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Overview of �lesystem interface fs interface

Persistent structure of �les // residing in persistent storage

Types of �les:

user �le: content is sequence of bytes // u-�le for short
directory �le: content is pointers to �les // d-�le for short
device, ...

Structure organized as a tree or acylic graph

nodes: d-�les, u-�les
root directory: �/�
path to a �le: �/a/b/...�
acyclic: more than one path to a u-�le (but not directory)

File metadata: type, owner, creation time, access, ...

Users can create/delete �les, modify content/metadata

Examples: FAT, UFS, NTFS, ZFS, ..., PFAT, GOSFS, GSFS2



File attributes fs interface

Name

last entry in a path to the �le // eg, �b� in path �/a/b�
subject to size and char limits

Type: directory or �le or device or ...

Size: subject to limit

Directory may have a separate limit on number of entries

Time of creation, modi�cation, last access, ...

Content type (if u-�le): eg, text, binary, executable, ...

pdf, jpeg, mpeg, ...

Owner

Access for owner, others, ...: eg, r, w, x, setuid, ...



Operations on �lesystems fs interface

Format(dev)

create an empty �lesystem on device dev (eg, disk, �ash, ...)

Mount(fstype, dev)

attach (to computer) �lesystem of type fstype on device dev
returns a path to the �lesystem (eg, mount point, volume, ...)
after this, processes can operate on the �lesystem

Unmount(path)

detach (from computer) �lesystem at path // �nish all io
after this, the �lesystem is inert in its device, unaccessible



Operations on attached �lesystem � 1 fs interface

Create(path), CreateDir(path)

create a �le/directory at given path

Link(existingPath, newPath)

create a (hard) link to an existing �le (not directory)

Delete(path) // aka Unlink(path)

delete the given path to the u-�le at path
delete u-�le if no more paths to it

DeleteDir(path)

delete the directory at path //must be empty

Change attributes (name, metadata) of �le at path

eg, stat, touch, chown/chgrp, chmod, rename/mv



Operations on attached �lesystem � 2 fs interface

Open(path, access), OpenDir(path, access)

open the �le at path with given access (r, w, ...)
returns a �le descriptor
after this, �le can be operated on

Close(fd), CloseDir(fd)

close the �le associated with �le descriptor fd

Read(fd , file range, buffer), ReadDir(fd , dir range, buffer),

read the given range from open �le fd into given bu�er
returns number of bytes/entries read

Write(fd , file range, buffer)

write bu�er contents into the given range of open �le fd
returns number of bytes written



Operations on attached �lesystem � 3 fs interface

Seek(fd , file location), SeekDir(fd , entry)

move �r/w� position� to given location/entry

MemMap(fd , file range,mem range)

map the given range of open �le fd to given range of memory

MemUnmap(fd , file range,mem range)

unmap the given range of �le fd from given range of memory

Sync(fd)

complete all pending io for open �le fd



Consistency of shared �les fs interface

Shared �le: �le opened by several processes concurrently

Consistency:

when does a read see the result of a previous write by another
process

Various types of consistency (from strong to weak)

when the read starts after the write returns
when the read starts after a post-write sync returns
when the read starts after a post-write close returns

Single-processor system

all types of consistency easily achieved

Multi-processor system

strong notions are expensive/slow to achieve



Reliability fs interface

Filesystem should be resilient to device failures

Types of failures to be handled:

failures in persistent storage devices:

magnetic /mechanical / electronic parts wear out

Operating system may crash in the middle of a fs operation

Power loss in the middle of a fs operation

�Small� failures should cause no loss of �lesystem

�Large� failures may cause loss of some �les but no inconsistency
(no undetected corrupted �les)
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Disks: Geometry hdd

Platter(s) �xed to rotating spindle

Spindle speed

Platter has two surfaces

Surface has concentric tracks

Track has sectors

more in outer than inner

Sector: �xed capacity

Movable arm with �xed rw heads,
one per surface

Bu�er memory

Eg, laptop disk (2011)

1 or 2 platters

4200�15000 rpm,
15�4ms/rotation

diameter: 2.5 in

track width: < 1 micron

sector: 512 bytes

bu�er: 16MB



Disk IO hdd

IO is in blocks (sectors); slower, more bursty than memory

Disk access time = seek + rotation + transfer

Seek time: (moving rw head) + (electronic settling)
minimum: target is next track; settling only
maximum: target is at other end

rotation delay: half-rotational delay on avg

transfer time: platter ↔ bu�er

transfer time: bu�er ↔ host memory

Eg, laptop disk (2011)

min seek: 0.3�1.5ms

max seek: 10�20ms

rotation delay: 7.5�2ms

platter ↔ bu�er: 50 (inner) � 100 (outer)MB/s

bu�er ↔ host memory: 100�300MB/s



Disk: Scheduling IO requests hdd

FIFO: terrible: lots of head movement

SSTF (shortest seek time �rst)

favors �middle� requests; can starve �edge� requests

SCAN (elevator)

sweep from inner to outer, until no requests in this direction
sweep from outer to inner, until no requests in this direction

CSCAN: like SCAN but in only one direction

fairer, less chance of sparsely-requested track

R-SCAN / R-CSCAN

allow minor deviations in direction to exploit rotational delays
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Overview of Fs Implementation � 1 fs implementation

De�ne a mapping of �lesystem �les to device blocks

De�ne an implementation of �lesystem operations

performance: random and sequential data access
reliability: inspite of device failures
accomodate di�erent devices (blocks, size, speed, geometry, ...)

The slides sometimes use the following abbreviations:

fs: �lesystem
fs-int: �lesystem interface
fs-imp: �lesystem implementation



Overview of Fs Implementation � 2 fs implementation

Fs implementation usually starts at the second block in the device

[The �rst device block is usually reserved for the boot sector]

Fs implementation organizes the device in fs blocks 0, 1, · · ·
One fs block is one or more device blocks, or vice versa

henceforth, �block� without quali�er means �fs block�

Fs implementation is a graph over blocks, rooted at a special
block (the superblock)

[In contrast, fs interface is a graph over �les]

Each fs-int �le x maps to a subgraph of the fs-imp graph

subgraph's blocks hold x 's metadata and x 's data
root block of the subgraph typically has pointers to subgraph's
blocks

List of free blocks reachable from superblock



Overview of Fs Implementation � 3 fs implementation
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Superblock fs implementation

Usually in the �rst few device blocks after the boot sector

First fs block read by OS when mounting a �lesystem

Contains info su�cient to mount the �lesystem

magic number, indicating �lesystem type
fs blocksize (vs device blocksize)
size of disk (in fs blocks).
pointer (block #) to the root of �/� directory's subgraph
pointer to list of free blocks
(perhaps) pointer to array of roots of subgraphs
...



Subgraph for a fs-int �le fs implementation

Unique low-level name // typically a number (�inode number�)

User name(s) //multiple names/paths due to links

File metadata

size
owner, access, ...
creation time, last modi�cation time, ...
...

Pointers to fs blocks containing �le's data

pointers organized in array, linked-list, ...

