Operating Systems:
Filesystems

Shankar

April 19, 2022

Outine ot

Filesystem Interface

Persistent Storage Devices: Hard disks

Filesystem Implementation

FAT Filesystem

FFS: Unix Fast Filesystem

NTFS: Microsoft Filesystem

Crash Consistency (OSTEP 42)

Log-structured Filesystems (OSTEP 43)

Persistent Storage Devices: Flash-based SSDs (OSTEP 44)

© o N s W=

Overview of filesystem interface fs interface

m Persistent structure of files // residing in persistent storage
m Types of files:
= user file: content is sequence of bytes // u-file for short
= directory file: content is pointers to files // d-file for short
= device, ...

m Structure organized as a tree or acylic graph

nodes: d-files, u-files

root directory: “/"

= path to a file: “/a/b/...”

= acyclic: more than one path to a u-file (but not directory)

m File metadata: type, owner, creation time, access, ...
m Users can create/delete files, modify content/metadata

m Examples: FAT, UFS, NTFS, ZFS, ..., PFAT, GOSFS, GSFS2

File attributes fs interface

m Name

= last entry in a path to the file // eg, “b" in path “/a/b"
= subject to size and char limits

m Type: directory or file or device or ...

m Size: subject to limit
m Directory may have a separate limit on number of entries

m Time of creation, modification, last access, ...

m Content type (if u-file): eg, text, binary, executable, ...
= pdf, jpeg, mpeg, ...

m Owner

m Access for owner, others, ...: eg, r, w, x, setuid, ...

Operations on filesystems fs interface

m Format(dev)
= create an empty filesystem on device dev (eg, disk, flash, ...)

m Mount (fstype, dev)

= attach (to computer) filesystem of type fstype on device dev
= returns a path to the filesystem (eg, mount point, volume, ...)
= after this, processes can operate on the filesystem

m Unmount (path)

= detach (from computer) filesystem at path // finish all io
m after this, the filesystem is inert in its device, unaccessible

Operations on attached filesystem - 1 fs interface

Create(path), CreateDir(path)
= create a file/directory at given path

m Link(existingPath, newPath)
= create a (hard) link to an existing file (not directory)

Delete(path) // aka Unlink(path)

» delete the given path to the u-file at path
» delete u-file if no more paths to it

m DeleteDir(path)
= delete the directory at path // must be empty
m Change attributes (name, metadata) of file at path

= eg, stat, touch, chown/chgrp, chmod, rename/mv

Operations on attached filesystem - 2 fs interface

m Open(path, access), OpenDir (path, access)

= open the file at path with given access (r, w, ...)
= returns a file descriptor
= after this, file can be operated on

m Close(fd), CloseDir(fd)
m close the file associated with file descriptor fd

m Read(fd, file range, buffer), ReadDir (fd, dir range, buffer),

= read the given range from open file fd into given buffer
= returns number of bytes/entries read

m Write(fd, file range, buffer)

= write buffer contents into the given range of open file fd
= returns number of bytes written

Operations on attached filesystem - 3 fs interface

m Seek(fd, file location), SeekDir (fd, entry)
= move ‘r/w" position” to given location/entry

m MemMap (fd, file range, mem range)
= map the given range of open file fd to given range of memory

m MemUnmap (fd, file range, mem range)
= unmap the given range of file fd from given range of memory

m Sync(fd)
= complete all pending io for open file fd

Consistency of shared files fs interface

m Shared file: file opened by several processes concurrently
m Consistency:

= when does a read see the result of a previous write by another
process

m Various types of consistency (from strong to weak)

= when the read starts after the write returns
= when the read starts after a post-write sync returns
= when the read starts after a post-write close returns

m Single-processor system
= all types of consistency easily achieved

m Multi-processor system
= strong notions are expensive/slow to achieve

Reliability fs interface

m Filesystem should be resilient to device failures

m Types of failures to be handled:
= failures in persistent storage devices:
= magnetic / mechanical / electronic parts wear out
= Operating system may crash in the middle of a fs operation
= Power loss in the middle of a fs operation

m “Small” failures should cause no loss of filesystem

m “Large” failures may cause loss of some files but no inconsistency
(no undetected corrupted files)

