�er

Program BB2:

buf, num, add(x), rmv() // as in BB0
Semaphore(1) mutex
Semaphore(0) gateNF, gateNE
nwNF, nwNE: initially 0

enQ(x):
mutex.P()
while num = N:

nwNF + +
mutex.V(); gateNF.P()
nwNF - -

add(x)
if num > 0 and nwNE > 0:

gateNE.V()
else mutex.V()
return

deQ():
mutex.P()
while num = 0:

nwNE + +
mutex.V(); gateNE.P()
nwNE - -

tmp ← rmv()
if x < 100 and nwNF > 0:

gateNF.V()
else mutex.V()
return tmp



Non-standard solution using sempahores bounded bu�er

Program BB3:

buf, num, add(x), rmv() // as in BB
Semaphore(1) mutex
Semaphore(N) nSpace
Semaphore(0) nItem

enQ(x):
nSpace.P()
mutex.P()
add(x)
mutex.V()
nItem.V()
return

deQ():
nItem.P()
mutex.P()
tmp ← rmv()
mutex.V()
nSpace.V()
return tmp

Cute. But not adaptable.



Bounded Bu�er with variable-size items bounded bu�er

Like the bounded-bu�er except
buf has a capacity of N bytes
num: indicates available bytes in buf
add(x,k): add item x of size k bytes
rmv(k): return an item of size k bytes

Previous await-structured solution BB0 is easily adapted

enQ(x,k):
await (num ≤ N - k)

add(x,k)

deQ(k):
await (num ≥ k)

tmp ← rmv(k)
return tmp

Can transform above to using standard synch constructs
Exercise: can you adapt program BB3 to solve this



Outline reader-writer

Locks, condition variables, semaphores

Await-structured program

Achieving priority for waiting threads

Bounded Bu�er

Readers-Writers

Read-write Locks



Readers-Writers Problem reader-writer

Given non-blocking functions read(), write()

Obtain functions cread(), cwrite() such that

1 each is callable by multiple threads simultaneously
2 cread() calls read() once, waits if ongoing write()
3 cwrite calls write() once, waits if ongong write() or read()
4 allow multiple ongoing read() calls
5 if every read() and write() call returns then
a every cread() call eventually returns
b every cwrite() call eventually returns

1�4 are safety requirements

5 is a progress requirement



Consequence of safety requirements reader-writer

Every evolution of a solution is an alternating sequence of
idle intervals and busy intervals

An idle interval has no read or write

A busy interval is either a read interval or a write interval

A write interval has exactly one write

A read interval has one or more reads

it starts with the �rst read() call
it ends when the last read() return



RW1: partial solution using awaits reader-writer

Program RW1:

nR ← 0 // number of ongoing reads
nW ← 0 // number of ongoing writes

cread():
r1: await (nW = 0)

nR ++
read()

r2: await (true)
nR --

cwrite():
w1: await (nW = nR = 0)

nW ++
write()

w2: await (true)
nW --

Weak awaits: RW1 does not satisfy requirement 5
(eg, thread stuck at r1 due to endless stream of reads/writes)

Strong awaits: RW1 satis�es 5a but not 5b
(thread stuck at w1 due to endless stream of reads)



RW2: Lock-cv version of RW1 reader-writer

Program RW2:

nR, nW: initially 0 // as in RW1
lck, cvR, cvW // lock, cv-read, cv-write

cread():
lck.acq()
while not nW = 0:

cvR.wait()
nR ++
lck.rel()
read()
lck.acq()
nR --
if nR = 0:

cvW.signal()
cvR.signal()
lck.rel()

cwrite():
lck.acq()
while not nW = nR = 0:

cvW.wait()
nW ++
lck.rel()
write()
lck.acq()
nW --
cvW.signal()
cvR.signal()
lck.rel()



RW2a: simpli�ed RW2 reader-writer

While write() ongoing, no other read() or write() ongoing

Hence can remove lck.rel and lck.acq surrounding write()