For a u-�le, the data is the �le's data

For a d-�le, the data is a table of directory entries

table may be unordered, sorted, hashed, ..., depending on
number and size of entries, desired performance, ...
directory entry points to the entry's subgraph // eg, inode



To achieve good performance fs implementation

Want large numbers of consecutive reads or writes

So put related info in nearby blocks / cylinders

Large bu�ers (to minimize read misses)

Batched writes: large queue of writes



Reliability: Overcoming device block failures fs implementation

A device block can degrade over time.

positions in the block may not retain their values
need to detect the degradation and avoid that block

Redundancy within a disk

error-detection/correction code (EDC/ECC) in each disk block
map each fs block to multiple disk blocks
dynamically remap within a disk to bypass failing areas

Redundancy across disks // eg, RAID

map each fs block to blocks in di�erent disks
EDC/ECC for a fs block across disks
· · ·



Atomicity of fs operations fs implementation

A fs operation is atomically executed if either all of it or none of
it is applied to the fs

Goal: every fs operation is atomic inspite of failures (OS, power,
etc) during operation

Assumption about operations (reads, writes) on device blocks

if there is a failure during a block write, the write is completed
or the block is unchanged

if a sequence of operations is submitted, when the disk indicates
completion, all the operations have been done in some order



Atomicity via Copy-On-Write fs implementation

Suppose user modi�es a �le f

Identify a subgraph, say X , of the fs-imp graph to be modi�ed

Write the new value of X in fresh blocks, say Y

Attach Y to the fs-imp graph in place of X

typically involves modifying fewer blocks, so low prob of failure
ideal: involves modifying one device block

Garbage collect the blocks of X



Atomicity via Logging / Journal fs implementation

Suppose user issues a sequence of disk operations

Maintain a log (aka journal) of requested operations

add records (one for each operation) to log
add �commit� record after last operation

Later, commit the log to disk

write the operations in the log to disk
when those writes are completed, erase the log

Upon recovery from crash, (re)do all operations in the log

writes may be repeated, but this is ok // writes are idempotent



Hierarchy in Filesystem fs implementation

Virtual �lesystem: optional

memory-only framework on which to mount real �lesystems

Mounted Filesystem(s)

real �lesystems, perhaps of di�erent types

Block cache

cache �lesystem blocks: performance, sharing, ...

Block device

wrapper for the various block devices with �lesystems

Device drivers for the various block devices



GeekOS: Hierarchy in Filesystem fs implementation
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FAT32 Overview � 1 FAT

FAT: MS-DOS �lesystem

simple, but no good for scalability, hard links, reliability, ...
currently used only on simple storage devices: �ash, ...

Disk divided into following regions

Boot sector: device block 0

BIOS parameter block
OS boot loader code

Filesystem info sector: device block 1

signatures, fs type, pointers to other sections
fs blocksize, # free fs blocks, # last allocated fs block
...

FAT: fs blocks 0 and 1; corresponds to the superblock

Data region: rest of the disk, organized as an array of fs blocks

holds the data of the fs-int �les



FAT32 Overview � 2 FAT

Each block in the data region is either
free or bad or holds data (of a �le or directory)

FAT: array with an entry for each block in data region

entries j0, j1, · · · form a chain i�
blocks j0, j1, · · · hold successive data of a �le

Entry n contains

constant, say FREE, if block n is free

constant, say BAD, if block n is bad (ie, unusable)

32-bit number, say x , if block n holds data of a �le
and block x holds the succeeding data of the �le

constant, say END, if block n holds the last data chunk

Root directory table: typically at start of data region (block 2)



FAT32 Overview � 3 FAT

Directory entry: 32 bytes

name (8)
extension (3)
attributes (1)

read-only, hidden, system, volume label,
subdirectory, archive, device

reserved (10)
last modi�cation time (2)
last modi�cation date (2)
fs block # of starting fs block of the entry's data
size of entry's data (4)

Hard links??
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FFS layout FFS

Boot blocks // few blocks at start

Superblock // after boot blocks

magic number
�lesystem geometry (eg, locations of groups)
�lesystem statistics/tuning params

Groups, each consisting of // cylinder groups

backup copy of superblock
header with statistics
array of inodes

holds metadata and data pointers of fs-int �les
# inodes �xed at format time

array of data blocks
free-inodes bitmap, free-datablocks bitmap
...



FFS inodes FFS

Inodes are numbered sequentially starting at 0

inodes 0 and 1 are reserved
inode 2 is the root directory's inode

An inode is either free or not

Non-free inode holds metadata and data pointers of a �le

owner id
type (directory, �le, device, ...)
access modes
reference count //# of hard links
size and #blocks of data
15 pointers to data blocks

12 direct
1 single-indirect, 1 double-indirect, 1 triple-indirect



FFS data pointers: asymmetric tree (max depth 4) FFS

meta

inode indirect blocks data blocks



FFS directory entries FFS

The data blocks of a directory hold directory entries

A directory entry is not split across data blocks

Directory entry has a pointer to inode

Directory entry for a �le

# of the inode of the �le // hard link
size of entry
length of �le name (up to 255 bytes)
entry name

Multiple directory entries can point to the same inode



User Ids FFS

Every user account has a user id (uid)

Root user (aka superuser, admin) has uid of 0

Processes and �lesystem entries have associated uids

indicates owners
determines access processes have to �lesystem entries
determines which processes can be signalled by a process



Process Ids FFS

Every process has two associated uids

e�ective user id (euid)

uid of user on whose behalf it is currently executing
determines its access to �lesystem entries

real uid (ruid)

uid of the process's owner
determines which processes it can signal:
x can signal y only if x is superuser or x .ruid = y .ruid



Process Ids FFS

Process is created: ruid/euid ← creating process's euid

Process with euid 0 executes SetUid(z): ruid/euid ← z

no e�ect if process has non-zero euid

Example SetUid usage

login process has euid 0 (to access auth info �les)
upon successful login, it starts a shell process (with euid 0)
shell executes SetUid(authenticated user's uid)

When a process executes a �le f with �setuid bit� set:
its euid is set to f's owner's uid while it is executing f.

Upon bootup, the �rst process (�init�) runs with uid of 0

it spawns all other processes directly or indirectly



Directory entry's uids and permissions FFS

Every directory entry has three classes of users:

owner (aka �user�)
group (owner need not be in this group)
others (users other than owner or group)

Each class's access is de�ned by three bits: r, w, x

For a �le:

r: read the �le
w: modify the �le
x: execute the �le

For a directory:

r: read the names (but not attributes) of entries in the directory
w: modify entries in the directory (create, delete, rename)
x: access an entry's contents and metainfo

When a directory entry is created: attributes are set according to
the creating process's attributes (euid, umask, etc)



Directory entry's setuid bit FFS

Each directory entry also has a �setuid� bit.

If an executable �le has setuid set and a process (with execute
access) executes it, the process's euid changes to the �le's
owner's uid while executing the �le.

Typically, the executable �le's owner is root, allowing a normal
user to get root privileges while executing the �le

This is a high-level analog of system calls



Directory entry's sticky bit FFS

Each directory entry also has a sticky bit.

Executable �le with sticky bit set: hint to the OS to retain the
text segment in swap space after the process executes

An entry x in a directory with sticky bit set:

a user with wx access to the directory can rename/delete an
entry x in the directory only if it is x 's owner (or superuser)
Usually set on /tmp directory.



Directory entry's setgid bit FFS

Unix has the notion of groups of users

A group is identi�ed by a group id, abbreviated gid

A gid de�nes a set of uids

A user account can be in di�erent groups, i.e., have multiple gids

Process has e�ective gid (egid) and real gid (rgid)

play a similar role as euid and ruid

A directory entry has a setgid bit

plays a similar role to setuid for executables
plays an entirely di�erent role for directories
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NTFS Index Structure NTFS

Master File Table (MFT)

corresponds to FFS inode array
holds an array of 1KB MFT records

MFT Record: sequence of variable-size attribute records

Std info attribute: owner id, creation/mod/... times, security, ...

File name attribute: �le name and number

Data attribute record

data itself (if small enough), or // resident
list of data �extents� (if not small enough) // non-resident

Attribute list

pointers to attributes in this or other MFT records
pointers to attribute extents
needed if attributes do not �t in one MFT record

eg, highly-fragmented and/or highly-linked



Example: Files with single MFT record NTFS

free

std info file name

extent

extent
datafile name data (resident)

data (non−resident) free

Master File Table (MFT)

std info

< MFT record >

(2 data extents)
File B

File A

(data resident) start / length

data
start / length



Example: File with three MFT records NTFS

attr liststd infoFile C datafn fn

attr liststd info datafn

data extents

attr list extent

fn

data extents

std info data

data extents
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Crash Consistency crash consistency

Goal: to bring up a crashed fs in a consistent recent state

Filesystem checker (fsck)

no extra work done during normal operation
recovery: examine fs metadata (bitmaps, inodes) to detect
inconsistencies
too slow to handle disks of current size

Journaling: Data or Metadata

do extra work during normal operation
recovery: check only the modi�ed part



Example workload crash consistency

Fs: 8-bit inode bitmap, 8-bit data bitmap, 8 inodes, 8 data blocks

2 CRASH CONSISTENCY: FSCK AND JOURNALING

In this chapter, we’ll describe this problem in more detail, and look
at some methods file systems have used to overcome it. We’ll begin by
examining the approach taken by older file systems, known as fsck or the
file system checker. We’ll then turn our attention to another approach,
known as journaling (also known as write-ahead logging), a technique
which adds a little bit of overhead to each write but recovers more quickly
from crashes or power losses. We will discuss the basic machinery of
journaling, including a few different flavors of journaling that Linux ext3
[T98,PAA05] (a relatively modern journaling file system) implements.