Outline hdd

Filesystem Interface

Persistent Storage Devices: Hard disks

Filesystem Implementation

FAT Filesystem

FFS: Unix Fast Filesystem

NTFS: Microsoft Filesystem

Crash Consistency (OSTEP 42)

Log-structured Filesystems (OSTEP 43)

Persistent Storage Devices: Flash-based SSDs (OSTEP 44)

© 0o N o W=

Disks: Geometry

m Platter(s) fixed to rotating spindle
m Spindle speed

m Platter has two surfaces

m Surface has concentric tracks

m Track has sectors
= more in outer than inner

m Sector: fixed capacity

m Movable arm with fixed rw heads,
one per surface

m Buffer memory

hdd

Eg, laptop disk (2011)
m 1 or 2 platters

m 4200-15000 rpm,
15—-4 ms/rotation

m diameter: 2.5 in

m track width: < 1 micron
m sector: 512 bytes

m buffer: 16 MB

Disk 10 hdd

m |O is in blocks (sectors); slower, more bursty than memory
m Disk access time = seek + rotation + transfer
m Seek time: (moving rw head) + (electronic settling)
= minimum: target is next track; settling only
= maximum: target is at other end
m rotation delay: half-rotational delay on avg
m transfer time: platter <> buffer
m transfer time: buffer <> host memory

Eg, laptop disk (2011)

m min seek: 0.3-1.5ms

m max seek: 10-20 ms

m rotation delay: 7.5-2ms

m platter <> buffer: 50 (inner) — 100 (outer) MB/s
m buffer <> host memory: 100-300 MB/s

Disk: Scheduling 10 requests hdd

m FIFO: terrible: lots of head movement
m SSTF (shortest seek time first)

= favors “middle” requests; can starve “edge”’ requests

m SCAN (elevator)

= sweep from inner to outer, until no requests in this direction
= sweep from outer to inner, until no requests in this direction

m CSCAN: like SCAN but in only one direction
= fairer, less chance of sparsely-requested track

m R-SCAN / R-CSCAN
= allow minor deviations in direction to exploit rotational delays

Outine e imlmersion

Filesystem Interface

Persistent Storage Devices: Hard disks

Filesystem Implementation

FAT Filesystem

FFS: Unix Fast Filesystem

NTFS: Microsoft Filesystem

Crash Consistency (OSTEP 42)

Log-structured Filesystems (OSTEP 43)

Persistent Storage Devices: Flash-based SSDs (OSTEP 44)

© o N s W=

Overview of Fs Implementation - 1 fs implementation

m Define a mapping of filesystem files to device blocks
m Define an implementation of filesystem operations

= performance: random and sequential data access
= reliability: inspite of device failures
= accomodate different devices (blocks, size, speed, geometry, ...)

m The slides sometimes use the following abbreviations:
a fs: filesystem
m fs-int: filesystem interface
» fs-imp: filesystem implementation

Overview of Fs Implementation — — 2 fs implementation

m Fs implementation usually starts at the second block in the device
[The first device block is usually reserved for the boot sector]

m Fs implementation organizes the device in fs blocks 0, 1, - - -
m One fs block is one or more device blocks, or vice versa
= henceforth, “block” without qualifier means “fs block”

m Fs implementation is a graph over blocks, rooted at a special
block (the superblock)

[In contrast, fs interface is a graph over files]

m Each fs-int file x maps to a subgraph of the fs-imp graph

= subgraph’s blocks hold x's metadata and x’s data
= root block of the subgraph typically has pointers to subgraph’s
blocks

m List of free blocks reachable from superblock

Overview of Fs Implementation - 3 _

fs interface fs implementation fs blocks device blocks

graph over fs blocks

. superblk 0

|:| 14
0 2
metadata D

ptrs to subgraph blks |:| 1 (I
-\-- data blks 0

graph over files
(tree or acyclic) /

e
A\, -
/\

operations

- mount, unmout, ...) ' '
- create. link. unlink. delete implementations of operations