Then nW is always 0, so can simplify code

Program RW2a:

nR, lck, cvW // as in RW2; no need for nW, cvR

cread():
lck.acq()
nR ++
lck.rel()
read()
lck.acq()
nR --
if (nR = 0)

cvW.signal()
lck.rel()

cwrite():
lck.acq()
while (not nR = 0)

cvW.wait()
write()
cvW.signal()
lck.rel()



Semaphore versions of RW1 reader-writer

Several ways to transform program RW1 to a semaphore program

apply �lock-cv → semaphore� transformation on RW2

apply �lock-cv → semaphore� transformation on RW2a

apply �await → semaphore with awakened priority� on RW1

Left as exercises



RW3: another partial semaphore solution � 1 reader-writer

Following is the partial solution usually given in texts

Variables

Semaphore(1) wrt: protects every busy interval

wrt.P() is done at the start of the interval
wrt.V() is done at the end of the interval

int nR: number of ongoing reads

for detecting the start and end of a read interval

Semaphore(1) mutex: protects nR

Note

In a read interval of more than one read,
wrt.P() and wrt.V() are done in di�erent cread calls
If read threads are blocked (due to ongoing write),
one is waiting on wrt and the others on mutex



RW3: partial solution using semaphores � 2 reader-writer

cread():
mutex.P()
nR + +
if (nR = 1)

wrt.P()
mutex.V()
read()
mutex.P()
nR - -
if (nR = 0)

wrt.V()
mutex.V()

cwrite():
wrt.P()
write()
wrt.V()

Cute. But not easily modi�ed to satisfy requirement 5b.



RW4: solution using awaits � 1 reader-writer

One way to satisfy requirement 5b is to impose a limit, say N,
on the number of consecutive reads while a writer is waiting.

Variables

nR ← 0: # ongoing reads
nW ← 0: # ongoing writes

ncR ← 0: # of reads since last write

incremented when a read starts
zeroed when a write starts

nwW ← 0: number of waiting writes

incremented when a thread enters cwrite
decremented when the thread starts to write



RW4: solution using awaits � 2 reader-writer

cread():
await (nW = 0 and

(ncR < N or nwW = 0)
)

nR + +
ncR + +

read()
await (true)

nR - -

cwrite():
await (true)

nwW + +
await (nW = nR = 0)

nW + +
nwW - -
ncR ← 0

write()
await (true)

nW - -

Exercise: transform to lock-cv and semaphore programs



Outline reader-writer

Locks, condition variables, semaphores

Await-structured program

Achieving priority for waiting threads

Bounded Bu�er

Readers-Writers

Read-write Locks



Read-write lock reader-writer

A read-write lock can be held as a �read-lock� or as a �write-lock�

Can view it as consisting of one write-lock and many read-locks

At any time, [# wlocks, # rlocks] held is [0, 0], [0, >0], or [1, 0]

Operations

rwlck ← ReadWriteLock() // de�ne a read-write lock
rwlck.acqR() // acquire read-lck; blocking
rwlck.relR() // release read-lock; non-blocking
rwlck.acqW() // acquire write-lck; blocking
rwlck.relW() // release write-lock; non-blocking

Call acqR() or acqW() only if caller does not have lock

Call relR() or relW() only if caller has the appropriate lock

Weak lock: acqX() returns if lock is continuously free

Strong lock: acqX() returns if lock is repeatedly free
// even if only intermittently free



Implementing read-write locks reader-writer

Any readers-writers solution yields a read-write lock

Weak or strong depending on readers-writers solution

Program readers-writers

variables

cread():

entry code // acqR()

read()

exit code // relR()

cwrite():

entry code // acqW()

write()

exit code // relW()


	Locks, condition variables, semaphores
	Await-structured program
	Achieving priority for waiting threads
	Bounded Buffer
	Readers-Writers
	Read-write Locks