42.1 A Detailed Example

To kick off our investigation of journaling, let’s look at an example.
We’ll need to use a workload that updates on-disk structures in some
way. Assume here that the workload is simple: the append of a single
data block to an existing file. The append is accomplished by opening the
file, calling lseek() to move the file offset to the end of the file, and then
issuing a single 4KB write to the file before closing it.

Let’s also assume we are using standard simple file system structures
on the disk, similar to file systems we have seen before. This tiny example
includes an inode bitmap (with just 8 bits, one per inode), a data bitmap
(also 8 bits, one per data block), inodes (8 total, numbered 0 to 7, and
spread across four blocks), and data blocks (8 total, numbered 0 to 7).
Here is a diagram of this file system:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v1]
Da

If you look at the structures in the picture, you can see that a single inode
is allocated (inode number 2), which is marked in the inode bitmap, and a
single allocated data block (data block 4), also marked in the data bitmap.
The inode is denoted I[v1], as it is the first version of this inode; it will
soon be updated (due to the workload described above).

Let’s peek inside this simplified inode too. Inside of I[v1], we see:

owner : remzi

permissions : read-write

size : 1

pointer : 4

pointer : null

pointer : null

pointer : null

In this simplified inode, the size of the file is 1 (it has one block al-
located), the first direct pointer points to block 4 (the first data block of
the file, Da), and all three other direct pointers are set to null (indicating

OPERATING
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Append of a single datablock to the existing �le

requires 3 writes: data bitmap block, inode block, data block
write �rst to memory cache, later to disk
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that they are not used). Of course, real inodes have many more fields; see
previous chapters for more information.

When we append to the file, we are adding a new data block to it, and
thus must update three on-disk structures: the inode (which must point
to the new block and record the new larger size due to the append), the
new data block Db, and a new version of the data bitmap (call it B[v2]) to
indicate that the new data block has been allocated.

Thus, in the memory of the system, we have three blocks which we
must write to disk. The updated inode (inode version 2, or I[v2] for short)
now looks like this:

owner : remzi

permissions : read-write

size : 2

pointer : 4

pointer : 5

pointer : null

pointer : null

The updated data bitmap (B[v2]) now looks like this: 00001100. Finally,
there is the data block (Db), which is just filled with whatever it is users
put into files. Stolen music perhaps?

What we would like is for the final on-disk image of the file system to
look like this:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v2]
Da Db

To achieve this transition, the file system must perform three sepa-
rate writes to the disk, one each for the inode (I[v2]), bitmap (B[v2]), and
data block (Db). Note that these writes usually don’t happen immedi-
ately when the user issues a write() system call; rather, the dirty in-
ode, bitmap, and new data will sit in main memory (in the page cache
or buffer cache) for some time first; then, when the file system finally
decides to write them to disk (after say 5 seconds or 30 seconds), the file
system will issue the requisite write requests to the disk. Unfortunately,
a crash may occur and thus interfere with these updates to the disk. In
particular, if a crash happens after one or two of these writes have taken
place, but not all three, the file system could be left in a funny state.

Crash Scenarios

To understand the problem better, let’s look at some example crash sce-
narios. Imagine only a single write succeeds; there are thus three possible
outcomes, which we list here:

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES



Crash scenarios crash consistency

Disk

writes blocks in arbitrary order
ensures a block write is either all or nothing

Possible crash scenarios

1 block written

Db or // ok
I[v2] or // inconsistency with data bitmap
B[v2] // space leak

2 blocks written

[I[v2], B[v2]] or // bad. fs has garbage
[I[v2], Db] or // inconsistency with data bitmap
[B[v2], Db] // inconsistency with data bitmap



Filesystem checker crash consistency

Examines and, if needed, modi�es to achieve consistency

Superblock // compare against duplicate superblocks
Inodes and indirect blocks to produce a correct version of
bitmaps
Inode state
Inode links
Duplicates
Directory checks



Journaling crash consistency

Before overwriting disk structures in place, write a log in a
speci�ed place on disk

Linux ext3 �lesystem with a journal:
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mencing a search-the-entire-house-for-keys recovery algorithm, starting in
the basement and working your way through every room. It works but is
wasteful. Thus, as disks (and RAIDs) grew, researchers and practitioners
started to look for other solutions.

42.3 Solution #2: Journaling (or Write-Ahead Logging)

Probably the most popular solution to the consistent update problem
is to steal an idea from the world of database management systems. That
idea, known as write-ahead logging, was invented to address exactly this
type of problem. In file systems, we usually call write-ahead logging jour-
naling for historical reasons. The first file system to do this was Cedar
[H87], though many modern file systems use the idea, including Linux
ext3 and ext4, reiserfs, IBM’s JFS, SGI’s XFS, and Windows NTFS.

The basic idea is as follows. When updating the disk, before over-
writing the structures in place, first write down a little note (somewhere
else on the disk, in a well-known location) describing what you are about
to do. Writing this note is the “write ahead” part, and we write it to a
structure that we organize as a “log”; hence, write-ahead logging.

By writing the note to disk, you are guaranteeing that if a crash takes
places during the update (overwrite) of the structures you are updating,
you can go back and look at the note you made and try again; thus, you
will know exactly what to fix (and how to fix it) after a crash, instead
of having to scan the entire disk. By design, journaling thus adds a bit
of work during updates to greatly reduce the amount of work required
during recovery.

We’ll now describe how Linux ext3, a popular journaling file system,
incorporates journaling into the file system. Most of the on-disk struc-
tures are identical to Linux ext2, e.g., the disk is divided into block groups,
and each block group contains an inode bitmap, data bitmap, inodes, and
data blocks. The new key structure is the journal itself, which occupies
some small amount of space within the partition or on another device.
Thus, an ext2 file system (without journaling) looks like this:

Super Group 0 Group 1 . . . Group N

Assuming the journal is placed within the same file system image
(though sometimes it is placed on a separate device, or as a file within
the file system), an ext3 file system with a journal looks like this:

Super Journal Group 0 Group 1 . . . Group N

The real difference is just the presence of the journal, and of course,
how it is used.
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ASIDE: OPTIMIZING LOG WRITES

You may have noticed a particular inefficiency of writing to the log.
Namely, the file system first has to write out the transaction-begin block
and contents of the transaction; only after these writes complete can the
file system send the transaction-end block to disk. The performance im-
pact is clear, if you think about how a disk works: usually an extra rota-
tion is incurred (think about why).

One of our former graduate students, Vijayan Prabhakaran, had a simple
idea to fix this problem [P+05]. When writing a transaction to the journal,
include a checksum of the contents of the journal in the begin and end
blocks. Doing so enables the file system to write the entire transaction at
once, without incurring a wait; if, during recovery, the file system sees
a mismatch in the computed checksum versus the stored checksum in
the transaction, it can conclude that a crash occurred during the write
of the transaction and thus discard the file-system update. Thus, with a
small tweak in the write protocol and recovery system, a file system can
achieve faster common-case performance; on top of that, the system is
slightly more reliable, as any reads from the journal are now protected by
a checksum.

This simple fix was attractive enough to gain the notice of Linux file sys-
tem developers, who then incorporated it into the next generation Linux
file system, called (you guessed it!) Linux ext4. It now ships on mil-
lions of machines worldwide, including the Android handheld platform.
Thus, every time you write to disk on many Linux-based systems, a little
code developed at Wisconsin makes your system a little faster and more
reliable.