- open, read, write, sync, close garbage collection

g

Superblock fs implementation

m Usually in the first few device blocks after the boot sector
m First fs block read by OS when mounting a filesystem

m Contains info sufficient to mount the filesystem

magic number, indicating filesystem type

fs blocksize (vs device blocksize)

size of disk (in fs blocks).

pointer (block #) to the root of “/" directory’s subgraph
= pointer to list of free blocks

(perhaps) pointer to array of roots of subgraphs

Subgraph for a fs-int file fs implementation

m Unique low-level name // typically a number (“inode number”)
m User name(s) // multiple names/paths due to links

m File metadata

m Size
m Owner, access, ...
m creation time, last modification time, ...

m Pointers to fs blocks containing file’s data
= pointers organized in array, linked-list, ...

m For a u-file, the data is the file's data

m For a d-file, the data is a table of directory entries
= table may be unordered, sorted, hashed, ..., depending on
number and size of entries, desired performance, ...
= directory entry points to the entry's subgraph // eg, inode

To achieve good performance _

m Want large numbers of consecutive reads or writes
m So put related info in nearby blocks / cylinders

m Large buffers (to minimize read misses)

m Batched writes: large queue of writes

Reliability: Overcoming device block failures fs implementation

m A device block can degrade over time.

= positions in the block may not retain their values
= need to detect the degradation and avoid that block

m Redundancy within a disk

= error-detection/correction code (EDC/ECC) in each disk block
= map each fs block to multiple disk blocks
= dynamically remap within a disk to bypass failing areas

m Redundancy across disks // eg, RAID

= map each fs block to blocks in different disks
= EDC/ECC for a fs block across disks

Atomicity of fs operations fs implementation

m A fs operation is atomically executed if either all of it or none of
it is applied to the fs

m Goal: every fs operation is atomic inspite of failures (OS, power,
etc) during operation

m Assumption about operations (reads, writes) on device blocks

= if there is a failure during a block write, the write is completed
or the block is unchanged

= if a sequence of operations is submitted, when the disk indicates
completion, all the operations have been done in some order

Atomicity via Copy-On-Write fs implementation

m Suppose user modifies a file f
m |dentify a subgraph, say X, of the fs-imp graph to be modified
m Write the new value of X in fresh blocks, say Y

m Attach Y to the fs-imp graph in place of X

= typically involves modifying fewer blocks, so low prob of failure
= ideal: involves modifying one device block

m Garbage collect the blocks of X

Atomicity via Logging / Journal fs implementation

m Suppose user issues a sequence of disk operations
= Maintain a log (aka journal) of requested operations

= add records (one for each operation) to log
» add “commit” record after last operation

m Later, commit the log to disk

= write the operations in the log to disk
= when those writes are completed, erase the log

m Upon recovery from crash, (re)do all operations in the log
= writes may be repeated, but this is ok // writes are idempotent

Hierarchy in Filesystem fs implementation

m Virtual filesystem: optional
= memory-only framework on which to mount real filesystems
m Mounted Filesystem(s)
= real filesystems, perhaps of different types
m Block cache
= cache filesystem blocks: performance, sharing, ...
m Block device
= wrapper for the various block devices with filesystems
m Device drivers for the various block devices

GeekOS: Hierarchy in Filesystem fs implementation

1
| system calls |
g
| vfg /f virtual filesystem |
I} g g
| pfat | | gosfs | e
] U
| bufcache /f buffers |
g 1}
| blockdev /f block device |
g)]
| ide | | floppy | e

Outline FAT

Filesystem Interface

Persistent Storage Devices: Hard disks

Filesystem Implementation

FAT Filesystem

FFS: Unix Fast Filesystem

NTFS: Microsoft Filesystem

Crash Consistency (OSTEP 42)

Log-structured Filesystems (OSTEP 43)

Persistent Storage Devices: Flash-based SSDs (OSTEP 44)

