
Multi-threaded Programs

Shankar

March 1, 2021



Outline overview

1. Overview

2. Locks and condition variables

3. Semaphores

4. Progress assumptions

5. Bounded counter

6. Bounded Bu�er

7. Readers-Writers

8. Read-write Locks



Multi-threaded programs overview

Multiple threads executing concurrently in the same address space

Threads interact by reading and writing shared memory

Need to ensure that threads do not �interfere� with each other

For example, given a linked list X

while a thread is adding an item to X , another thread should
not read or write X .
if thread u blocks when it �nds X empty, another thread should
not insert an item in between u �nding X empty and blocking

Formalizing �non-interference�:

a code chunk S in a program is atomic if while a thread u is
executing S , no other thread can change an intermediate state
of u's execution of S .



Hypothetical synchronization construct: await overview

await B : S , where S is a code chunk (no blocking or in�nite
loop) and B is a boolean condition (no side e�ects):

execute S only if B holds, all in one atomic step
if B does not hold, wait

atomic S : short for await True: S

Programming languages provide more limited constructs:

locks, condition variables, semaphores, ...

Use awaits to develop program, then implement using locks, etc

easily doable if the code outside awaits is interference-free

Canonical synchronization problems

mutual-exclusion, readers-writers, producer-consumer, ...



Outline lock+cv

1. Overview

2. Locks and condition variables

3. Semaphores

4. Progress assumptions

5. Bounded counter

6. Bounded Bu�er

7. Readers-Writers

8. Read-write Locks



Locks lock+cv

Lock operations: acquire and release

lck ← Lock() // de�ne a lock

lck.acq() // acquire the lock; blocking

call only if caller does not hold lck
returns only when no other thread holds lck

lck.rel() // release the lock; non-blocking

call only if caller holds lck

lck.rel() does not give priority to threads blocked in lck.acq()



Condition variables lock+cv

Condition variable operations: wait, signal and signal_all

A condition variable is associated with a lock

cv ← Condition(lck) // condition variable associated with lck

cv.wait() // wait on cv; blocking

call only if caller holds lck
atomically release lck and wait on cv
when awakened: acquire lck and return

cv.signal() // signal cv; non-blocking

call only if caller holds lck
wake up a thread (if any) waiting on cv

cv.signal_all() // wake up all threads waiting on cv

lck.acq() does not give priority to threads blocked in cv.wait()



Outline sem

1. Overview

2. Locks and condition variables

3. Semaphores

4. Progress assumptions

5. Bounded counter

6. Bounded Bu�er

7. Readers-Writers

8. Read-write Locks



Semaphores sem

Semaphore: variable with a non-negative integer count

Semaphore operations: P() and V()

sem ← Semaphore(N) // de�ne semaphore with count N (≥ 0)

sem.P() // blocking

wait until sem.count > 0 then decrease sem.count by 1; return
checking sem.count> 0 and decrementing are one atomic step

sem.V() // non-blocking

atomically increase sem.count by 1; return

V() does not give priority to threads blocked in P()



Outline progress

1. Overview

2. Locks and condition variables

3. Semaphores

4. Progress assumptions

5. Bounded counter

6. Bounded Bu�er

7. Readers-Writers

8. Read-write Locks



Progress assumption progress

For a multi-threaded program to achieve anything, we have to
assume that its threads execute with non-zero speed (but
otherwise arbitrarily varying)

Making this precise is simple for non-blocking statements but not
for blocking statements (eg, acquire, wait, P, await)

A thread at an non-blocking statement T eventually gets past T

Achieved if every unblocked thread periodically gets cpu cycles

A thread at a blocking statement T eventually gets past T if T
is continuously unblocked or repeatedly (but not continuously)
unblocked

Achieved in most implementations only in a probabilistic sense,
not in a deterministic sense



Outline bounded counter

1. Overview

2. Locks and condition variables

3. Semaphores

4. Progress assumptions

5. Bounded counter

6. Bounded Bu�er

7. Readers-Writers

8. Read-write Locks



Bounded counter bounded counter

Program P0:

x, y: global int variables; initially 0

up(), down() // callable by multiple threads simultaneously
up() increments x only if x < 100, and returns 2*x
down() decrements x only if x > 0, and returns 2*x

up():
int z
await (x < 100):

x ← x+1
z ← x

return 2*z

down():
int z
await (x > 0):

x ← x-1
z ← x

return 2*z



P0 → lock-cv program P1 bounded counter

Program P1:

x, y // as in P0
lck ← Lock()
cvNF ← Condition(lck) // for guard (x < 100)
cvNE ← Condition(lck) // for guard (x > 0)

up():
int z
lck.acq()
while (not x < 100):

cvNF.wait()
x ← x + 1
z ← x
cvNE.signal()
lck.rel()
return 2*z

down():
int z
lck.acq()
while (not x > 0):

cvNE.wait()
x ← x - 1
z ← x
cvNF.signal()
lck.rel()
return 2*z



P0 → lock-cv program P2 bounded counter

Program P2:

x, y // as in P0
lck ← Lock()
cv ← Condition(lck) // for both guards

up():
int z
lck.acq()
while (not x < 100):