To avoid this problem, the file system issues the transactional write in
two steps. First, it writes all blocks except the TxE block to the journal,
issuing these writes all at once. When these writes complete, the journal
will look something like this (assuming our append workload again):

J
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TxB
id=1

I[v2] B[v2] Db

When those writes complete, the file system issues the write of the TxE
block, thus leaving the journal in this final, safe state:
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TxB
id=1

I[v2] B[v2] Db TxE
id=1

An important aspect of this process is the atomicity guarantee pro-
vided by the disk. It turns out that the disk guarantees that any 512-byte
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Journal commit // start after journal write completes
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oldest and newest non-checkpointed transactions in the log in a journal
superblock; all other space is free. Here is a graphical depiction:

J
o
u
rn

a
l

Journal

Super
Tx1 Tx2 Tx3 Tx4 Tx5 ...

In the journal superblock (not to be confused with the main file system
superblock), the journaling system records enough information to know
which transactions have not yet been checkpointed, and thus reduces re-
covery time as well as enables re-use of the log in a circular fashion. And
thus we add another step to our basic protocol:

1. Journal write: Write the contents of the transaction (containing TxB
and the contents of the update) to the log; wait for these writes to
complete.

2. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction is
now committed.

3. Checkpoint: Write the contents of the update to their final locations
within the file system.

4. Free: Some time later, mark the transaction free in the journal by
updating the journal superblock.

Thus we have our final data journaling protocol. But there is still a
problem: we are writing each data block to the disk twice, which is a
heavy cost to pay, especially for something as rare as a system crash. Can
you figure out a way to retain consistency without writing data twice?

Metadata Journaling

Although recovery is now fast (scanning the journal and replaying a few
transactions as opposed to scanning the entire disk), normal operation
of the file system is slower than we might desire. In particular, for each
write to disk, we are now also writing to the journal first, thus doubling
write traffic; this doubling is especially painful during sequential write
workloads, which now will proceed at half the peak write bandwidth of
the drive. Further, between writes to the journal and writes to the main
file system, there is a costly seek, which adds noticeable overhead for
some workloads.

Because of the high cost of writing every data block to disk twice, peo-
ple have tried a few different things in order to speed up performance.
For example, the mode of journaling we described above is often called
data journaling (as in Linux ext3), as it journals all user data (in addition
to the metadata of the file system). A simpler (and more common) form
of journaling is sometimes called ordered journaling (or just metadata
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Metadata Journaling crash consistency

Data write: to �nal on-disk locations

Journal metadata write: write metadata into log
// after above completes

Journal commit // after above completes
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journaling), and it is nearly the same, except that user data is not writ-
ten to the journal. Thus, when performing the same update as above, the
following information would be written to the journal:

J
o
u
rn

a
l

TxB I[v2] B[v2] TxE

The data block Db, previously written to the log, would instead be
written to the file system proper, avoiding the extra write; given that most
I/O traffic to the disk is data, not writing data twice substantially reduces
the I/O load of journaling. The modification does raise an interesting
question, though: when should we write data blocks to disk?

Let’s again consider our example append of a file to understand the
problem better. The update consists of three blocks: I[v2], B[v2], and
Db. The first two are both metadata and will be logged and then check-
pointed; the latter will only be written once to the file system. When
should we write Db to disk? Does it matter?

As it turns out, the ordering of the data write does matter for metadata-
only journaling. For example, what if we write Db to disk after the trans-
action (containing I[v2] and B[v2]) completes? Unfortunately, this ap-
proach has a problem: the file system is consistent but I[v2] may end up
pointing to garbage data. Specifically, consider the case where I[v2] and
B[v2] are written but Db did not make it to disk. The file system will then
try to recover. Because Db is not in the log, the file system will replay
writes to I[v2] and B[v2], and produce a consistent file system (from the
perspective of file-system metadata). However, I[v2] will be pointing to
garbage data, i.e., at whatever was in the slot where Db was headed.

To ensure this situation does not arise, some file systems (e.g., Linux
ext3) write data blocks (of regular files) to the disk first, before related
metadata is written to disk. Specifically, the protocol is as follows:

1. Data write: Write data to final location; wait for completion
(the wait is optional; see below for details).

2. Journal metadata write: Write the begin block and metadata to the
log; wait for writes to complete.

3. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction (in-
cluding data) is now committed.

4. Checkpoint metadata: Write the contents of the metadata update
to their final locations within the file system.

5. Free: Later, mark the transaction free in journal superblock.

By forcing the data write first, a file system can guarantee that a pointer
will never point to garbage. Indeed, this rule of “write the pointed-to
object before the object that points to it” is at the core of crash consis-
tency, and is exploited even further by other crash consistency schemes
[GP94] (see below for details).
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In most systems, metadata journaling (akin to ordered journaling of
ext3) is more popular than full data journaling. For example, Windows
NTFS and SGI’s XFS both use some form of metadata journaling. Linux
ext3 gives you the option of choosing either data, ordered, or unordered
modes (in unordered mode, data can be written at any time). All of these
modes keep metadata consistent; they vary in their semantics for data.

Finally, note that forcing the data write to complete (Step 1) before is-
suing writes to the journal (Step 2) is not required for correctness, as indi-
cated in the protocol above. Specifically, it would be fine to concurrently
issue writes to data, the transaction-begin block, and journaled metadata;
the only real requirement is that Steps 1 and 2 complete before the issuing
of the journal commit block (Step 3).

Tricky Case: Block Reuse

There are some interesting corner cases that make journaling more tricky,
and thus are worth discussing. A number of them revolve around block
reuse; as Stephen Tweedie (one of the main forces behind ext3) said:

“What’s the hideous part of the entire system? ... It’s deleting files.
Everything to do with delete is hairy. Everything to do with delete...
you have nightmares around what happens if blocks get deleted and
then reallocated.” [T00]

The particular example Tweedie gives is as follows. Suppose you are
using some form of metadata journaling (and thus data blocks for files
are not journaled). Let’s say you have a directory called foo. The user
adds an entry to foo (say by creating a file), and thus the contents of
foo (because directories are considered metadata) are written to the log;
assume the location of the foo directory data is block 1000. The log thus
contains something like this:
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TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

At this point, the user deletes everything in the directory and the di-
rectory itself, freeing up block 1000 for reuse. Finally, the user creates a
new file (say foobar), which ends up reusing the same block (1000) that
used to belong to foo. The inode of foobar is committed to disk, as is
its data; note, however, because metadata journaling is in use, only the
inode of foobar is committed to the journal; the newly-written data in
block 1000 in the file foobar is not journaled.
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TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

TxB
id=2

I[foobar]
ptr:1000

TxE
id=2
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User deletes directory foo and its contents

User creates new �le foobar which ends up using block 1000
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Motivation lfs

Memory size is growing rapidly

so fs performance determined by writes

Disk: random io is much slower than sequential io

seek and rotational delays decreasing slowly
data bandwidth increasing rapidly

Existing �lesystems involve lots of random writes

create new 1-block �le:

new inode, new datablock
bitmaps
parent inode, parent datablock(s)

Existing �lesystems are not RAID-aware

small-write problem



Basic idea lfs

Make the �lesystem a log

Do all writes (data + metadata) to a (large) in-memory segment

Eg: [4 block writes to �le j], [1 block write to �le k]

4 LOG-STRUCTURED FILE SYSTEMS

segment, and then writes the segment all at once to the disk. As long as
the segment is large enough, these writes will be efficient.

Here is an example, in which LFS buffers two sets of updates into a
small segment; actual segments are larger (a few MB). The first update is
of four block writes to file j; the second is one block being added to file k.
LFS then commits the entire segment of seven blocks to disk at once. The
resulting on-disk layout of these blocks is as follows:

D[j,0]

A0

D[j,1]

A1

D[j,2]

A2

D[j,3]

A3

blk[0]:A0
blk[1]:A1
blk[2]:A2
blk[3]:A3

Inode[j]

D[k,0]

A5

blk[0]:A5

Inode[k]

43.3 How Much To Buffer?

This raises the following question: how many updates should LFS
buffer before writing to disk? The answer, of course, depends on the disk
itself, specifically how high the positioning overhead is in comparison to
the transfer rate; see the FFS chapter for a similar analysis.