© o N s W=

FAT32 Overview -1 FAT

m FAT: MS-DOS filesystem

= simple, but no good for scalability, hard links, reliability, ...
= currently used only on simple storage devices: flash, ...

m Disk divided into following regions
= Boot sector: device block 0
= BIOS parameter block
= OS boot loader code
= Filesystem info sector: device block 1

= signatures, fs type, pointers to other sections
u fs blocksize, # free fs blocks, # last allocated fs block

m FAT: fs blocks 0 and 1; corresponds to the superblock
= Data region: rest of the disk, organized as an array of fs blocks
= holds the data of the fs-int files

FAT32 Overview -2

m Each block in the data region is either
free or bad or holds data (of a file or directory)

m FAT: array with an entry for each block in data region

= entries jy, j1, - -- form a chain iff
blocks jo, j1, - -+ hold successive data of a file

m Entry n contains
= constant, say FREE, if block n is free

= constant, say BAD, if block n is bad (ie, unusable)

» 32-bit number, say x, if block n holds data of a file
and block x holds the succeeding data of the file

= constant, say END, if block n holds the last data chunk

m Root directory table: typically at start of data region (block 2)

FAT

FAT32 Overview -3 FAT

m Directory entry: 32 bytes
= name (8)
= extension (3)
m attributes (1)
= read-only, hidden, system, volume label,
subdirectory, archive, device
= reserved (10)
= last modification time (2)
= last modification date (2)
m fs block # of starting fs block of the entry’s data
= size of entry’s data (4)

m Hard links??

Outline FFS

Filesystem Interface

Persistent Storage Devices: Hard disks

Filesystem Implementation

FAT Filesystem

FFS: Unix Fast Filesystem

NTFS: Microsoft Filesystem

Crash Consistency (OSTEP 42)

Log-structured Filesystems (OSTEP 43)

Persistent Storage Devices: Flash-based SSDs (OSTEP 44)

© 0o N s W=

FFS layout FFS

m Boot blocks // few blocks at start

m Superblock // after boot blocks
= magic number
= filesystem geometry (eg, locations of groups)
= filesystem statistics/tuning params

m Groups, each consisting of // cylinder groups
= backup copy of superblock
= header with statistics
= array of inodes

= holds metadata and data pointers of fs-int files

= # inodes fixed at format time

array of data blocks

free-inodes bitmap, free-datablocks bitmap

FFS inodes FFS

m Inodes are numbered sequentially starting at 0

inodes 0 and 1 are reserved
inode 2 is the root directory’s inode

m An inode is either free or not

m Non-free inode holds metadata and data pointers of a file

owner id

type (directory, file, device, ...)

access modes

reference count /! # of hard links
size and # blocks of data

15 pointers to data blocks

= 12 direct

= 1 single-indirect, 1 double-indirect, 1 triple-indirect

FFS data pointers: asymmetric tree (max depth 4) -

inode indirect blocks data blocks

meta

e I————————————

\

JNRSNESN

b

FFS directory entries FFS

m The data blocks of a directory hold directory entries
m A directory entry is not split across data blocks

m Directory entry has a pointer to inode

m Directory entry for a file
» # of the inode of the file // hard link
= size of entry
= length of file name (up to 255 bytes)
m entry name

m Multiple directory entries can point to the same inode

User Ids FFS

m Every user account has a user id (uid)
m Root user (aka superuser, admin) has uid of 0
m Processes and filesystem entries have associated uids

= indicates owners
= determines access processes have to filesystem entries
= determines which processes can be signalled by a process

Process Ids FFS

m Every process has two associated uids
w effective user id (euid)
= uid of user on whose behalf it is currently executing
= determines its access to filesystem entries
= real uid (ruid)
= uid of the process’'s owner
= determines which processes it can signal:
x can signal y only if x is superuser or x.ruid = y.ruid