cv.wait()
x ← x + 1
z ← x
cv.signal_all()
lck.rel()
return 2*z

down():
int z
lck.acq()
while (not x > 0):

cv.wait()
x ← x - 1
z ← x
cv.signal_all()
lck.rel()
return 2*z



P0 → semaphore program P3 (via P1) bounded counter

Program P3:
x, y // as in P1
mutex ← Semaphore(1) // for lck
gateNF ← Semaphore(0) // for cvNF
gateNE ← Semaphore(0) // for cvNE

up():
int z
mutex.P()
while (not x < 100)

mutex.V()
gateNF.P()
mutex.P()

x ← x + 1
z ← x
gateNE.V()
mutex.V()
return ← 2*z

down():
int z
mutex.P()
while (not x > 0)

mutex.V()
gateNE.P()
mutex.P()

x ← x - 1
z ← x
gateNF.V()
mutex.V()
return ← 2*z



Outline bounded bu�er

1. Overview

2. Locks and condition variables

3. Semaphores

4. Progress assumptions

5. Bounded counter

6. Bounded Bu�er

7. Readers-Writers

8. Read-write Locks



Bounded Bu�er Problem bounded bu�er

Given BB // has no synchronization

buf: bu�er of capacity N items
num: number of items in buf
add(x): add item x to buf; non-blocking
rmv(): return an item from buf; non-blocking

Obtain enQ(x) and deQ() such that

callable by multiple threads simultaneously // safety
enQ(x) calls add(x) once, waiting if buf is full // " "
deQ() calls rmv() once, waiting if buf is empty // " "
at most one add() or rmv() ongoing at any time // " "

if buf not full and at least one enQ() ongoing,
eventually an enQ() returns // progress
if buf not empty and at least one deQ() ongoing,
eventually a deQ() returns // " "



Solution using Awaits bounded bu�er

Program BB0:

buf, num, add(x), rmv() // as in BB

enQ(x):
await (num < N):

add(x)
return

deQ():
await (num > 0):

tmp ← rmv()
return tmp



Program BB0 → Lock-cv program bounded bu�er

Program BB1

buf, num, add(x), rmv() // as in BB0
lck: lock
cvNF, cvNE: cond vars // not-full, not-empty

enQ(x):
lck.acq()
while (num = N):

cvNF.wait()
add(x)
cvNE.signal()
if num < N:

cvNF.signal()
lck.rel()
return

deQ():
lck.acq()
while (num = 0):

cvNE.wait()
tmp ← rmv()
cvNF.signal()
if num > 0:

cvNE.signal()
lck.rel()
return tmp

Is red code needed?



Program BB0 → semaphore program bounded bu�er

Program BB2:

buf, num, add(x), rmv() // as in BB0
Semaphore(1) mutex
Semaphore(0) gateNF, gateNE
nwNF, nwNE: initially 0

enQ(x):
mutex.P()
while num = N:

nwNF + +
mutex.V(); gateNF.P()
nwNF - -

add(x)
if num > 0 and nwNE > 0:

gateNE.V()
else mutex.V()
return

deQ():
mutex.P()
while num = 0:

nwNE + +
mutex.V(); gateNE.P()
nwNE - -

tmp ← rmv()
if x < 100 and nwNF > 0:

gateNF.V()
else mutex.V()
return tmp



Non-standard solution using sempahores bounded bu�er

Program BB3:

buf, num, add(x), rmv() // as in BB
Semaphore(1) mutex
Semaphore(N) nSpace
Semaphore(0) nItem

enQ(x):
nSpace.P()
mutex.P()
add(x)
mutex.V()
nItem.V()
return

deQ():
nItem.P()
mutex.P()
tmp ← rmv()
mutex.V()
nSpace.V()
return tmp

Cute. But not adaptable.



Bounded Bu�er with variable-size items bounded bu�er

Like the bounded-bu�er except
buf has a capacity of N bytes
num: indicates available bytes in buf
add(x,k): add item x of size k bytes
rmv(k): return an item of size k bytes

Previous await-structured solution BB0 is easily adapted

enQ(x,k):
await (num ≤ N - k)

add(x,k)
deQ(k):

await (num ≥ k)
tmp ← rmv(k)

return tmp

Can transform above to using standard synch constructs

Exercise: can you adapt program BB3 to solve this



Outline reader-writer

1. Overview

2. Locks and condition variables

3. Semaphores

4. Progress assumptions

5. Bounded counter

6. Bounded Bu�er

7. Readers-Writers

8. Read-write Locks



Readers-Writers Problem reader-writer

Given non-blocking functions read(), write()

Obtain functions cread(), cwrite() such that

1 each is callable by multiple threads simultaneously
2 cread() calls read() once, waits if ongoing write()
3 cwrite calls write() once, waits if ongong write() or read()
4 allow multiple ongoing read() calls
5 if every read() and write() call returns then
a every cread() call eventually returns
b every cwrite() call eventually returns

1�4 are safety requirements

5 is a progress requirement



Consequence of safety requirements reader-writer

Every evolution of a solution is an alternating sequence of
idle intervals and busy intervals