For example, assume that positioning (i.e., rotation and seek over-
heads) before each write takes roughly Tposition seconds. Assume further
that the disk transfer rate is Rpeak MB/s. How much should LFS buffer
before writing when running on such a disk?

The way to think about this is that every time you write, you pay a
fixed overhead of the positioning cost. Thus, how much do you have
to write in order to amortize that cost? The more you write, the better
(obviously), and the closer you get to achieving peak bandwidth.

To obtain a concrete answer, let’s assume we are writing out D MB.
The time to write out this chunk of data (Twrite) is the positioning time
Tposition plus the time to transfer D ( D

Rpeak
), or:

Twrite = Tposition +
D

Rpeak

(43.1)

And thus the effective rate of writing (Reffective), which is just the
amount of data written divided by the total time to write it, is:

Reffective =
D

Twrite

=
D

Tposition + D
Rpeak

. (43.2)

What we’re interested in is getting the effective rate (Reffective) close
to the peak rate. Specifically, we want the effective rate to be some fraction
F of the peak rate, where 0 < F < 1 (a typical F might be 0.9, or 90% of
the peak rate). In mathematical form, this means we want Reffective =
F ×Rpeak.
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Solution to locating current inodes lfs

Inode map (imap): inode # −→ disk location of �current� inode

Imap on disk (for crash recovery) and in memory (for speed)

On-disk imap in �xed place & frequently updated ⇒ random io

Instead on-disk imap is spread over log

upon an inode write, also write the relevant chunk of imap

checkpoint region (CR) gives locations of current imap chunks

CR at a �xed location in disk
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43.6 Completing The Solution: The Checkpoint Region

The clever reader (that’s you, right?) might have noticed a problem
here. How do we find the inode map, now that pieces of it are also now
spread across the disk? In the end, there is no magic: the file system must
have some fixed and known location on disk to begin a file lookup.

LFS has just such a fixed place on disk for this, known as the check-
point region (CR). The checkpoint region contains pointers to (i.e., ad-
dresses of) the latest pieces of the inode map, and thus the inode map
pieces can be found by reading the CR first. Note the checkpoint region
is only updated periodically (say every 30 seconds or so), and thus perfor-
mance is not ill-affected. Thus, the overall structure of the on-disk layout
contains a checkpoint region (which points to the latest pieces of the in-
ode map); the inode map pieces each contain addresses of the inodes; the
inodes point to files (and directories) just like typical UNIX file systems.

Here is an example of the checkpoint region (note it is all the way at
the beginning of the disk, at address 0), and a single imap chunk, inode,
and data block. A real file system would of course have a much bigger
CR (indeed, it would have two, as we’ll come to understand later), many
imap chunks, and of course many more inodes, data blocks, etc.

imap
[k...k+N]:

A2

CR
0

D

A0

I[k]

blk[0]:A0

A1

imap

map[k]:A1

A2

43.7 Reading A File From Disk: A Recap

To make sure you understand how LFS works, let us now walk through
what must happen to read a file from disk. Assume we have nothing in
memory to begin. The first on-disk data structure we must read is the
checkpoint region. The checkpoint region contains pointers (i.e., disk ad-
dresses) to the entire inode map, and thus LFS then reads in the entire in-
ode map and caches it in memory. After this point, when given an inode
number of a file, LFS simply looks up the inode-number to inode-disk-
address mapping in the imap, and reads in the most recent version of the
inode. To read a block from the file, at this point, LFS proceeds exactly
as a typical UNIX file system, by using direct pointers or indirect pointers
or doubly-indirect pointers as need be. In the common case, LFS should
perform the same number of I/Os as a typical file system when reading a
file from disk; the entire imap is cached and thus the extra work LFS does
during a read is to look up the inode’s address in the imap.
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Directory update example lfs

Create �le foo in a directory dir
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43.8 What About Directories?

Thus far, we’ve simplified our discussion a bit by only considering in-
odes and data blocks. However, to access a file in a file system (such as
/home/remzi/foo, one of our favorite fake file names), some directo-
ries must be accessed too. So how does LFS store directory data?

Fortunately, directory structure is basically identical to classic UNIX

file systems, in that a directory is just a collection of (name, inode number)
mappings. For example, when creating a file on disk, LFS must both write
a new inode, some data, as well as the directory data and its inode that
refer to this file. Remember that LFS will do so sequentially on the disk
(after buffering the updates for some time). Thus, creating a file foo in a
directory would lead to the following new structures on disk:

D[k]

A0

I[k]
blk[0]:A0

A1

(foo, k)

D[dir]

A2

I[dir]
blk[0]:A2

A3

map[k]:A1

map[dir]:A3

imap

The piece of the inode map contains the information for the location of
both the directory file dir as well as the newly-created file f . Thus, when
accessing file foo (with inode number k), you would first look in the
inode map (usually cached in memory) to find the location of the inode
of directory dir (A3); you then read the directory inode, which gives you
the location of the directory data (A2); reading this data block gives you
the name-to-inode-number mapping of (foo, k). You then consult the
inode map again to find the location of inode number k (A1), and finally
read the desired data block at address A0.

There is one other serious problem in LFS that the inode map solves,
known as the recursive update problem [Z+12]. The problem arises
in any file system that never updates in place (such as LFS), but rather
moves updates to new locations on the disk.

Specifically, whenever an inode is updated, its location on disk changes.
If we hadn’t been careful, this would have also entailed an update to
the directory that points to this file, which then would have mandated
a change to the parent of that directory, and so on, all the way up the file
system tree.

LFS cleverly avoids this problem with the inode map. Even though
the location of an inode may change, the change is never reflected in the
directory itself; rather, the imap structure is updated while the directory
holds the same name-to-inode-number mapping. Thus, through indirec-
tion, LFS avoids the recursive update problem.
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Example: given �le k with 1 datablock, update the datablock
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43.9 A New Problem: Garbage Collection

You may have noticed another problem with LFS; it repeatedly writes
the latest version of a file (including its inode and data) to new locations
on disk. This process, while keeping writes efficient, implies that LFS
leaves old versions of file structures scattered throughout the disk. We
(rather unceremoniously) call these old versions garbage.

For example, let’s imagine the case where we have an existing file re-
ferred to by inode number k, which points to a single data block D0.
We now update that block, generating both a new inode and a new data
block. The resulting on-disk layout of LFS would look something like this
(note we omit the imap and other structures for simplicity; a new chunk
of imap would also have to be written to disk to point to the new inode):

D0

A0

I[k]

blk[0]:A0

(both garbage)

D0

A4

I[k]

blk[0]:A4

In the diagram, you can see that both the inode and data block have
two versions on disk, one old (the one on the left) and one current and
thus live (the one on the right). By the simple act of (logically) updating
a data block, a number of new structures must be persisted by LFS, thus
leaving old versions of said blocks on the disk.

As another example, imagine we instead append a block to that orig-
inal file k. In this case, a new version of the inode is generated, but the
old data block is still pointed to by the inode. Thus, it is still live and very
much part of the current file system:

D0

A0

I[k]

blk[0]:A0

(garbage)

D1

A4

I[k]

blk[0]:A0
blk[1]:A4

So what should we do with these older versions of inodes, data blocks,
and so forth? One could keep those older versions around and allow
users to restore old file versions (for example, when they accidentally
overwrite or delete a file, it could be quite handy to do so); such a file
system is known as a versioning file system because it keeps track of the
different versions of a file.

However, LFS instead keeps only the latest live version of a file; thus
(in the background), LFS must periodically find these old dead versions
of file data, inodes, and other structures, and clean them; cleaning should
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For example, let’s imagine the case where we have an existing file re-
ferred to by inode number k, which points to a single data block D0.
We now update that block, generating both a new inode and a new data
block. The resulting on-disk layout of LFS would look something like this
(note we omit the imap and other structures for simplicity; a new chunk
of imap would also have to be written to disk to point to the new inode):

D0

A0

I[k]

blk[0]:A0

(both garbage)

D0

A4

I[k]

blk[0]:A4

In the diagram, you can see that both the inode and data block have
two versions on disk, one old (the one on the left) and one current and
thus live (the one on the right). By the simple act of (logically) updating
a data block, a number of new structures must be persisted by LFS, thus
leaving old versions of said blocks on the disk.