Process Ids FFS

m Process is created: ruid/euid < creating process’s euid
m Process with euid 0 executes SetUid(z): ruid/euid + z
= no effect if process has non-zero euid

m Example SetUid usage

= login process has euid 0 (to access auth info files)
= upon successful login, it starts a shell process (with euid 0)
s shell executes SetUid(authenticated user’s uid)

m When a process executes a file f with “setuid bit" set:
its euid is set to f's owner’s uid while it is executing f.

m Upon bootup, the first process (“init") runs with uid of 0
= it spawns all other processes directly or indirectly

Directory entry's uids and permissions FFS

m Every directory entry has three classes of users:
= owner (aka “user”)
= group (owner need not be in this group)
= others (users other than owner or group)

m Each class’s access is defined by three bits: r, w, x

m For a file:
a r: read the file
= w: modify the file
= x: execute the file

m For a directory:
= r: read the names (but not attributes) of entries in the directory
= w: modify entries in the directory (create, delete, rename)
= X: access an entry's contents and metainfo

m When a directory entry is created: attributes are set according to
the creating process’s attributes (euid, umask, etc)

Directory entry's setuid bit FFS

m Each directory entry also has a “setuid” bit.

m If an executable file has setuid set and a process (with execute
access) executes it, the process’s euid changes to the file's
owner’s uid while executing the file.

m Typically, the executable file's owner is root, allowing a normal
user to get root privileges while executing the file

m This is a high-level analog of system calls

Directory entry's sticky bit FFS

m Each directory entry also has a sticky bit.

m Executable file with sticky bit set: hint to the OS to retain the
text segment in swap space after the process executes

m An entry x in a directory with sticky bit set:
= a user with wx access to the directory can rename/delete an
entry x in the directory only if it is x's owner (or superuser)
= Usually set on /tmp directory.

Directory entry's setgid bit FFS

m Unix has the notion of groups of users

m A group is identified by a group id, abbreviated gid

m A gid defines a set of uids

m A user account can be in different groups, i.e., have multiple gids

m Process has effective gid (egid) and real gid (rgid)
= play a similar role as euid and ruid

m A directory entry has a setgid bit

= plays a similar role to setuid for executables
= plays an entirely different role for directories

Outline NTFS

Filesystem Interface

Persistent Storage Devices: Hard disks

Filesystem Implementation

FAT Filesystem

FFS: Unix Fast Filesystem

NTFS: Microsoft Filesystem

Crash Consistency (OSTEP 42)

Log-structured Filesystems (OSTEP 43)

Persistent Storage Devices: Flash-based SSDs (OSTEP 44)

© o N s W=

NTFS Index Structure NTFS

m Master File Table (MFT)
m corresponds to FFS inode array
= holds an array of 1IKB MFT records

m MFT Record: sequence of variable-size attribute records
m Std info attribute: owner id, creation/mod/... times, security, ...
m File name attribute: file name and number

m Data attribute record

= data itself (if small enough), or // resident
m list of data “extents” (if not small enough) // non-resident

m Attribute list

» pointers to attributes in this or other MFT records
= pointers to attribute extents
= needed if attributes do not fit in one MFT record

= eg, highly-fragmented and/or highly-linked

Example: Files with single MFT record NTFS

Master File Table (MFT)

< MFT record >
File A std info| file name| data (resident) free e?(?éit
i length
(data resident)] st}rt/f/,,,
File B std info | file name|data (non-resident) ! ‘free
(2 data extents) \ data
: w extent

Example: File with three MFT records

File C

attr list extent

data extents

AR e

: ot || L,
std info| attr list K fn fn dataf Vol |:|

. data extents

(7% % L
stdinfo| attr list || |t |datal
data extents
Y —

stdinfo| data | ! \ \
~]

Outine oy

Filesystem Interface

Persistent Storage Devices: Hard disks

Filesystem Implementation

FAT Filesystem

FFS: Unix Fast Filesystem

NTFS: Microsoft Filesystem

Crash Consistency (OSTEP 42)

Log-structured Filesystems (OSTEP 43)

Persistent Storage Devices: Flash-based SSDs (OSTEP 44)