An idle interval has no read or write

A busy interval is either a read interval or a write interval

A write interval has exactly one write

A read interval has one or more reads

it starts with the �rst read() call
it ends when the last read() return



RW1: partial solution using awaits reader-writer

Program RW1:

nr ← 0 // number of ongoing reads
nw ← 0 // number of ongoing writes

cread():
r1: await (nw = 0)

nr ++
read()

r2: await (true)
nr --

cwrite():
w1: await (nw = nr = 0)

nw ++
write()

w2: await (true)
nw --

RW1 satis�es 5a but not 5b
(thread stuck at w1 due to endless stream of reads)



RW2: Lock-cv version of RW1 reader-writer

Program RW2:

nr, nw: initially 0 // as in RW1
lck, cvR, cvW // lock, cv-read, cv-write

cread():
lck.acq()
while not nw = 0:

cvR.wait()
nr ++
lck.rel()
read()
lck.acq()
nr --
if nr = 0:

cvW.signal()
cvR.signal()
lck.rel()

cwrite():
lck.acq()
while not nw = nr = 0:

cvW.wait()
nw ++
lck.rel()
write()
lck.acq()
nw --
cvW.signal()
cvR.signal()
lck.rel()



RW2a: simpli�ed RW2 reader-writer

While write() ongoing, no other read() or write() ongoing

Hence can remove lck.rel and lck.acq surrounding write()

Then nw is always 0, so can simplify code

Program RW2a:

nr, lck, cvW // as in RW2; no need for nw, cvR

cread():
lck.acq()
nr ++
lck.rel()
read()
lck.acq()
nr --
if (nr = 0)

cvW.signal()
lck.rel()

cwrite():
lck.acq()
while (not nr = 0)

cvW.wait()
write()
cvW.signal()
lck.rel()



Semaphore versions of RW1 reader-writer

Several ways to transform program RW1 to a semaphore program

apply �lock-cv → semaphore� transformation on RW2

apply �lock-cv → semaphore� transformation on RW2a

Left as exercises



RW3: another partial semaphore solution � 1 reader-writer

Following is the partial solution usually given in texts

Variables

Semaphore(1) wrt: protects every busy interval

wrt.P() is done at the start of the interval
wrt.V() is done at the end of the interval

int nr: number of ongoing reads

for detecting the start and end of a read interval

Semaphore(1) mutex: protects nr

Note

In a read interval of more than one read,
wrt.P() and wrt.V() are done in di�erent cread calls
If read threads are blocked (due to ongoing write),
one is waiting on wrt and the others on mutex



RW3: partial solution using semaphores � 2 reader-writer

cread():
mutex.P()
nr + +
if (nr = 1)

wrt.P()
mutex.V()
read()
mutex.P()
nr - -
if (nr = 0)

wrt.V()
mutex.V()

cwrite():
wrt.P()
write()
wrt.V()

Cute. But not easily modi�ed to satisfy requirement 5b.



RW4: solution using awaits � 1 reader-writer

One way to satisfy requirement 5b is to impose a limit, say N,
on the number of consecutive reads while a writer is waiting.

It's simpler and adequate to impose the limit on every reading
interval, whether or not a writer is waiting. That is what we do
here.

Variables

nr ← 0: # ongoing reads
nw ← 0: # ongoing writes

nx ← 0: # of reads in this read interval

incremented when a read starts
zeroed when read interval ends



RW4: solution using awaits � 2 reader-writer

cread():
await (nw = 0 and nx < N):

nr + +
nx + +

read()
await (true)

nr - -
if nr = 0:

nx ← 0

cwrite():
await (nw = nr = 0)

nw + +
write()
await (true)

nw - -

Exercise: transform to lock-cv and semaphore programs



Outline reader-writer

1. Overview

2. Locks and condition variables

3. Semaphores

4. Progress assumptions

5. Bounded counter

6. Bounded Bu�er

7. Readers-Writers

8. Read-write Locks



Read-write locks reader-writer

A read-write lock can be held as a �read-lock� or as a �write-lock�

Can view it as consisting of one write-lock and many read-locks

At any time, [# wlocks, # rlocks] held is [0, 0], [0, >0], or [1, 0]

Operations

rwlck ← ReadWriteLock() // de�ne a read-write lock
rwlck.acqR() // acquire read-lck; blocking
rwlck.relR() // release read-lock; non-blocking
rwlck.acqW() // acquire write-lck; blocking
rwlck.relW() // release write-lock; non-blocking

Call acqR() or acqW() only if caller does not have lock

Call relR() or relW() only if caller has the appropriate lock



Implementing read-write locks reader-writer

Any solution to the readers-writers problem yields a read-write
lock

Program readers-writers

variables // rwlock vars

cread():

entry code // acqR()

read()

exit code // relR()

cwrite():

entry code // acqW()

write()

exit code // relW()


	Overview
	Locks and condition variables
	Semaphores
	Progress assumptions
	Bounded counter
	Bounded Buffer
	Readers-Writers
	Read-write Locks