As another example, imagine we instead append a block to that orig-
inal file k. In this case, a new version of the inode is generated, but the
old data block is still pointed to by the inode. Thus, it is still live and very
much part of the current file system:

D0

A0

I[k]

blk[0]:A0

(garbage)

D1

A4

I[k]

blk[0]:A0
blk[1]:A4

So what should we do with these older versions of inodes, data blocks,
and so forth? One could keep those older versions around and allow
users to restore old file versions (for example, when they accidentally
overwrite or delete a file, it could be quite handy to do so); such a file
system is known as a versioning file system because it keeps track of the
different versions of a file.

However, LFS instead keeps only the latest live version of a file; thus
(in the background), LFS must periodically find these old dead versions
of file data, inodes, and other structures, and clean them; cleaning should
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Garbage collection lfs

LFS cleaner works segment by segment

read in M old segments
determine the live blocks in those segments
write them out (compactly) into N new segments (N < M)

Determining block liveness

every segment X has a segment summary (SS) block
for each datablock D in X: disk location, inode number, o�set

LOG-STRUCTURED FILE SYSTEMS 11

process is shown here:
(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)

// block D is alive

else

// block D is garbage

Here is a diagram depicting the mechanism, in which the segment
summary block (marked SS) records that the data block at address A0
is actually a part of file k at offset 0. By checking the imap for k, you can
find the inode, and see that it does indeed point to that location.

D

A0

I[k]

blk[0]:A0

A1

imap

map[k]:A1

ss

A0:
(k,0)

There are some shortcuts LFS takes to make the process of determining
liveness more efficient. For example, when a file is truncated or deleted,
LFS increases its version number and records the new version number in
the imap. By also recording the version number in the on-disk segment,
LFS can short circuit the longer check described above simply by compar-
ing the on-disk version number with a version number in the imap, thus
avoiding extra reads.

43.11 A Policy Question: Which Blocks To Clean, And When?

On top of the mechanism described above, LFS must include a set of
policies to determine both when to clean and which blocks are worth
cleaning. Determining when to clean is easier; either periodically, dur-
ing idle time, or when you have to because the disk is full.

Determining which blocks to clean is more challenging, and has been
the subject of many research papers. In the original LFS paper [RO91], the
authors describe an approach which tries to segregate hot and cold seg-
ments. A hot segment is one in which the contents are being frequently
over-written; thus, for such a segment, the best policy is to wait a long
time before cleaning it, as more and more blocks are getting over-written
(in new segments) and thus being freed for use. A cold segment, in con-
trast, may have a few dead blocks but the rest of its contents are relatively
stable. Thus, the authors conclude that one should clean cold segments
sooner and hot segments later, and develop a heuristic that does exactly
that. However, as with most policies, this policy isn’t perfect; later ap-
proaches show how to do better [MR+97].
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D is garbage if
D.location in SS 6= D.o�set location in current inode



Invariant for on-disk content lfs

checkpointed

On-disk log (in successive disk blocks)

segment

moves right upon
garbage collection

moves right upon
writes of in-memory log

CR
log start

log end

ptrs to
imap chunks

not checkpointed

SSSS SS SS



Crash recovery lfs

Crash can occur while writing on-disk log or updating CR

LFS updates the CR every 30 sec

To ensure atomic update of CR

maintain two on-disk CRs and update them alternately
CR update

write timestamp in CR header, write CR
then write same timestamp in CR trailer

Crash recovery:

choose the latest CR with consistent timestamps
from this CR, construct an in-memory imap
start logging at the CR's log-end position.

But loses all of the uncheckpointed log (30 sec!)



Better crash recovery lfs

Store some additional info in normal operation

in segment summary (SS): location of every inode in the
segment
each segment has matching timestamps at start and end

Upon crash, recover to the last checkpoint (as before)

Then roll forward on the uncheckpointed part of the log

while the next segment has matching timestamps:
update the CR with the segment's metadata
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1. Filesystem Interface

2. Persistent Storage Devices: Hard disks

3. Filesystem Implementation

4. FAT Filesystem

5. FFS: Unix Fast Filesystem

6. NTFS: Microsoft Filesystem

7. Crash Consistency (OSTEP 42)

8. Log-structured Filesystems (OSTEP 43)

9. Persistent Storage Devices: Flash-based SSDs (OSTEP 44)



Flash Devices ssd

RAM with a �oating insulated gate

No moving parts

more robust than disk to impacts
consumes less energy
uniform access time // good for random access

Wears out with repeated usage? Lose charge when unused?

Read/write operations

done in blocks (12KB to 128KB)
tens of microseconds // if erased area available for writes

Write requires erased area

Erase operation

erasure block (few MB)
tens of milliseconds
so maintain a large erased area



Flash chip ssd

Consists of blocks divided into pages

blocks are large: 128KB, 256KB, ...
pages are reasonable: 4 KB, ...

2 FLASH-BASED SSDS

TIP: BE CAREFUL WITH TERMINOLOGY

You may have noticed that some terms we have used many times before
(blocks, pages) are being used within the context of a flash, but in slightly
different ways than before. New terms are not created to make your life
harder (although they may be doing just that), but arise because there is
no central authority where terminology decisions are made. What is a
block to you may be a page to someone else, and vice versa, depending
on the context. Your job is simple: to know the appropriate terms within
each domain, and use them such that people well-versed in the discipline
can understand what you are talking about. It’s one of those times where
the only solution is simple but sometimes painful: use your memory.

Of course, there are many details as to exactly how such bit-level stor-
age operates, down at the level of device physics. While beyond the scope
of this book, you can read more about it on your own [J10].

44.2 From Bits to Banks/Planes

As they say in ancient Greece, storing a single bit (or a few) does not
a storage system make. Hence, flash chips are organized into banks or
planes which consist of a large number of cells.

A bank is accessed in two different sized units: blocks (sometimes
called erase blocks), which are typically of size 128 KB or 256 KB, and
pages, which are a few KB in size (e.g., 4KB). Within each bank there are
a large number of blocks; within each block, there are a large number of
pages. When thinking about flash, you must remember this new termi-
nology, which is different than the blocks we refer to in disks and RAIDs
and the pages we refer to in virtual memory.

Figure 44.1 shows an example of a flash plane with blocks and pages;
there are three blocks, each containing four pages, in this simple exam-
ple. We’ll see below why we distinguish between blocks and pages; it
turns out this distinction is critical for flash operations such as reading
and writing, and even more so for the overall performance of the device.
The most important (and weird) thing you will learn is that to write to
a page within a block, you first have to erase the entire block; this tricky
detail makes building a flash-based SSD an interesting and worthwhile
challenge, and the subject of the second-half of the chapter.

0 1 2Block:

Page:

Content:

00 01 02 03 04 05 06 07 08 09 10 11

Figure 44.1: A Simple Flash Chip: Pages Within Blocks
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Page is invalid (i), erased (E) or valid (V)

any page can be read //≈ 25µs
an erased page can be written //≈ 300µs
only blocks can be erased, not individual pages //≈ 2000µs

No moving parts: reliable

Block wears out after repeated erase-write cycles



Raw Flash to Flash-based SSD ssd

Goal: provide an array of read-write pages

Achieved via a �ash translation layer (FTL)
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Figure 44.3: A Flash-based SSD: Logical Diagram

sued by the client to the SSD. As we’ll see below, naive approaches to FTL
construction will lead to high write amplification and low performance.

High reliability will be achieved through the combination of a few dif-
ferent approaches. One main concern, as discussed above, is wear out. If
a single block is erased and programmed too often, it will become unus-
able; as a result, the FTL should try to spread writes across the blocks of
the flash as evenly as possible, ensuring that all of the blocks of the device
wear out at roughly the same time; doing so is called wear leveling and
is an essential part of any modern FTL.