© o N s W=

Crash Consistency crash consistency

m Goal: to bring up a crashed fs in a consistent recent state

m Filesystem checker (fsck)
= no extra work done during normal operation
= recovery: examine fs metadata (bitmaps, inodes) to detect
inconsistencies
= too slow to handle disks of current size
m Journaling: Data or Metadata

= do extra work during normal operation
= recovery: check only the modified part

Example workload

crash consistency

m Fs: 8-bit inode bitmap, 8-bit data bitmap, 8 inodes, 8 data blocks

Inode
Bmap

Data
Bmap

Inodes

Data Blocks

Iv1]

Da

m Append of a single datablock to the existing file
= requires 3 writes: data bitmap block, inode block, data block

= write first to memory cache, later to disk

Inode
Bmap

Data
Bmap

Inodes

Data Blocks

Iv2]

Da Db

Crash scenarios crash consistency

m Disk

= writes blocks in arbitrary order
= ensures a block write is either all or nothing

m Possible crash scenarios
s 1 block written

= Db or // ok
s I[v2] or // inconsistency with data bitmap
= B[v2] // space leak
= 2 blocks written
= [[[v2], B[v2]] or // bad. fs has garbage
= [[[v2], Db] or // inconsistency with data bitmap
= [B[v2], Db] // inconsistency with data bitmap

Filesystem checker crash consistency

m Examines and, if needed, modifies to achieve consistency

= Superblock // compare against duplicate superblocks
= Inodes and indirect blocks to produce a correct version of
bitmaps

= Inode state
s Inode links
= Duplicates
» Directory checks

Journaling

crash consistency

m Before overwriting disk structures in place, write a log in a
specified place on disk

Linux ext3 filesystem with a journal:

Super

Journal

Group 0

Group 1

Group N

m Crash during writing log:

= at recovery: detect incomplete log, discard update

m Crash after writing log but before updating disk structure:
// (re)update disk structures

= at recovery: replay log

Data Journaling crash consistency

m Journal write

B
S8l vy | BV | Db | ——»
3 id=1
m Journal commit // start after journal write completes
<
£ ItxB| I[v2] B[v2] Db |TxE
3 |id=1 id=1

m Checkpoint: write log metadata & data to final on-disk locations
// start after journal commit completes

m For better performance: batch log updates
m To keep the log bounded: circular log

= journal superblock: stores start and end of log
(3
I

Journal

Tx1 Tx2 Tx3 Tx4 Tx5 P E—
Super

Journal

Metadata Journaling

crash consistency

m Data write: to final on-disk locations

m Journal metadata write: write metadata into log

// after above completes
m Journal commit // after above completes

Journal

TxB| I[v2] B[v2] [TxE

m Checkpoint metadata: write metadata to final locations

// after above completes

m Free: later, mark transaction free in journal superblock

Tricky: metadata journaling and block reuse crash consistency

m User adds an entry to directory foo (datablock 1000)

TxB| I[foo] D[foo] TXE| ——
id=1| ptr:1000 [final addr:1000] id=1

Journal

Note: directory data is treated as metadata
m User deletes directory foo and its contents

m User creates new file foobar which ends up using block 1000

TxB| [[foo] Difoo] TxE([TxB|I[foobar]|TXE| ———»
id=1| ptr:1000 [final addr:1000] id=1|id=2| ptr:1000 |id=2

Journal

m Crash occurs after log is complete
= recovery action overwrites foobar data with foo data

Outline Ifs

Filesystem Interface

Persistent Storage Devices: Hard disks

Filesystem Implementation

FAT Filesystem

FFS: Unix Fast Filesystem

NTFS: Microsoft Filesystem

Crash Consistency (OSTEP 42)

Log-structured Filesystems (OSTEP 43)

Persistent Storage Devices: Flash-based SSDs (OSTEP 44)

© o N s W=

Motivation Ifs

m Memory size is growing rapidly
= so fs performance determined by writes

m Disk: random io is much slower than sequential io

= seek and rotational delays decreasing slowly
= data bandwidth increasing rapidly

m Existing filesystems involve lots of random writes
= create new 1-block file:

= new inode, new datablock
= bitmaps
= parent inode, parent datablock(s)

m Existing filesystems are not RAID-aware
= small-write problem

Basic idea

m Make the filesystem a log

Ifs

m Do all writes (data + metadata) to a (large) in-memory segment
» Eg: [4 block writes to file j], [1 block write to file k]

bIk[0]:AD bIk[0]:A5
bIk[]-A1
Du,o] D[i,1] D[j,2] Du,a] blk[2]:A2 D[k,O]
blk[3]:A3
A0 Al A2 A3 Inode[j] A5 Inode[K]

m When segment is full, write it to disk sequentially (not in-place)

m But now the on-disk inodes are not in fixed locations

= need a dynamic map of on-disk locations of current inodes

m Also need to free segment-size areas on disk
= garbage collect old inodes and datablocks
» coalesce small holes to segment-sized hole

Solution to locating current inodes Ifs

m Inode map (imap): inode # — disk location of “current” inode
m Imap on disk (for crash recovery) and in memory (for speed)
m On-disk imap in fixed place & frequently updated = random io

m Instead on-disk imap is spread over log
= upon an inode write, also write the relevant chunk of imap

= checkpoint region (CR) gives locations of current imap chunks

s CR at a fixed location in disk

[kinlw(ap;\j] blgk[O]:AO map[k]:A1

...k+N]:

A2 D I[k] | imap
CR

0 A0 Al A2

Directory update example

m Create file foo in a directory dir

\ A y i I
blk[0]:AO (foo, k) blk[0]:A2 | map[k]:A1
Dy | 1] Daig| 1[dir] mapldirf:A3
imap
A0 Al A2 A3

Ifs

Garbage formation Ifs

m Example: given file k with 1 datablock, update the datablock

\ y
blk[0]:A0 blk[0]:A4
DO | I DO | I[K]
A0 (both garbage) A4

m Example: given file k with 1 datablock, append a new datablock

v I

bIK[OJ-AQ i1 Ad
DO I[K] D1 I[K]

A0 (garbage) A4

Garbage collection Ifs

m LFS cleaner works segment by segment

= read in M old segments
= determine the live blocks in those segments
= write them out (compactly) into N new segments (N < M)

m Determining block liveness

= every segment X has a segment summary (SS) block
» for each datablock D in X: disk location, inode number, offset

v

blgk[O]:AO map[K]:A1

D I[K] | imap

A0 Al

= D is garbage if
D.location in SS # D.offset location in current inode

Invariant for on-disk content Ifs
On-disk log (in successive disk blocks)
7z
checkpointed not checkpointed
segment
SS SS SS SS
moves right upon moves right upon
garbage collection writes of in-memory log
CR
log start
log end
ptrs to
imap chunks

Crash recovery Ifs

m Crash can occur while writing on-disk log or updating CR
m LFS updates the CR every 30 sec

m To ensure atomic update of CR

= maintain two on-disk CRs and update them alternately
= CR update

= write timestamp in CR header, write CR
= then write same timestamp in CR trailer

m Crash recovery:

» choose the latest CR with consistent timestamps
= from this CR, construct an in-memory imap
= start logging at the CR’s log-end position.

m But loses all of the uncheckpointed log (30 sec!)

Better crash recovery Ifs

m Store some additional info in normal operation

= in segment summary (SS): location of every inode in the
segment
= each segment has matching timestamps at start and end

m Upon crash, recover to the last checkpoint (as before)

m Then roll forward on the uncheckpointed part of the log

= while the next segment has matching timestamps:
update the CR with the segment’s metadata

Outline ssd

Filesystem Interface

Persistent Storage Devices: Hard disks

Filesystem Implementation

FAT Filesystem

FFS: Unix Fast Filesystem

NTFS: Microsoft Filesystem

Crash Consistency (OSTEP 42)

Log-structured Filesystems (OSTEP 43)

Persistent Storage Devices: Flash-based SSDs (OSTEP 44)

© o N s W=

Flash Devices ssd

RAM with a floating insulated gate

m No moving parts

= more robust than disk to impacts
= consumes less energy
= uniform access time // good for random access

m Wears out with repeated usage? Lose charge when unused?

Read/write operations
= done in blocks (12KB to 128KB)
= tens of microseconds // if erased area available for writes

m Write requires erased area

Erase operation

= erasure block (few MB)

= tens of milliseconds

= SO maintain a large erased area

Flash chip ssd

m Consists of blocks divided into pages

= blocks are large: 128 KB, 256 KB, ...
= pages are reasonable: 4KB, ...

Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: | [| | | [L[

m Page is invalid (i), erased (E) or valid (V)
= any page can be read /=~ 25us
= an erased page can be written // =~ 300us
= only blocks can be erased, not individual pages /] == 2000us

m No moving parts: reliable

m Block wears out after repeated erase-write cycles

Raw Flash to Flash-based SSD ssd

m Goal: provide an array of read-write pages

m Achieved via a flash translation layer (FTL)

Memory Flash
|
Flash Flash Flash Flash
| Controller

Figure 44.3: A Flash-based SSD: Logical Diagram

| Host Interface Logic |

Log-structured FTL — 1

ssd

m Eg: write blocks 100, 101, 2000, 2001 with content al, a2, b1, b2

Block: 0 1 2
Page: 00 01 02 03({04 05 06 07|08 09 10 11
Content: | [| | | [L[
State: i i i i |i i 0 ili i i i
Content: [[[| | [| [
State: E E E E|i i i i/|i i i ‘i
Table: 100 =0 101 =»=1 20002 2001—>3 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [at]a2|bt1|b2] | | | | [| Chip
State: V V V VI[i i i i|i i i ‘i

Log-structured FTL — 2 ssd

m Garbage collection

suppose user overwrites user blocks in pages xg, x, - -
new content goes into new (erased) pages yo, y1, - -
map is updated

old pages are garbage collected

= live content in old blocks are moved to new blocks

= block of old pages is erased

m Hybrid mapping
= page map only would become too large
= also use block map

= treat user block n as [ny, ny], where n; maps to a flash block
= user blocks [ny,0], [m,1], --- in pages 0, 1, --- of a block

m Map stored in flash // as in log-structured filesystems
= at unmount for persistence
= periodically for crash recovery

Hybrid mapping example — 1 ssd
m Suppose blocks 1000-1003 are stored in pages 8-11
Log Table:
Data Table: 250 -»8 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: | | [| [| | alblc]d Chip
State: i i i i|i i i i|V V V V
m Suppose user overwrites these blocks with new content
Log Table: 10000 1001—1 1002—-2 1003->3
Data Table: 250 -8 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: [a [b'[c[d| | | | [a]blc]|d Chip
State: V V V VI|[i i i i|V V V. V

Hybrid mapping example — 2 ssd

m Garbage collection then yields

Log Table:
Data Table: 250 =0 Memory
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: |a' [b' [c[d] [[| [| | Chip
State: V. V. V. V|i i i i|i i i i

SSDs vs HDDs

m Performance

Random Sequential
Reads Writes Reads Writes
Device (MB/s) (MB/s) (MB/s) (MB/s)
Samsung 840 Pro SSD 103 287 421 384
Seagate 600 SSD 84 252 424 374
Intel SSD 335 SSD 39 222 344 354
Seagate Savvio 15K.3 HDD 2 2 223 223

Figure 44.4: SSDs And Hard Drives: Performance Comparison

m Cost: HDDs much cheaper than SSDs (eg, 10 times less)

	Filesystem Interface
	Persistent Storage Devices: Hard disks
	Filesystem Implementation
	FAT Filesystem
	FFS: Unix Fast Filesystem
	NTFS: Microsoft Filesystem
	Crash Consistency (OSTEP 42)
	Log-structured Filesystems (OSTEP 43)
	Persistent Storage Devices: Flash-based SSDs (OSTEP 44)