Another reliability concern is program disturbance. To minimize such
disturbance, FTLs will commonly program pages within an erased block
in order, from low page to high page. This sequential-programming ap-
proach minimizes disturbance and is widely utilized.

44.6 FTL Organization: A Bad Approach

The simplest organization of an FTL would be something we call di-
rect mapped. In this approach, a read to logical page N is mapped di-
rectly to a read of physical page N . A write to logical page N is more
complicated; the FTL first has to read in the entire block that page N is
contained within; it then has to erase the block; finally, the FTL programs
the old pages as well as the new one.

As you can probably guess, the direct-mapped FTL has many prob-
lems, both in terms of performance as well as reliability. The performance
problems come on each write: the device has to read in the entire block
(costly), erase it (quite costly), and then program it (costly). The end re-
sult is severe write amplification (proportional to the number of pages
in a block) and as a result, terrible write performance, even slower than
typical hard drives with their mechanical seeks and rotational delays.

Even worse is the reliability of this approach. If file system metadata
or user file data is repeatedly overwritten, the same block is erased and
programmed, over and over, rapidly wearing it out and potentially los-
ing data. The direct mapped approach simply gives too much control
over wear out to the client workload; if the workload does not spread
write load evenly across its logical blocks, the underlying physical blocks
containing popular data will quickly wear out. For both reliability and
performance reasons, a direct-mapped FTL is a bad idea.
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Log-structured FTL � 1 ssd

Eg: write blocks 100, 101, 2000, 2001 with content a1, a2, b1, b2

8 FLASH-BASED SSDS

44.7 A Log-Structured FTL

For these reasons, most FTLs today are log structured, an idea useful
in both storage devices (as we’ll see now) and file systems above them (as
we’ll see in the chapter on log-structured file systems). Upon a write to
logical block N , the device appends the write to the next free spot in the
currently-being-written-to block; we call this style of writing logging. To
allow for subsequent reads of block N , the device keeps a mapping table
(in its memory, and persistent, in some form, on the device); this table
stores the physical address of each logical block in the system.

Let’s go through an example to make sure we understand how the
basic log-based approach works. To the client, the device looks like a
typical disk, in which it can read and write 512-byte sectors (or groups of
sectors). For simplicity, assume that the client is reading or writing 4-KB
sized chunks. Let us further assume that the SSD contains some large
number of 16-KB sized blocks, each divided into four 4-KB pages; these
parameters are unrealistic (flash blocks usually consist of more pages) but
will serve our didactic purposes quite well.

Assume the client issues the following sequence of operations:

• Write(100) with contents a1
• Write(101) with contents a2
• Write(2000) with contents b1
• Write(2001) with contents b2

These logical block addresses (e.g., 100) are used by the client of the
SSD (e.g., a file system) to remember where information is located.

Internally, the device must transform these block writes into the erase
and program operations supported by the raw hardware, and somehow
record, for each logical block address, which physical page of the SSD
stores its data. Assume that all blocks of the SSD are currently not valid,
and must be erased before any page can be programmed. Here we show
the initial state of our SSD, with all pages marked INVALID (i):

0 1 2Block:

Page:

Content:

State:

00

i

01

i

02

i

03

i

04

i

05

i

06

i

07

i

08

i

09

i

10

i

11

i

When the first write is received by the SSD (to logical block 100), the
FTL decides to write it to physical block 0, which contains four physical
pages: 0, 1, 2, and 3. Because the block is not erased, we cannot write to
it yet; the device must first issue an erase command to block 0. Doing so
leads to the following state:

0 1 2Block:

Page:

Content:

State:

00

E

01

E

02

E

03

E

04

i

05

i

06

i

07

i

08

i

09

i

10

i

11

i
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44.7 A Log-Structured FTL

For these reasons, most FTLs today are log structured, an idea useful
in both storage devices (as we’ll see now) and file systems above them (as
we’ll see in the chapter on log-structured file systems). Upon a write to
logical block N , the device appends the write to the next free spot in the
currently-being-written-to block; we call this style of writing logging. To
allow for subsequent reads of block N , the device keeps a mapping table
(in its memory, and persistent, in some form, on the device); this table
stores the physical address of each logical block in the system.

Let’s go through an example to make sure we understand how the
basic log-based approach works. To the client, the device looks like a
typical disk, in which it can read and write 512-byte sectors (or groups of
sectors). For simplicity, assume that the client is reading or writing 4-KB
sized chunks. Let us further assume that the SSD contains some large
number of 16-KB sized blocks, each divided into four 4-KB pages; these
parameters are unrealistic (flash blocks usually consist of more pages) but
will serve our didactic purposes quite well.

Assume the client issues the following sequence of operations:

• Write(100) with contents a1
• Write(101) with contents a2
• Write(2000) with contents b1
• Write(2001) with contents b2

These logical block addresses (e.g., 100) are used by the client of the
SSD (e.g., a file system) to remember where information is located.

Internally, the device must transform these block writes into the erase
and program operations supported by the raw hardware, and somehow
record, for each logical block address, which physical page of the SSD
stores its data. Assume that all blocks of the SSD are currently not valid,
and must be erased before any page can be programmed. Here we show
the initial state of our SSD, with all pages marked INVALID (i):

0 1 2Block:

Page:

Content:

State:

00

i

01

i

02

i

03

i

04

i

05

i

06

i

07

i

08

i

09

i

10

i

11

i

When the first write is received by the SSD (to logical block 100), the
FTL decides to write it to physical block 0, which contains four physical
pages: 0, 1, 2, and 3. Because the block is not erased, we cannot write to
it yet; the device must first issue an erase command to block 0. Doing so
leads to the following state:

0 1 2Block:

Page:

Content:

State:

00

E

01

E

02

E

03

E

04

i

05

i

06

i

07

i

08

i

09

i

10

i

11

i
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Block 0 is now ready to be programmed. Most SSDs will write pages
in order (i.e., low to high), reducing reliability problems related to pro-
gram disturbance. The SSD then directs the write of logical block 100
into physical page 0:

0 1 2Block:

Page:

Content:

State:

00

a1

V

01

E

02

E

03

E

04

i

05

i

06

i

07

i

08

i

09

i

10

i

11

i

But what if the client wants to read logical block 100? How can it find
where it is? The SSD must transform a read issued to logical block 100
into a read of physical page 0. To accommodate such functionality, when
the FTL writes logical block 100 to physical page 0, it records this fact in
an in-memory mapping table. We will track the state of this mapping
table in the diagrams as well:

Memory

Flash

Chip

Table: 100 0

0 1 2Block:

Page:

Content:

State:

00

a1

V

01

E

02

E

03

E

04

i

05

i

06

i

07

i

08

i

09

i

10

i

11

i

Now you can see what happens when the client writes to the SSD.
The SSD finds a location for the write, usually just picking the next free
page; it then programs that page with the block’s contents, and records
the logical-to-physical mapping in its mapping table. Subsequent reads
simply use the table to translate the logical block address presented by
the client into the physical page number required to read the data.

Let’s now examine the rest of the writes in our example write stream:
101, 2000, and 2001. After writing these blocks, the state of the device is:

Memory

Flash

Chip

Table: 100 0 101 1 2000 2 2001 3

0 1 2Block:

Page:

Content:

State:

00

a1

V

01

a2

V

02

b1

V

03

b2

V

04

i

05

i

06

i

07

i

08

i

09

i

10

i

11

i

The log-based approach by its nature improves performance (erases
only being required once in a while, and the costly read-modify-write of
the direct-mapped approach avoided altogether), and greatly enhances
reliability. The FTL can now spread writes across all pages, performing
what is called wear leveling and increasing the lifetime of the device;
we’ll discuss wear leveling further below.
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Log-structured FTL � 2 ssd

Garbage collection

suppose user overwrites user blocks in pages x0, x1, · · ·
new content goes into new (erased) pages y0, y1, · · ·
map is updated
old pages are garbage collected

live content in old blocks are moved to new blocks
block of old pages is erased

Hybrid mapping

page map only would become too large
also use block map

treat user block n as [n1, n2], where n1 maps to a �ash block
user blocks [n1, 0], [n1, 1], · · · in pages 0, 1, · · · of a block

Map stored in �ash // as in log-structured �lesystems

at unmount for persistence
periodically for crash recovery



Hybrid mapping example � 1 ssd

Suppose blocks 1000�1003 are stored in pages 8�11
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pages 8, 9, 10, 11); assume the contents of the writes to 1000, 1001, 1002,
and 1003 are a, b, c, and d, respectively.

Memory

Flash

Chip

Log Table:

Data Table: 250 8

0 1 2Block:

Page:

Content:

State:

00

i

01

i

02

i

03

i

04

i

05

i

06

i

07

i

08

a

V

09

b

V

10

c

V

11

d

V

Now assume that the client overwrites each of these blocks (with data
a’, b’, c’, and d’), in the exact same order, in one of the currently avail-
able log blocks, say physical block 0 (physical pages 0, 1, 2, and 3). In this
case, the FTL will have the following state:

Memory

Flash

Chip

Log Table: 1000 0 1001 1 1002 2 1003 3

Data Table: 250 8

0 1 2Block:

Page:

Content:

State:

00

a’

V

01

b’

V

02

c’

V

03

d’

V

04

i

05

i

06

i

07

i

08

a

V

09

b

V

10

c

V

11

d

V

Because these blocks have been written exactly in the same manner as
before, the FTL can perform what is known as a switch merge. In this
case, the log block (0) now becomes the storage location for blocks 0, 1, 2,
and 3, and is pointed to by a single block pointer; the old block (2) is now
erased and used as a log block. In this best case, all the per-page pointers
required replaced by a single block pointer.

Memory

Flash

Chip

Log Table:

Data Table: 250 0

0 1 2Block:

Page:

Content:

State:

00

a’

V

01

b’

V

02

c’

V

03

d’

V

04

i

05

i

06

i

07

i

08

i

09

i

10

i

11

i

This switch merge is the best case for a hybrid FTL. Unfortunately,
sometimes the FTL is not so lucky. Imagine the case where we have
the same initial conditions (logical blocks 1000 ... 1003 stored in physi-
cal block 2) but then the client overwrites logical blocks 1000 and 1001.

What do you think happens in this case? Why is it more challenging
to handle? (think before looking at the result on the next page)
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Suppose user overwrites these blocks with new content
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pages 8, 9, 10, 11); assume the contents of the writes to 1000, 1001, 1002,
and 1003 are a, b, c, and d, respectively.

Memory

Flash

Chip

Log Table:

Data Table: 250 8

0 1 2Block:

Page:

Content:

State:

00

i

01

i

02

i

03

i

04

i

05

i

06

i

07

i

08

a

V

09

b

V

10

c

V

11

d

V

Now assume that the client overwrites each of these blocks (with data
a’, b’, c’, and d’), in the exact same order, in one of the currently avail-
able log blocks, say physical block 0 (physical pages 0, 1, 2, and 3). In this
case, the FTL will have the following state:
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Flash

Chip

Log Table: 1000 0 1001 1 1002 2 1003 3

Data Table: 250 8

0 1 2Block:

Page:

Content:

State:

00

a’

V

01

b’

V
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c’

V
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d’

V
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i
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i
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i
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i
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V
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V
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c

V
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d
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Because these blocks have been written exactly in the same manner as
before, the FTL can perform what is known as a switch merge. In this
case, the log block (0) now becomes the storage location for blocks 0, 1, 2,
and 3, and is pointed to by a single block pointer; the old block (2) is now
erased and used as a log block. In this best case, all the per-page pointers
required replaced by a single block pointer.
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Flash

Chip

Log Table:

Data Table: 250 0

0 1 2Block:

Page:

Content:

State:

00

a’

V

01

b’

V
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c’

V
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d’

V
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i
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i
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i
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i
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i
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i
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This switch merge is the best case for a hybrid FTL. Unfortunately,
sometimes the FTL is not so lucky. Imagine the case where we have
the same initial conditions (logical blocks 1000 ... 1003 stored in physi-
cal block 2) but then the client overwrites logical blocks 1000 and 1001.

What do you think happens in this case? Why is it more challenging
to handle? (think before looking at the result on the next page)
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Hybrid mapping example � 2 ssd

Garbage collection then yields
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pages 8, 9, 10, 11); assume the contents of the writes to 1000, 1001, 1002,
and 1003 are a, b, c, and d, respectively.
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Log Table:

Data Table: 250 8
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Now assume that the client overwrites each of these blocks (with data
a’, b’, c’, and d’), in the exact same order, in one of the currently avail-
able log blocks, say physical block 0 (physical pages 0, 1, 2, and 3). In this
case, the FTL will have the following state:
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Because these blocks have been written exactly in the same manner as
before, the FTL can perform what is known as a switch merge. In this
case, the log block (0) now becomes the storage location for blocks 0, 1, 2,
and 3, and is pointed to by a single block pointer; the old block (2) is now
erased and used as a log block. In this best case, all the per-page pointers
required replaced by a single block pointer.
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This switch merge is the best case for a hybrid FTL. Unfortunately,
sometimes the FTL is not so lucky. Imagine the case where we have
the same initial conditions (logical blocks 1000 ... 1003 stored in physi-
cal block 2) but then the client overwrites logical blocks 1000 and 1001.

What do you think happens in this case? Why is it more challenging
to handle? (think before looking at the result on the next page)
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SSDs vs HDDs ssd

Performance

18 FLASH-BASED SSDS

Random Sequential
Reads Writes Reads Writes

Device (MB/s) (MB/s) (MB/s) (MB/s)

Samsung 840 Pro SSD 103 287 421 384
Seagate 600 SSD 84 252 424 374
Intel SSD 335 SSD 39 222 344 354
Seagate Savvio 15K.3 HDD 2 2 223 223

Figure 44.4: SSDs And Hard Drives: Performance Comparison

and the lone hard drive. While the SSDs obtain tens or even hundreds of
MB/s in random I/Os, this “high performance” hard drive has a peak of
just a couple MB/s (in fact, we rounded up to get to 2 MB/s). Second, you
can see that in terms of sequential performance, there is much less of a dif-
ference; while the SSDs perform better, a hard drive is still a good choice
if sequential performance is all you need. Third, you can see that SSD ran-
dom read performance is not as good as SSD random write performance.
The reason for such unexpectedly good random-write performance is
due to the log-structured design of many SSDs, which transforms ran-
dom writes into sequential ones and improves performance. Finally, be-
cause SSDs exhibit some performance difference between sequential and
random I/Os, many of the techniques we will learn in subsequent chap-
ters about how to build file systems for hard drives are still applicable to
SSDs; although the magnitude of difference between sequential and ran-
dom I/Os is smaller, there is enough of a gap to carefully consider how
to design file systems to reduce random I/Os.

Cost

As we saw above, the performance of SSDs greatly outstrips modern hard
drives, even when performing sequential I/O. So why haven’t SSDs com-
pletely replaced hard drives as the storage medium of choice? The an-
swer is simple: cost, or more specifically, cost per unit of capacity. Cur-
rently [A15], an SSD costs something like $150 for a 250-GB drive; such
an SSD costs 60 cents per GB. A typical hard drive costs roughly $50 for
1-TB of storage, which means it costs 5 cents per GB. There is still more
than a 10× difference in cost between these two storage media.

These performance and cost differences dictate how large-scale stor-
age systems are built. If performance is the main concern, SSDs are a
terrific choice, particularly if random read performance is important. If,
on the other hand, you are assembling a large data center and wish to
store massive amounts of information, the large cost difference will drive
you towards hard drives. Of course, a hybrid approach can make sense
– some storage systems are being assembled with both SSDs and hard
drives, using a smaller number of SSDs for more popular “hot” data and
delivering high performance, while storing the rest of the “colder” (less
used) data on hard drives to save on cost. As long as the price gap exists,
hard drives are here to stay.
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Cost: HDDs much cheaper than SSDs (eg, 10 times less)
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